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Abstract. Numerous real-world problems have been addressed using support vector regression, particularly v-support vector regression (v-SVR), but some 
parameters need to be manually changed. Furthermore, v-SVR does not support feature selection. Techniques inspired from nature were used to identify 

features and hyperparameter estimation. The quasi-oppositional Harris hawks optimization method (QOBL-HHOA) is introduced in this research 

to embedding the feature selection and optimize the hyper-parameter of the v-SVR at a same time. Results from experiments performed using four datasets. 
It has been demonstrated that, in terms of prediction, the number of features that may be chosen, and execution time, the suggested algorithm performs 

better than cross-validation and grid search methods. When compared to other nature-inspired algorithms, the experimental results of the QOBL-HHOA 
show its efficacy in improving prediction accuracy and processing time. It demonstrates QOBL-ability as well. By searching for the optimal hyper-

parameter values, HHOAs can locate the features that are most helpful for prediction tasks. As a result, the QOBL-HHOA algorithm may be more 

appropriate than other algorithms for identifying the data link between the features of the input and the desired variable. Whereas, the numerical results 
showed superiority this method on these methods, for example, mean square error of QOBL-HHOA method results (2.05E-07) with influenza 

neuraminidase data set was the better than the others. For making predictions in other real-world situations, this is incredibly helpful. 
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POPRAWA PARAMETRÓW REGRESJI WEKTORA NOŚNEGO V Z RÓWNOLEGŁYM 

WYBOREM CECHY POPRZEZ WYKORZYSTANIE ALGORYTMU QUASI-OPOZYCYJNEGO 

I ALGORYTMU OPTYMALIZACJI HARRIS HAWKS 

Streszczenie. Liczne problemy występujące w świecie rzeczywistym rozwiązano za pomocą regresji wektora nośnego, w szczególności regresji wektora 
nośnego v (v-SVR), ale niektóre parametry wymagają ręcznej zmiany. Ponadto v-SVR nie obsługuje wyboru funkcji. Do identyfikacji cech i estymacji 

hiperparametrów wykorzystano techniki inspirowane naturą. W tym badaniu wprowadzono quasi-opozycyjną metodę optymalizacji Harris Hawks (QOBL-

HHOA), aby osadzić selekcję cech i jednocześnie optymalizować hiperparametr v-SVR. Wyniki eksperymentów przeprowadzono przy użyciu czterech 
zbiorów danych. Wykazano, że pod względem predykcji, liczby możliwych do wybrania cech oraz czasu wykonania zaproponowany algorytm sprawdza się 

lepiej niż metody krzyżowej walidacji i wyszukiwania siatki. W porównaniu z innymi algorytmami inspirowanymi naturą wyniki eksperymentalne QOBL-

HHOA pokazują jego skuteczność w poprawianiu dokładności przewidywań i czasu przetwarzania. Wykazuje również zdolność QOBL. Wyszukując 
optymalne wartości hiperparametrów, HHOA mogą zlokalizować funkcje, które są najbardziej przydatne w zadaniach predykcyjnych. W rezultacie 

algorytm QOBL-HHOA może być bardziej odpowiedni niż inne algorytmy do identyfikacji łącza danych pomiędzy cechami wejścia a pożądaną zmienną. 

Natomiast wyniki numeryczne wykazały wyższość tej metody nad wymienionymi metodami, na przykład błąd średniokwadratowy wyników metody QOBL-
HHOA (2,05E-07) z zestawem danych dotyczących neuraminidazy grypy był lepszy niż w pozostałych. Jest to niezwykle pomocne przy przewidywaniu 

innych sytuacji w świecie rzeczywistym. 

Słowa kluczowe: regresja wektora v-nośnego, algorytm Harris hawks, wybór hiperparametrów, uczenie się quasi-opozycyjne 

Introduction 

Theoretical and practical benefits that explain the support 

vector machine's better performance in classification 

and regression have drawn a lot of academics, practitioners, 

and statisticians in recent years, according to a short description 

of a technique using support vector machines (SVM) [13]. SVM 

was initially used to address classification challenges. The Vapnik 

insensitive loss function (SVR) has been included, making 

the SVM more capable of addressing the support vector regression 

(SVR) problem [13, 45].  

SVR offers three strengths be: (1) assured converge 

to the solutions of optimal due to the use of quadratic 

programming with linear constraints for data learning. (2) Using 

kernel mapping, nonlinear relationship modeling is compu-

tationally efficient. Furthermore, (3) Lower error rates on the test 

dataset indicate higher generalization performance [43]. 

Schölkopf, Smola [34] developed v-SVR as a fresh SVR category. 

The error in training and the amount of support vectors 

are adjusted in this category via the v of parameter. Numerous 

hyper-parameters and variables have a substantial impact 

on the numerical result of the v-SVR and can either both directly 

and indirectly affect the discovery of the best resolution. 

The thorough search of the grid is typically used to analyze every 

hyper-parameter combinations, and cross-validation is performed 

to test SVR's prediction performance [23]. By gradually focusing 

on the pertinent subset layers of information, feature selection 

is a technique and process intended to reduce the complexity 

and dimensionality of the current data set being monitored [15]. 

Notwithstanding SVR's amazing characteristics, there 

are numerous limitations, incorporating the feature selection, 

for example. To put it another way, SVR is not available to select 

feature [5]. Choosing a modest many features in regression 

situations minimizes complexity of computing. For compact 

and consistent regression models, an optimal feature selection 

is necessary [4, 21].  

Wrapper methods and filter methods are the two primary FS 

strategies. The primary disadvantage of the filter techniques is that 

they operate independently of ML classifiers and do not use 

their input [31]. In several disciplines, machine learning (ML) 

techniques have been successfully used [35].  

Algorithms inspired by nature, which they created by pulling 

ideas in nature, have piqued the curiosity of researchers 

and obtained competitive outcomes when handling optimization 

challenges such as feature selection and hyper-parameter tuning 

[12, 26, 27]. There have been several studies on tweaking 

the SVR’s hyper-parameters utilizing methods inspired by nature, 

including as [9, 10, 18, 20, 24, 27, 29, 40, 42, 44]. To advance 

and expand the exploration and exploitation of current algorithms, 

scholars have recently begun working on a variety of new nature-

inspired algorithms. Between these novel algorithms, the Harris 

hawks optimization Technique hasbecome popular among these 

algorithms because of its excellent efficacy [3, 17]. 

To achieving more solutions on the search space, Quasi-

Oppositional (QO) based learning approach was presented 

by Rahnamayan et al. [33] with attention to the existing population 

and its quasi oppositional at the same time. To the greatest 

of knowledge, only a few efforts to concurrently do feature 

selection and SVR hyper-parameter tuning, particularly 

for v-support vector regression, however in this case, quasi 



114      IAPGOŚ 2/2024      p-ISSN 2083-0157, e-ISSN 2391-6761 

 

opposition based learning has been added for these algorithms. 

The main objective of that job is to implement the feature selection 

using the QOBL-based Harris hawks technique and to optimize 

the evolution hyper-parameters of the v-support vector regression. 

When, the quasi-opposition method is used, it targets the search 

space, in other words, there is a processing of the search space, 

which gives an abundance of time by minimizing the search space, 

and two processes are integrated in data processing and analysis 

together (features selection, parameter optimization), and this 

is another addition in providing Time and performance. 

The remainder of the article was organized as follows: 

The theoretical element of the v-support vector regression 

is presented in Section 2. Sections 3 and 4 go over the Harris 

hawks algorithm and opposition based learning in detail. 

The proposed algorithm is provided in Section 5. Section 6 

presents the experimental outcomes. Section 7 has the conclusion. 

1. The v-Support Vector Regression method 

(v-SVR) 

Several categorization problems have been effectively resolved 

using support vector machines (SVM). Also, the SVM is enhanced 

to address non-linear regression issues using Vapnik's [41] 

discovery of the 𝜀-insensitive loss function, which is known 

as support vector regression. Given a training dataset 

of n observations 1{( , )}
n

i i iy x , the SVR can be obtained 

by resolving the optimization issue below, where 

,1 ,2 ,( , , ..., ) R
p

i i i i px x x x  is the vector's 
thi  feature, R

i
y   

for 1, ...,i n  is the variable of target, which is ε-insensitive loss 

function, and a quantitative variable. 
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Here, w  is the weight vector, b represents bias, and 0C   

is a penalty parameter that regulates how training error and model 

complexity are balanced. ( )i x  is a nonlinear mapping created 

by a kernel function i  & i  are slack variables. The Lagrangian 

multipliers can resolve Eq. (1) after expressing it as its dual 

problem. 

 
,

, 1

1 1

1
min   ( )( ) ,

(

(

)

)
2

  ( )

n

i i i j

i j

n n

i

j

i i

i

j

i i

i

K

y

 
   

    



 





 

 



 

x x

 

 1

)
S T

( 0

0

. .

,

i i

i i

n

i

C

 

 





 





 (2) 

Here i , i  denote Lagrangian multipliers and ( ), jiK x x  

denotes kernel mapping. The underlying regression problem's 

regression hyperplane is thus provided by 

 ) ),( ) ( (y Ki if bi ji isvi

   


x
x

x x=   (3) 

A newly proposed non-linear kernel called (v-SVR) looks 

across high-dimensional feature space for the optimum hyper-

plane of regression that carries the least structural risk [6, 24]. 

It is impossible to modify the number of support vectors 

in the SVR with ε-insensitive loss function. [25]. Schölkopf, 

Smola [34] suggested an upgraded version v-SVR to improve

the SVR solution time by regulating the amount of support vectors, 

raining mistakes, and providing a guess of the in the data. convex 

quadratic programming is feasible with inequality constraints by: 
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Whereas 𝑣 ∈ [0,1] Schölkopf and Smola [34] demonstrated 

that 𝑣 is a lower constraint on the fraction of support vectors 

and an upper bound on the fraction of margin errors. 

After being transformed into its dual problem, the Lagrangian 

multipliers can be used to solve Equation (4) as follows: 
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Whereas Lagrange multipliers are , , , , 0i i i i      . Eq. (5) 

can be resolved y partially differentiating with respect 

to , , , ,i i b    and w  as shown below. 
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The Lagrange function can be reformulated by processing 

Eq. (5) through Eq. (6) as follows: 
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The linked dual issue's best solution can be utilized to solve 

the objective function's optimization problem given by Eq. (7) 

under Karush-Kuhn-Tucker conditions. After that, the v-decision 

SVR's purpose is as follows: 

 ( ,( ) ) ( )
1

n
y jf K bi i iii

i
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2. Optimization algorithm for Harris hawks 

Heidari and Mirjalili's description of optimization algorithm 

for the Harris hawks (HHOA) [17], was created by simulating 

the actions of Harris Hawks as they hunt and catch rabbits 

in the wild. To discover the best solution for any given problem, 

the HHOA goes through three steps of optimization. These three 

stages are exploration, exploitation, and the change from 

exploration to exploitation.  
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2.1. Phase of exploration 

The exploring phase mimics a scenario in which a Harris hawk 

is unable to precisely follow its prey. When that occurs, the hawks 

pause to watch and look for new prey. The prey is currently 

the best solution in the HHOA at each step, whilst the hawks 

are potential solutions. The hawks then use two operators, each 

of whom is given a chance to perch in a different area at random 

and wait for a meal [19]. This procedure is mathematically 

characterized as 

 1 2

3 4

( 1) | 2

( ) ( ( )) 0.5

0.5t t t
t rand rand

t t
prey m b b b

x r x r x

x x r L r U q

q
x

L




 
 
     


   (9) 

where 
t

prey
x  denotes the location of the desired rabbit, t

rand
x  

is the location of a hawk selected at random from the current team, 

and 
( 1)tx 

 denotes the position vector of hawks in the subsequent 

iteration. The integers 1r , 2r , 3r  and 4r  are all random. 

The search space's upper and lower bounds are bL  and bU . 

The following equation determines the average location of the 

present population of hawks as t

mx . 

 
1

1 nh
t t

m i

i

x x
nh 

   (10) 

where nh  represents all of the group members while 
t

ix indicates 

where each hawk in the group is located. 

2.2. Phase of transition 

The HHO algorithm switches from the exploration phase 

to the exploitation phase based on the energy level of the prey 

(escape energy), E. The following is a definition of the prey's 

energy loss: 

 2 (1 )
0

max

t
E E

t
   (11) 

During each iteration, 0E  stands for the initially energy, 

which varies at random between (-1,1), and maxt  stands 

for the greatest number of iterations. This value is intended 

to represent the prey physically identifying for a value 

of  0 [ 1, 0)E    or strengthening for a value of 0 [0,1)E  . 

Additionally, If | | 1E  , HHOA will begin exploring the space of 

search; if not, it will transition to the exploitation phase [36]. 

2.3. Phase of exploitation 

The letter | |E  is taken into consideration while deciding 

what kind of besiege to employ to catch the target during 

the exploitation phase. So, when | | 0.5E  , one that is soft 

is picked, and when | | 0.5E  , one that is hard [16, 28, 32] 

is picked. Both the soft besiege and strong besiege tactics 

are effective in promoting this process. 

The 0.5r  and | | 0.5E   conditions of the soft besiege 

method denote the prey's escape capability ( r ). As a result, 

the Harris hawks update their solution by picking the best 

candidate from the population. This indicates that the prey still 

has enough energy to flee. Using the following equation, this can 

be expressed 

 
( 1)t t t t

preyx x E J x x


    (12) 

where 
t t t

preyx x x   , 
5

2(1 )J r  , which denotes 

the prey's leap intensity during the escape stage, while 
5

r  

is a random value between [0,1]. 

On the other side, with a rigorous besiege tactic, 0.5r   

and | | 0.5E  , indicate that the victim is worn out and unable 

to flee due to a lack of energy. The Harris's hawk's most recent 

location is listed as 

 
( 1) tt t

preyx x E x


   (13) 

In the event when 0.5r   and | | 0.5E  , the falcon gradually 

chooses its best dive to take the victim in a competitive manner; 

this technique is referred to as soft besiege with progressive 

rapid dives [14, 38]. After that, the hawk's new posture 

is mathematically described as 

 
t t t

prey prey
x E J x x     (14) 

The Harris's Hawk is able to capable of diving by. 

 =  + S (D)Levy    (15)  

While 1 D  is the problem's dimension and S  is a random 

vector of size D , the levy flight function, abbreviated Levy , 

will be determined as: 
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Whereas   is a constant, and the value of   is 1.5 [14]. 

 and  are random numbers between (0, 1). The Harris's Hawk's 

location is updated during this phase as 

 
( 1) if Fitness( ) Fitness( )
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t
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Fitness( )
t

x is the fitness function in this case. 

3. Method of quasi-opposition 

Through the use of the oppositional-based learning (O-BL) 

method, Tizhoosh improved the evolutionary trajectory for the first 

time [37]. Researchers offered the following opposite-based 

learning strategy to deal with this issue: 

 Let x R  is a real number outlined on a specific interval 

a x b  . The definition of the opposite number x  is as follows: 

 x a b x    (18) 

If a = 0 and b = 1, then it will be 

 1x x   (19) 

In a multidimensional example, similar definitions apply 

to the opposite number. When an n-dimensional system 

of coordinates with 
1 2
, ,........., nx x x R  and [ , ]i i ix a b  has a 

point 1 2( , ,........., )nP x x x  in it. The 1 2, ,........., nx x x  coordinates 

of the opposite point P  fully define it as follows: 

 1,.........,i i i ix a b x i n     (20) 

Last but not least, this approach assumes that g(.) 

is an evaluation function (such as a reward, error, and fitness 

function, etc.) used to determine optimality and that ( )f x  

is the fundamental function. Taking the previous into account, 

we have two values: x , a random initialization value in  ,a b , 

and x , which is 'x s  opposite. If it is true that ( ( ))g f x is greater 

than or equal ( ( ))g f x , x  is chosen; otherwise, x  is. For each 
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iteration, ( )f x  and ( )f x  are computed, and then both are 

applied to the evaluation function (.)g . In order to more 

successfully attain the applicant’s solution by concentrating 

on the existing population as well as quasi-oppositional, 

Rahnamayan et al. [33] established a Quasi Oppositional (QO) 

based learning technique for the first time. It was also shown that 

a quasi-opposite number generally approaches the solution 

more closely than an opposing number [30]. According to how 

the quasi-opposite number, which is a real number's opposite 

in D-dimensional space, 
qx  is displayed as follows for each real 

number, such as 1 2( , ,........., )nP x x x , subject to 
i i i

a x b   

 ( , ) 1,.........,
2

i i
iqi

a b
x rand x i n


   (21) 

4. The proposed algorithm 

 In SVR, a number of parameters need to be fixed. 

The term "hyper-parameter" refers to the combination of the kernel 

parameter, the loss function (  ) that is ε-insensitive, 

and the penalized parameter ( C ). The exact desired values cannot 

be calculated using a mathematically based method, which makes 

these hyper-parameters were chosen particularly sensitive to SVR 

performance [39]. Therefore, choosing those hyper-parameters 

is an essential component of the SVR study. The literature has 

a number of attempts using various techniques to enhance SVR 

performance by the wise selection of these hyper-parameters 

[11, 12, 22, 26, 27, 39]. These different techniques, including 

natural-inspired algorithms, were utilized to select the SVR hyper-

parameter [8-10, 18, 20, 24, 27, 29, 40, 42, 44].  

 

Fig. 1. The flowchart of the suggested framework 

However, all of these currently used methods for selecting 

hyper-parameters make any attempt to select features concurrently. 

On the other side, little effort is made to tweak the v-SVR hyper-

parameter. Using the quasi-oppositional based learning (QO-BL) 

to decrease search space. while, the role of Harris hawks 

(BHHOA) is focused to find the best solution, and this best 

solution is associated with hyper-parameters of v-SVR to improve 

this method. The type of kernel function used in the suggested 

technique is a kernel of Gaussian with value 0  . 

A representation of the solution is shown in figure 1. 

The suggested framework's flowchart is depicted in figure 2. 

 

Fig. 2. Illustration of the suggested solution 

In order to represent the C , v ,  , and the features 

are represented by p  binary values, each member of the hawk 

family has a location that has three quantitative values., Otherwise, 

0 and 1 will be used for the relevant feature. That is to say, 

each hawk has three plus position (P). The parameter settings can 

be mentioned in the table 1. 

Table 1. Description the parameter settings for the proposed algorithm 

Population size 01_DOI 

Maximum iteration 5, and 10 

Parameters ~ (0,1)v U , ~ (0, 2)U , and ~ (0, 5)C U  

The feature-representing 

rest locations 
(0,1)U  

 

The steps of the suggested method are now being presented. 

Step 1: maxt =5  is the maximum number of iterations 

and 5nh   is the quantity of hawks. 

Step 2: The first three places, ~ (0,1)v U , ~ (0, 2)U , 

and ~ (0, 5)C U , indicate the hypermeters and are produced 

at random from a uniform distribution. The feature-representing 

rest locations are created as (0,1)U . 

Step 3: Using Eq. (18), x , and qx  are calculated, using (21) 

Step 4: The definition of the fitness function is 

 
2

, ,
1

1
ˆfitness min ( )

testn

i test i test
i

test

y y
n 

 
 
 
 

 (22) 

where the testing dataset's fitness is determined. 

Step 5: At this stage is calculate the fitness-function both 

all ( x , x , qx  ) These all are compared. If ( ) ( )qf x f x  

x  is selected; otherwise, qx  is selected. 

Step 6: Equations (9), (12), (13), (17), and (18) are used 

to update the locations of the hawks. To deal with feature 

selection, the binary HHOA (BHHOA-QOBL) is utilized. Here, 

each hawk is represented by the p-bit binary string. To update 

the position, the transfer function is usually used to force hawk 

to be in a binary space. A transfer function that restricts the new 

solution to to binary values can be utilized to create this binary 

vector [38].  
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


 (22) 

where   (1 / 1 exp( ))T x x    is the sigmoid transfer function 

and  0,1rand   is a random number. 

Step 7: Till maxt  is attained, steps 4, 5, and 6 are repeated. 
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5. Experimental results 

Comprehensive comparative tests using the cross-validation 
approach with ten folds (CV) and the grid search strategy (GS) 
are used to evaluate the predictive performance of the suggested 
algorithm, HHOA. In this study, four separate sets of chemical 
datasets are employed: Data-set(A) [2], influenza neuraminidase 
a/PR/8/34 (H1N1) inhibitors (Data-set(B)), Data-set(C) covered 
the anti-cancer potential of imidazo [4,5-b] pyridine derivatives 
[7], and Data-set(D) covered a variety of antifungal agents [1]. 
Numerous thousands of descriptors are features in each of these 
datasets. These datasets are summarized in table 2.  

A training dataset, which included 70% of all samples, 
and a test dataset, which included 30% of all samples, were created 
from each dataset. 20-times are handled with this splitting. 
There were two evaluation standards: The training dataset's 

mean-squared error (
2

,
1

, ˆ( ) /
trainn

train i train train
i

i trainMSE y y n


  ) 

and the testing dataset's mean-squared error 

(
2

, ,
1

ˆ( ) /
testn

test i test i test test
i

MSE y y n


  ).  

Table 3 lists the total number of features used for each 

approach's training set and averaged MSE-train . An essential 

consideration is the amount of features chosen by each strategy; 

solutions with a limited number of chosen features are preferable. 

Table 3 shows that HHOA is less feature-rich as from both 

the two approaches. As an illustration, Data-set(C), HHOA 

chose 16 characteristics as opposed to the CV's selection 

of 111 and the GS's selection of 138, respectively. Table 3 shows 

that the HHOA outperformed all other compared approaches 

in terms of predictive performance. As a result, the lowest 

MSE-train  was produced by using the HHOA. Additionally, 

Data-set(D) shows that the HHOA's MSE-train  reduction 

was roughly 88.86% and 90.30% lower than those of the CV 

and the GS, respectively. In addition, according to table 3's results, 

the GS technique is placed worst, while CV is second but performs 

worse than HHOA across the board.Once more, the test set 

findings in Table 4 show that the recommended strategy, HHOA, 

produces noticeably greater ability to predict when contrasted 

with GS and CV. For instance, HHOA outperformed CV and GS 

in terms of predictive performance in Data-set(A) with 0.0519, 

compared to 1.5946 and 1.8472, respectively. The GS is certainly 

the least accurate forecasting tool out of the ones employed. 

Table 5 displays the CPU time for the suggested algorithm, 

CV, and GS to further emphasize the computational effectiveness. 

As can be observed, HHOA requires shorter time than GS and CV 

in terms of computing efficiency. The statistical test is required 

to demonstrate that the HHOA significantly outperforms 

the alternative approaches. It is clear that for all datasets, there's 

a statistical distinction with HHOA and the rest. This is expected 

given how much time the GA and CV require for computation. 

The proposed HHOA's projected efficacy will be compared 

with other widely used algorithms used to address this problem 

in order to confirm the viability and effectiveness of the proposed 

HHOA in optimizing the v-SVR hyper-parameter and feature 

selection. These include the whale optimization algorithm, 

the firefly method, the bat algorithm, and the particle swarm 

optimization algorithm (WOA). These algorithms' parameters 

are set to be simple. It is anticipated that the population size 

and iteration counts will be the same as in HHOA. The average 

MSE and the computing time of the comparison approaches 

are displayed, respectively, in table 6 and figure 3. Table 6 amply 

demonstrates the HHOA's superior prediction performance 

by comparing its results to those of the other algorithms across 

all datasets. GWA is in second place, and PSO is last. In terms 

of global search and convergence in terms of running time, 

figure 3 demonstrates that HHOA performs better than other 

algorithms. Overall, HHOA has shown amazing outcomes when 

compared to WOA and superior results when compared to PSO, 

FF, and BA, as seen in table 6 and figure 3. 

Table 2. An explanation of the used datasets 

Data-sets #Samples #features 

Data-set(A) 134 1048 

Data-set(B) 479 2881 

Data-set(C) 65 2540 

Datas-et(D) 212 3107 

Table 3. Results from experiments (on average) using training datasets  

Data-sets 
CV GS QOBL-HHOA 

#FS Msetrain #FS Msetrain #FS Msetrain 

Data-set(A) 87 1.3377 104 1.5411 11 1.86×10-7 

Data-set(B) 101 2.1842 116 2.6691 15 0.3741 

Data-set(C) 111 0.8296 138 1.0838 15 0.2525 

Data-set(D) 92 1.6492 122 1.8951 10 1.9074×10-7 

Table 4. Results from experiments (on average) using testing datasets.  

Data-sets 
CV GS QOBL-HHOA 

Msettest Msettest Msettest 

Data-set(A) 1.5946 1.8472 2.05×10-7 

Data-set(B) 2.3114 2.4062 0.1888294 

Data-set(C) 1.0557 1.2068 0.064013815 

Data-set(D) 1.8069 1.9844 1.87946×10-7 

Table 5. Displays the typical time taken for computation in seconds 

Data-sets CV GS QOBL-HHOA 

Data-set(A) 757.13  812.28  121.32 

Data-set(B) 810.68  854.37  147.58 

Data-set(C) 697.22  773.57  103.1 

Data-set(D) 815.95  884.72  142.31 

Table 6. Comparative experimental results of MSEtest (on average) for various 

algorithms using testing dataset 

Algorithm Datat-set(A) Datat-set(B) Datat-set(C) Datat-set(D) 

BA 0.0674 0.1108 0.0286 0.2905 

FF 0.0694 0.1329 0.0309 0.3168 

PSO 0.0711 0.1368 0.0326 0.3351 

WOA 0.0541 0.1095 0.0246 0.2607 

  

 

Fig. 3. displays the typical algorithm's time of running in seconds 

6. Conclusion 

Performing feature selection and optimizing the hyper-
parameter of the v-SVR are essential steps in creating a successful 
research for any prediction challenge. In this study, it was 
suggested to use HHOA to simultaneously incorporate the feature 
selection and improve the hyper-parameter of the v-support vector 
regression. The results of the experiments and the statistical 
analysis of four datasets show that the proposed algorithm 
performs better than previous approaches and algorithms in terms 
of prediction, the number of features selected, and execution time. 
Due to this, the HHOA is a superior option than the others 
for describing the association between the characteristics 
of the input variables and the target variable. Other practical 
applications can use this framework for prediction, which is quite 
effective. This study was characterized by conducting the process 
of selecting features and improving the parameters at the same 
time, that is, the continuous and discontinuous digital system was 
dealt with at the same time, in addition to reducing the search area, 
and then it was used to make predictions after that, which opened 
a new way of hybridization to use other algorithms or use them 
in classification operations in the future. 
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