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Abstract. Digital twins is a digital replica of a physical object to observe its real-time performance, gather data, and recommend corrective actions 

if required to enhance its performance. This fascinating technological idea is now reaching the agriculture fields to transform farming, by creating digital 

twins of entire farms. This initiative presents an innovative strategy to enhance crop health and yield by creating a digital twin for paddy fields. The aim 
is to enable early detection of nutrient deficiencies and leaf blast disease, leading to a transformation in agriculture. Creating virtual replicas of plants 

and fields, the digital twin harnesses real-time data and advanced analytics to transform the way agricultural systems are managed. By integrating remote 

sensing, data analytics, and various Internet of Things devices like pH, nitrous, potassium, and phosphorus sensors, coupled with a gateway system, 
the digital twin provides real-time monitoring and analysis of crop health and nutrient levels. Employing advanced machine learning algorithms, notably 

Convolutional Neural Networks ensures precise and early detection of nutrient deficiencies and crop diseases. This ground-breaking technology provides 

timely alerts and actionable insights to farmers, enabling proactive decision-making for optimal crop management. This farmland digital twin represents 
a transformative approach towards agricultural sustainability and enhancing productivity. 
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POPRAWA ZDROWIA UPRAW ZA POMOCĄ CYFROWEGO BLIŹNIAKA 

DO MONITOROWANIA CHORÓB I BILANSU SKŁADNIKÓW ODŻYWCZYCH  

Streszczenie. Cyfrowe bliźniaki to cyfrowa replika obiektu fizycznego, która umożliwia obserwację jego działania w czasie rzeczywistym, gromadzenie 
danych i rekomendowanie działań naprawczych, jeśli jest to wymagane w celu poprawy jego wydajności. Ta fascynująca koncepcja technologiczna 

dociera obecnie do dziedzin rolnictwa, aby przekształcić rolnictwo, tworząc cyfrowe bliźniaki całych gospodarstw. Inicjatywa ta przedstawia innowacyjną 

strategię mającą na celu poprawę zdrowia i plonów upraw poprzez stworzenie cyfrowego bliźniaka pól ryżowych. Celem jest umożliwienie wczesnego 
wykrywania niedoborów składników odżywczych i zarazy liści, co doprowadzi do transformacji rolnictwa. Tworząc wirtualne repliki roślin i pól, cyfrowy 

bliźniak wykorzystuje dane w czasie rzeczywistym i zaawansowane analizy, aby zmienić sposób zarządzania systemami rolniczymi. Dzięki integracji 

teledetekcji, analizy danych i różnych urządzeń Internetu rzeczy, takich jak czujniki pH, azotu, potasu i fosforu, w połączeniu z systemem bramek, cyfrowy 
bliźniak zapewnia monitorowanie i analizę stanu upraw i poziomów składników odżywczych w czasie rzeczywistym. Zastosowanie zaawansowanych 

algorytmów uczenia maszynowego, w szczególności konwolucyjnych sieci neuronowych, zapewnia precyzyjne i wczesne wykrywanie niedoborów 
składników odżywczych i chorób upraw. Ta przełomowa technologia zapewnia rolnikom aktualne alerty i przydatne informacje, umożliwiając proaktywne 

podejmowanie decyzji w celu optymalnego zarządzania uprawami. Ten cyfrowy bliźniak pól uprawnych reprezentuje transformacyjne podejście 

do zrównoważonego rozwoju rolnictwa i zwiększania produktywności. 

Słowa kluczowe: zrównoważony rozwój rolnictwa, konwolucyjne sieci neuronowe, cyfrowy bliźniak, internet rzeczy, wykrywanie niedoboru składników odżywczych 

Introduction 

The need for food and agriculture is paramount, with rice 

serving as the primary staple for almost half of the global 

population and growing across all six continents, including Asia, 

Africa, North America, South America, Europe and Australia 

except the frigid continent, Antarctica [20]. In the previous year 

(2022/23), global rice production reached 513.68 million tons, and 

projections for this year estimate a potential rise to 518.14 million 

tons, reflecting the constant effort to meet increasing demand [18]. 

India, cultivating rice across 43 million hectares, faces the 

challenge of maintaining an average productivity of 2.6 tons per 

hectare [19]. 

The impressive yield potential of rice relies heavily on the 

availability of key nutrients, with nitrogen (N), phosphorus (P), 

and potassium (K) playing vital roles in every stage of growth. 

These elements serve as the lifeblood of healthy rice plants, 

directly impacting various life cycles, including sprouting, leafing, 

blooming, fruiting, and reproducing [22]. Nitrogen, a crucial 

nutrient, accelerates crop growth and enhances grain yield 

and quality. Phosphorus, another essential nutrient, serves various 

functions in crops, including involvement in photosynthesis, 

respiration, energy storage and transfer, cell division 

and enlargement, and internal operations. Potassium, as the third 

essential nutrient, is absorbed by crops in the form of K+ ions 

from the soil. It serves as an activator for numerous enzymes 

involved in various crop metabolic processes, including 

photosynthesis [14]. 

Rice cultivation, despite its significance as a global staple, 

faces formidable challenges due to diseases, presenting biotic 

hurdles that can result in yield reductions ranging from 20% 

to 100% [19]. Chief among these challenges is rice blast, triggered 

by the fungus Magnaporthe oryzae (formerly Magnaporthe grisea) 

standing out as the most impactful disease that inflicts annual 

yield losses ranging from approximately 10% to 30%. Under 

favourable conditions, this disease has the potential to rapidly 

devastate entire rice plants within 15 to 20 days, resulting 

in staggering losses of up to 100% [2]. The rice blast fungus, with 

its ability to infect and create lesions on a significant portion 

of the crop, progresses through various stages, commencing with 

leaf blast and subsequently involving collar, panicle, and node 

blast [16]. In the initial stages of growth, symptoms of rice blast 

primarily manifest on leaves referred to as leaf blast, posing 

a significant threat to the crop [4]. A leaf blast infection, with 

the potential to eliminate seedlings or plants up to the tillering 

stage, poses a severe threat and can lead to significant yield losses, 

emphasizing the critical need for effective disease management 

strategies in rice cultivation [5]. 

Routine visual assessments of rice plants stand out as one 

of the easiest and most efficient methods for detecting leaf blasts 

and nutrient deficiencies early. This process can be further 

enhanced with the assistance of a digital twin, offering real-time 

monitoring and a visual representation of the field to facilitate 

timely disease detection and management. 

Digital twins, representing virtual counterparts of physical 

entities, go beyond mere representation by incorporating real-time 

monitoring and data integration. Through the utilization of real-

time data collection, processing, and analysis, Digital Twins (DTs) 

provide a comprehensive digital portrayal of physical systems. 

This capability enables meticulous monitoring and prediction 

of both current and future states. It allows for the improvement of 

existing models and the reevaluation of systems and procedures, 

thus playing a pivotal role in the evolution of smart agricultural 

systems [15]. 

The characteristic feature of Digital Twins lies in the bidire-

ctional exchange of data between tangible reality and its virtual 

representation. The Digital Field Twin, a key component, not only 

stores historical data but also serves as an interface for accessing 
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current sensor data, including satellite images and weather data 

[3]. Digital twin creation is rooted in Internet of Things (IoT) 

devices and sensors, capturing extensive data from the physical 

farming environment. These sensors collect diverse data points, 

ranging from soil moisture levels and temperature variations to 

nutrient levels, crop health indicators, and machinery performance 

metrics. This data serves as a foundational element for agriculture 

digital twins, where advanced algorithms and modelling 

techniques analyse and interpret the information, generating 

a real-time reflection of the current state of the agricultural 

system.  

In navigating the sensitive landscape of agricultural data, 

prioritising data security and privacy becomes paramount. 

Robust encryption, access controls, and strict adherence 

to data protection regulations effectively address these concerns. 

Additionally, achieving seamless integration of physical 

and digital systems necessitates standardised protocols, IoT 

integration, and middleware solutions. 

At the core of this agricultural revolution is the seamless 

integration of digital twin technology, machine learning 

algorithms, and sensor data. These components synergise to offer 

an innovative approach to monitoring and managing nutrient 

deficiencies and diseases in paddy crop fields. The forthcoming 

sections of this paper will delve into the methodology employed in 

the development of the digital twin, present results and findings, 

and conclude with a discussion of the implications and prospects 

of this pioneering research. 

1. Literature review 

Anton Terentev et al. [21] delved into the synergy 

of metabolomic approaches with hyperspectral remote sensing, 

Raman spectroscopy, and mass spectrometry for enhanced early 

plant disease detection. The review navigates through proven data 

acquisition techniques, showcasing the potential of metabolomics 

in optimizing contemporary methods. The system faces challenges 

in achieving stability in ultra-sensitive remote sensing, particularly 

in hyperspectral and Raman spectrometry. The complexity 

and cost of advanced sensors like GC-MS and LC-MS are limiting 

factors. 

Abbas et al. [1] explored the pivotal role of drones 

in plant disease assessment, emphasising the drones efficiency 

in monitoring and detection for smart agriculture. It utilizes 

LiDAR, SfM photogrammetry, multispectral, and thermal cameras 

to capture plant morphological information and detect diseases. 

The research underscores the effectiveness of deep learning 

models over traditional methods in disease classification. 

Susceptibility to environmental conditions affecting drone 

functionality is a key limiting factor. 

Han Yih Lau et al. [11] presented DNA-based point-of-care 

diagnostic methods for detecting plant diseases, emphasizing 

characteristics like specificity, sensitivity, and multiplexing. While 

PCR is prevalent, isothermal techniques like LAMP and RCA 

offer advantages for field applications with constant temperature 

operation. In summary, nucleic acid-based methods offer higher 

specificity, with isothermal techniques presenting potential 

solutions, and advanced technologies like NGS requiring further 

refinement for practical point-of-care applications. Challenges 

include size variations in amplification products, and NGS, while 

promising, faces obstacles like complex equipment and high costs. 

Bravo et al. [6] investigated the potential of spectral 

reflectance to differentiate between healthy and Puccinia 

striiformis-infected wheat plants. In-field spectral images, taken 

with a spectrograph at spray boom height, underwent 

normalization for reflectance and illumination adjustments. 

Leveraging a quadratic discrimination model on selected 

wavebands significantly reduced confusion rates from 12% to 4%. 

Simplifying the system while maintaining a 96% success rate, 

the research enhances understanding of disease detection in wheat 

fields. The method's reliance on ambient illumination conditions 

poses a potential challenge, as it may exhibit sensitivity 

to variations in weather and lighting situations. 

Zhe Xu et al. [23] investigated the efficacy of Deep 

Convolutional Neural Networks (DCNNs) for the diagnosis 

of nutrient deficiencies through image classification in rice plants. 

By utilizing 1818 leaf photographs obtained from hydroponic 

experiments, encompassing a spectrum of nutritional conditions, 

the researchers fine-tuned four DCNNs: NasNet-Large, Inception-

v3, DenseNet121 and ResNet50. Impressively, all DCNNs 

achieved accuracy levels exceeding 90%, with DenseNet121 

emerging as the top performer (with a validation accuracy 

of 98.62% and test accuracy of 97.44%). Notably, the DCNNs 

outperformed traditional methods such as colour features 

with SVM and HOG with SVM. 

Anu Jose et al. [8] delved into nutrient deficiency detection 

in tomato plants using neural networks. The study employed 

artificial neural networks to classify nutrient deficiencies 

in tomato plants, analysing leaf characteristics such as colour 

and shape. Two segmentation schemes, hue-based and threshold-

based, were compared, with hue-based segmentation outper-

forming and achieving an 88% accuracy. The study’s reliance 

on user identification, primarily farmers, for specific nutrient 

deficiency input hinders automatic detection and may introduce 

human errors. 

Hazem M. Kalaji et al. [9] explored the utility of chlorophyll 

fluorescence parameters for early detection of nutrient deficiencies 

in rapeseed plants. Using 60 soil samples and rapeseed plants, 

the study employs principal component analysis, hierarchical 

k-means, and machine-learning methods to identify distinct groups 

representing different nutrient deficiency levels. The results reveal 

adverse effects on the photosynthetic machinery in nutrient-

deficient groups, emphasizing the potential of chlorophyll 

fluorescence combined with machine learning for early detection. 

However, the research relies on soil samples from a specific 

geographic location and soil characteristics can vary significantly 

across regions, impacting the transferability of the study's findings 

to diverse soil compositions. 

M. V. Latte et al. [10] focused on a rule-based approach 

to detect nutrient deficiencies utilizing HSV (Hue, Saturation, 

Value) colour features in paddy crops. Using HSV colour features 

and rigorous experimentation to establish rules, the approach 

achieves impressive accuracy – 100% for healthy leaves 

and an overall 95.39% for nitrogen, phosphorus, and potassium 

deficiencies. A potential drawback of the rule-based approach 

is its reliance on predefined rules, limiting adaptability to real-

world variations. It may struggle with ambiguous symptoms 

and environmental factors, requiring constant rule adjustments 

for improved robustness and effectiveness. 

Anshuman Nayak et al. [12] explored the realm of leveraging 

image processing and transfer learning techniques, specifically 

applied to the detection of rice diseases and nutrient deficiencies 

using smartphone images. Leveraging 2259 smartphone images, 

the research adeptly classified 12 rice diseases and deficiencies, 

pinpointing MobileNetV2 as the optimal CNN model for the 'Rice 

Disease Detector' Android application. Despite promising results, 

a notable limitation is that the user or farmer must detect 

the disease or deficiency, as the app focuses solely 

on identification and does not offer automatic detection. 

Jesus David Chaux et al. [7] presented a Digital Twin 

Architecture designed to enhance productivity in Controlled 

Environment Agriculture. Utilizing simulation software, 

the framework enhances climate control and crop management, 

showcasing bidirectional communication in a greenhouse 

prototype. Noteworthy advantages include scalability 

for industrial deployment and replicability in educational settings. 

An additional advantage is the continuous monitoring capability 

enabled by the digital twin, providing real-time insights 

for prompt decision-making in agricultural practices. However, 

a potential limitation lies in the exclusive focus on controlled 

environments, urging future research to extend the digital twin 

concept to open-field agriculture. 
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2. Proposed methodology 

The methodology employed in developing a digital twin 

for the paddy field focuses on guaranteeing robustness, accuracy, 

and user-friendly crop management tools in the designed system 

architecture. It begins with rigorous data handling, encompassing 

collection, cleaning, and augmentation. A hybrid CNN-

EfficientNetB1 model is designed and trained with an Adam 

optimizer and key metrics for evaluation. Simultaneously, 

a dynamic 3D digital twin is crafted, integrating real-time sensors 

for effective agricultural monitoring. Fig. 1 shows the process 

flow of this methodology. 

 

Fig. 1. Process Flow model 

2.1. Data collection and preprocessing 

The data collection and preprocessing procedures ensured 

the integrity and relevance of the dataset, comprising essential 

agricultural images. Two datasets were considered, both sourced 

from Kaggle [13, 17]. The first dataset focuses on nutrient 

deficiency symptoms and is organised into three folders, 

each representing a specific deficiency type: nitrogen (n) with 

440 images, phosphorus (p) with 333 images, and potassium (k) 

with 383 images. The second dataset comprises 779 images 

depicting leaf blast disease and 1,488 images containing healthy 

leaves. A careful data cleaning process was carried out, involving 

tasks like handling missing data, duplicate removal, label 

consistency checks, and noise filtration. This data cleaning 

improved the overall quality of the dataset, providing a strong 

foundation for subsequent model training. The resulting dataset 

is categorised into distinct classes, including "Leaf Blast," 

"Nutrient Deficiency," and "Healthy," effectively encapsulating 

the diversity of conditions observed in paddy fields. 

2.2. Data augmentation 

Data augmentation, including random flips and rotations, 

was applied to diversify the dataset, improve the model's ability 

to generalize and mitigate the risk of overfitting. 

2.3. Data loading and processing 

In the data loading and processing stage, the process begins 

with loading the pre-trained model architecture and weights 

for nutrient deficiency and disease detection using the Keras 

library. This involves storing the model in Hierarchical 

Data Format (H5) and JSON files, enabling easy retrieval 

for subsequent predictions. An essential aspect of this stage 

is the implementation of an image-processing function. This 

function is designed to ensure that input images are appropriately 

resized, converted, and rescaled to meet the model's specifications. 

The ImageDataGenerator class from Keras facilitates the creation 

of data generators for both the training and validation sets. These 

generators play a crucial role in enhancing the model's ability 

to generalize by augmenting the training data with various 

transformations. Constants such as image size, batch size, epochs, 

and the number of classes are defined to maintain consistency 

throughout. Overall, the data loading and processing stage 

is fundamental for preparing the dataset, configuring the model, 

and establishing a robust pipeline for subsequent training 

and evaluation steps. 

2.4. Model creation 

In Model Creation, an image classification framework was 

built. A Convolutional Neural Network (CNN) was strategically 

chosen, harnessing its well-established proficiency in image 

classification tasks. This decision aligns with the objective 

of achieving robust predictions in diverse scenarios. Furthermore, 

to expedite the learning process and leverage prior knowledge 

encoded in large datasets, pre-trained models were seamlessly 

integrated. This integration encompassed the deployment 

of EfficientNetB1, recognised for its superior image classification 

capabilities, along with a custom-designed CNN. Incorporating 

these pre-trained models not only capitalizes on their domain 

expertise but also ensures a versatile and efficient framework 

capable of handling a spectrum of prediction tasks. The CNN 

model comprises Convolutional layers (Conv2D) for feature 

extraction, MaxPooling layers for downsampling and retaining 

essential information, and Dropout layers to prevent overfitting 

during training. Flattening layers convert the 2D feature maps into 

a 1D vector, preparing the data for Dense layers that contribute 

to the final classification. This combination of layers plays 

a crucial role in discerning intricate patterns in agricultural 

images, enabling the model to efficiently classify and identify 

nutrient deficiencies and diseases in plants. 

The integration of these layers optimizes the model for image 

analysis tasks, enhancing its capability to recognize diverse 

conditions in agricultural settings. The layers in the model, 

encompassing both the Convolutional Neural Network (CNN) 

and EfficientNetB1, employ Rectified Linear Unit (ReLU) 

activation functions. Specifically, these functions are applied 

to convolutional layers, ensuring non-linearity in the model's 

learning. For multi-class classification, categorical cross-entropy 

serves as the chosen loss function, complemented by the Adam 

optimizer during compilation. To facilitate effective convergence, 

a judicious learning rate, typically set between 0.001 to 0.01, 

was selected. The inclusion of Batch Normalization contributes 

to stabilizing and expediting training by normalizing layer inputs, 

enhancing overall model performance. In the final compilation 

step, the model is configured with the specified optimiser, loss 

function, and metrics, laying the foundation for efficient training 

and robust predictions. 
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2.5. Model training 

In the model training phase, mini-batch training 

is implemented with a batch size of 32 for both the training 

and validation sets, optimizing computational efficiency. 

The mini-batch sizes for both the training and validation sets 

are determined using a data generator, established through 

the ‘flow_from_directory’ method, an inbuilt method provided 

by the Keras library within the ‘ImageDataGenerator’ class. 

Throughout the training, the Adam optimizer is employed 

to minimize the categorical cross-entropy loss, a key factor 

in updating the model's weights effectively. The advancement 

of training is tracked by assessing accuracy as a metric, offering 

valuable insights into the model's proficiency in generating precise 

predictions. The inclusion of the ‘ModelCheckpoint’ callback 

ensures that the model weights are saved when the validation loss 

is at its minimum, preserving the best-performing configuration. 

This methodology ensures not only the efficient learning 

of underlying patterns but also the preservation of the optimal 

model state for subsequent use. The visual analysis of training 

and validation accuracy and loss over epochs further enhances 

the understanding of the model's performance dynamics. 

As a final step, the trained model is saved for future deployment, 

enabling seamless predictions of new data with the acquired 

knowledge.  

2.6. Model evaluation 

In the evaluation phase, various metrics are employed 

to comprehensively assess the performance of the model. 

The ‘Accuracy’ metric measures the overall correctness 

of the model's predictions. Precision gauges the accuracy 

of positive predictions, this metric is particularly relevant 

in scenarios where precision is of utmost importance. ‘Recall’, 

also known as sensitivity, signifies the model's ability to capture 

all relevant instances, providing insights into the model's ability 

to identify true positive cases. The ‘F1 Score’ acts as a harmonic 

mean between precision and recall, providing a balanced 

assessment of the model's performance. It is especially useful 

when there is a need to balance precision and recall in the 

evaluation. The ‘Confusion Matrix’ provides a tabular summary, 

offering a comprehensive breakdown of the model's performance 

across different classes, aiding in understanding potential areas 

for improvement. The ‘Loss Function’ value during training 

and validation reflects the model's learning performance, 

while ‘Validation Accuracy’ signifies the model's accuracy 

on the validation set during training. These metrics collectively 

furnish a holistic understanding of the model's effectiveness 

and areas for potential improvement. The specific formulas below 

provide insight into the quantitative measurement of different 

aspects of the model's predictive capabilities. 

 

ALGORITHM 1: LEAF BLAST AND NUTRIENT DEFICIENCY 

DETECTION 

Input: Pre-processed dataset of leaf images. 

Output: Trained model for detection of Leaf Blast and Nutrient 

Deficiencies. 

1) Import libraries: TensorFlow, Keras, NumPy, Matplotlib, 

scikit-learn. 

2) Load and process image data using ImageDataGenerator. 

3) Split data into training and validation sets. 

4) Build and compile a CNN model with Adam optimiser. 

5) Train the model and save it. 

ALGORITHM 2: DIGITAL TWIN 

Input: Crop images and sensor data. 

Output: Digital Twin Display. 

1) Create an html template. 

2) Include hotspots for various sensors for data retrieval and 

implement routes to update sensor visuals. 

3) Import necessary libraries and modules into the Flask app. 

4) Load trained detection model from JSON and H5 files. 

Implement routes to detect nutrient deficiencies and leaf blasts 

using the prediction function from the loaded model on crop 

images. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ←  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  
 (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 ←  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  
 (3) 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 ← 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

2.7 . Digital twin 

In the initial phase of the digital twin process, a compre-

hensive 3D model of the paddy field is crafted, capturing its layout 

and features. This model serves as the core component 

of the complete digital twin, incorporating strategically located 

hotspots representing sensors like pH, EC, humidity, moisture, 

NPK, and cameras. These sensors actively gather real-time data 

from the physical field, ensuring an accurate representation within 

the digital twin. The seamless integration of this data reflects 

the ever-changing conditions in the agricultural environment. 

The digital twin's disease and nutrient deficiency detection 

capabilities are powered by an integrated model that combines 

Convolutional Neural Network (CNN) and EfficientNetB1. 

Captured images from field cameras play a pivotal role 

in facilitating the identification of key issues and providing timely 

insights for informed decision-making. Hotspot annotations 

in the digital twin dynamically reflect sensor status, offering 

at-a-glance updates on the rice crop's well-being. A user-friendly 

colour-coded system, with red indicating anomalies and green 

for normal conditions, ensures intuitive interpretation. 

These hotspots, strategically positioned in the digital twin, 

act as informative markers, allowing users to quickly identify 

areas of concern and monitor specific aspects. Clicking on 

hotspots triggers script executions, providing detailed information 

about sensor readings.  

Moreover, the digital twin doesn't stop at static representation; 

it incorporates dynamic elements like changing colours 

and annotations to convey the real-time nature of agricultural 

data. This responsiveness enhances the user experience, making 

the monitoring process engaging, insightful, and aligned with 

the dynamic nature of agriculture. The system is designed to be 

a user-friendly tool, enabling farmers to efficiently monitor 

and manage their crops. 

3. Results 

3.1. Training accuracy and loss graphs  

The training accuracy and loss graphs provide insights into 

the learning progress of the combined CNN and EfficientNetB1 

model over epochs. The accuracy of the model exhibits consistent 

improvement throughout the training process, signifying its 

adeptness in learning and generalizing from the provided dataset. 

The loss values follow a consistent trend, steadily decreasing 

throughout training, indicating effective convergence. Notably, 

the validation loss remains relatively low, affirming the model's 

ability to generalize well to unseen data. Fig. 2 and 3 respectively 

show the training accuracy and loss over epoch curves for nutrient 

deficiency and leaf blast detection.  
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Fig. 2. Nutrient deficiency detection training accuracy and loss over epochs 

 

Fig. 3. Disease detection training accuracy and loss over epochs 

3.2 . Confusion matrix 

The confusion matrix in Fig. 4, and 5 respectively illustrate 

the model's performance in detecting nutrient deficiencies 

and leaf blast in the rice crop. 

 

Fig. 4. Nutrient detection confusion matrix 

 

Fig. 5. Disease detection confusion matrix 

3.3 . Digital twin 

The digital twin excelled in providing real-time insights 

for precision agriculture. The 3D model accurately represented 

the paddy field, integrating live data from strategically placed 

sensors. The disease and nutrient deficiency detection model, 

powered by CNN and EfficientNetB1, demonstrates robust 

performance, enabling timely decision-making in crop 

management. The following Fig. 6, 7 and 8 are the images 

of the paddy field’s digital twin. 

 

Fig. 6 .  Digital Twin for Paddy Field 

 

Fig. 7. Digital twin showing Healthy annotation 

 

Fig. 8. Digital twin showing Imbalance of pH value 

4. Conclusion 

In conclusion, the digital twin of the paddy field transforms 

rice crop management by offering farmers the ability to monitor 

their fields in near real-time, providing constant insights 

for informed decision-making. The early detection of nutrient 

deficiency and leaf blast disease is a pivotal outcome, empowering 

farmers to address issues promptly. The machine learning model, 

comprising a combination of Convolutional Neural Network 

(CNN) and EfficientNetB1, forms the backbone of this innovative 

approach. Integrated into a Digital Twin framework, the model 

enhances the comprehensive understanding and monitoring 

of the agricultural landscape. This study holds the potential 

for expansion to encompass various crops and diseases, 

broadening its applicability and impact on diverse agricultural 

contexts. The significance of the digital twin is in its ability 

to enhance crop monitoring, contributing significantly 

to sustainable and efficient agricultural practices. 
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