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Abstract. To ensure a given quality of service in the networks of the Internet of Things, short error-correcting codes are used, in particular, low-density 

parity-check codes. The paper proposes an approach for decoding these codes based on the joint application of belief propagation and differential 

evolution procedures. It is shown that in order to reduce the search area of error vectors based on differential evolution, it is necessary to use the least 
reliable basis of the parity-check matrix. Flowchart and pseudocode of the combined decoding algorithm of short low-density parity-check codes were 

presented. The simulation results showed that the proposed decoding method provides an additional gain from encoding compared to the classical 

decoding method. The application of the presented iterative decoding method of short low-density parity-check codes will improve the efficiency of data 
transmission in the infrastructure of the Internet of Things. 
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ITERACYJNE DEKODOWANIE KRÓTKICH KODÓW PARZYSTOŚCI 

O NISKIEJ GĘSTOŚCI W OPARCIU O EWOLUCJĘ RÓŻNICOWĄ 

Streszczenie. Aby zapewnić określoną jakość usług w sieciach Internetu Rzeczy, stosowane są krótkie kody korekcji błędów, w szczególności kody kontroli 
parzystości o niskiej gęstości. W artykule zaproponowano podejście do dekodowania tych kodów oparte na wspólnym zastosowaniu procedur propagacji 

zaufania i ewolucji różnicowej. Pokazano, że w celu zmniejszenia obszaru wyszukiwania wektorów błędów w oparciu o ewolucję różnicową, konieczne jest 

użycie najmniej wiarygodnej podstawy macierzy kontroli parzystości. Przedstawiono schemat blokowy i pseudokod połączonego algorytmu dekodowania 
krótkich kodów kontroli parzystości o niskiej gęstości. Wyniki symulacji wykazały, że proponowana metoda dekodowania zapewnia dodatkowy zysk 

z kodowania w porównaniu z klasyczną metodą dekodowania. Zastosowanie przedstawionej iteracyjnej metody dekodowania krótkich kodów o niskiej 

gęstości parzystości poprawi wydajność transmisji danych w infrastrukturze Internetu Rzeczy. 

Słowa kluczowe: Internet rzeczy, kody o niskiej gęstości parzystości, dekodowanie iteracyjne, ewolucja różnicowa 

Introduction 

The Internet of Things is an important concept for machine-to-

machine communication based on wireless telecommunication 

technologies. Data transfer between equipment of the Internet 

of Things is carried out in small packets over low-speed 

communication channels. In addition, equipment often has limited 

computing resources and increased power consumption 

requirements [3]. The presented features of the technical 

implementation of the infrastructure of the Internet of Things 

complicate the provision of a given quality of service, 

in particular, the reliability of data transmission. 

To solve this problem in the field of the Internet of Things, 

various short error-correcting codes are used, the length of which 

is tens to hundreds of bits. Promising codes with good 

performance are low-density parity-check (LDPC) codes. 

For the mathematical description of these codes, matrix or graph 

approaches are used. According to the matrix approach, 

the parameters of certain LDPC code are determined by a sparse 

parity-check matrix or an equivalent generator matrix. The graph 

approach is based on the representation of the LDPC codes using 

the Tanner graph, which consists of bit and check nodes. 

The classic method for decoding these codes is a iterative belief 

propagation decoding. For long codes, this approach ensures 

the achievement of the Shannon bound for different 

communication channel models. However, for short codes, there 

is a significant degradation in correction capability when using 

this decoding method due to the presence of cycles 

in the corresponding Tanner graph [5]. 

Therefore, a promising direction for ensuring the given 

reliability and increasing efficiency of data transmission 

in the networks of the Internet of Things using short LDPC codes 

is the search for a more efficient decoding method. 

1. Problem definition 

To increase the efficiency of decoding short LDPC codes, 

a combination of iterative belief propagation decoding with 

additional computational and optimization procedures is used. 

Recently, neural networks have been widely used in the field 

of decoding LDPC codes. 

In [1], an improved approach to the decoding of short LDPC 

codes based on belief neural propagation is proposed. At the first 

stage of decoding, the least reliable element of the codeword 

is determined, and at the second stage, a decision is made 

by the neural network on the decimation of some element 

of the codeword. 

In [6], a method for decoding non-binary LDPC codes using 

neural networks is presented. It is shown that the use of a genetic 

algorithm makes it is possible to increase the efficiency of training 

the weights of neural networks and provide a lower decoding error 

probability. 

It is possible to increase the efficiency of decoding short 

LDPC codes by parallel using of several decoders built 

on the basis of belief propagation and recurrent neural networks. 

In the basic version of this approach, decoders are trained 

for different types of errors [9]. A further development 

of this approach is to create decoder diversity architectures 

together with a procedure based on ordered statistics, which makes 

it is possible to approach the maximum likelihood decoding 

performance [10]. 

The presented neural network decoding methods require 

complex learning methods, significant computational resources, 

and the need to adapt to the code structure, so other approaches 

have been proposed. 

For example, the application of the ordered statistics 

procedure and partial cyclic redundancy coding together with 

the classical belief propagation decoding can significantly increase 

the efficiency of short LDPC codes [4]. 

In [2], an efficient approach for decoding short LDPC codes 

based on parallel genetic algorithms with the use of special 

crossover and selection operators is presented. 

Another example of the applying of bioinspired procedures 

is the use of differential evolution in decoding a special class 

of error-correcting codes – algebraic convolutional codes [7]. 

The results obtained in the paper show that this approach can 

be used to increase the efficiency of decoding these codes 

in comparison with the algebraic decoding method. 

Therefore, taking into account the presented results, in order 

to further improve the efficiency of using short LDPC codes 

in the field of the Internet of Things, it is proposed to combine 

belief propagation decoding with differential evolution procedure. 

In this paper, the additional energy gain from encoding provided 
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by developed decoding method of LDPC codes is defined 

as a criterion of data transmission efficiency.  

2. Proposed decoding method of LDPC codes 

Let the binary ),( KN  LDPC code be given by a parity-check 

matrix H  of size NM  , where N  is the codeword length, 

K  is the message length, )( KNM   is the number of check 

symbols. Also assume that binary phase modulation is used, 

so the binary codeword ),...,,( 21 Nxxxx   is mapped to the 

bipolar codeword ),...,,( 21 Nbbbb   based on the transformation 

ii xb 21 , ],1[ Ni . After transmitting this codeword through 

a communication channel with additive white Gaussian noise 

(AWGN), we get the received word ),...,,( 21 Nyyyy  , where 

iii zby   is an independent random Gaussian value with zero 

mean and variance ),0( 2 , ],1[ Ni . 

The main steps of the proposed decoding method of short 

LDPC codes are presented below. 

Stage 1. Decoding based on belief propagation. 

The parity-check matrix H  corresponds to the Tanner graph 

consisting of V  bit and C  check nodes. Let 
C

ijL   is the message 

from the jc  check node to the iv  bit node, 
V

jiL   is the message 

from the iv  bit node to the jc  check node, t
iL  is the decoder 

decision for the iv  bit node on the t  iteration. Let's also denote 

)(iM  is the set of indices of check nodes connected to the iv  

bit node, )( jN  is the set of indices of bit nodes connected 

to the jc  check node. We define jiM \)(  and ijN \)(  as the set 

)(iM  excluding j  and the set )( jN  excluding i , respectively. 

First, the decoder initializes the initial value of the log-

likelihood ratio for the received word: 
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Further, at each decoding iteration t , messages are exchanged 

between jc  check and iv  bit nodes of the Tanner graph, which 

are calculated as follows: 
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After reaching the maximum number of iterations T , based 

on expressions (2) and (3), taking into account (1), the final value 

of the log-likelihood ratio for the received word is formed: 
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Further, based on (4), a hard decision is made and an estimate 

of the codeword is formed: 
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In addition, at this stage, the decoder calculates the reliability 

of the values for each bit node iv : 
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where   is the attenuation coefficient, the value of which 

depends on the characteristics of the code and the number 

of decoding iterations [4]. 

If the obtained estimate of the codeword (5) satisfies 

the condition 0ˆ THx , then the decoding is completed, 

otherwise, the total reliability value (6) for the bit nodes is saved 

and the transition to the next stage is performed. 

Stage 2. Finding the least reliable basis of the parity-check 

matrix. 

Suppose that the parity-check matrix H  has full rank, then 

the formation of the least reliable basis is carried out by applying 

such permutations [11]. The first permutation 1  corresponds 

to sorting the elements iê , ],1[ Ni  of the error vector in order 

of increasing reliability of the values (6). By applying 

this permutation to the columns of the original matrix H , 

we obtain the matrix )1(H . Further, using the permutation 2 , 

the matrix )2(H  is formed, in which the M  left columns are 

independent, and the remaining columns form an information set. 

Thus, the trial error vector is equal to ))ˆ((ˆ 12
)2( ee  . 

To convert the matrix )2(H  into a systematic form, 

the Gaussian elimination method is used, taking into account 

the codeword estimate (5) obtained at Stage 1: 
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where E  is the equivalent matrix for implementing Gaussian 

elimination; I  is the identity matrix of size MM  ; 
)2(

ISH  is the information set matrix of size KKN  )( ; 
)2(

ˆIe , 

)2(
ˆISe  are the components of the trial error vector

)2(ê . 

Stage 3. Search for an estimate of the trial error vector based 

on differential evolution. 

In the used version of the differential evolution procedure, 

the initial population is formed randomly from pN  vectors 
)2(

ˆISe , 

including the zero vector, which corresponds to the case 

of no errors. After that, based on (7), possible trial error vectors 
)2(ê  are found. 

To assess the quality of the obtained error vectors, a fitness 

function based on the mismatch rule is used: 

 
ˆ: 1

ˆ( , ) min | |
i

i

i e

D y e y


   (8) 

where ))ˆ((ˆ
)2(1

2
1

1 ee   . 

Futher, the next population is formed by applying to the 

current vectors 
)2(

ˆISe  the mutation, crossover, and selection 

operators, the implementation features of which are presented 

in [8]. According to differential evolution procedure for each 

trial vector 
)2(

ˆISe  in population pN  the new value is calculated 

based on several random vectors and specific tuning parameters. 

These parameters are crossover probability CR  and differential 

weight F  that should be selected properly to improve quality 

of error vectors searching. This process is repeated iteratively, 

and when the maximum number of iterations L  is reached, 

the most probable trial error vector 
)2(~e  with the best quality 

based on (8) is determined.  

Stage 4. Formation of the estimate of the transmitted 

codeword. 

The estimate of the transmitted codeword is found 

as exx ~ˆ~  , where x̂  is the hard solution (5) obtained at Step 1; 

))~((~ )2(1
2

1
1 ee    is the error vector, which is determined by the 

inverse transformation of the trial error vector found in Stage 3. 

Thus, the proposed decoding method of short LDPC codes 

involves a combination of belief propagation and differential 

evolution procedures. First, a specified number of iterations 

of belief propagation decoding is performed and the reliability 

of the estimated codeword is defined. Further, the search 

for the most probable error vector for the found codeword 

is carried out. For this, the least reliable basis of the parity-check 

matrix based on two permutations is determined 
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and the differential evolution procedure is applied iteratively 

to evaluate the quality of the different trial error vectors. After 

reaching the maximum number of iterations of differential 

evolution the most probable error vector is found. Finally, 

the transmitted codeword is defined by apllying the transformed 

error vector to estimated codeword found by belief propagation 

decoding. 

3. Experiments and results 

The computer model of the wireless network system 

of the Internet of Things was created to evaluate the energy 

effectiveness of the developed decoding method of LDPC codes. 

This model uses binary phase modulation to transmit signals 

through AWGN communication channel with specified 

characteristics. To investigate features and limitations of proposed 

approach, as well as to calculate the additional energy gain 

from encoding, the possibility of changing code parameters 

and decoding parameters is assumed. 

In order to conduct experimental research using this model, 

a software implementation of presented decoding method of short 

LDPC codes was developed.  

The flowchart of the proposed decoding algorithm of LDPC 

codes is presented in Fig. 1. 

 

Fig. 1. Flowchart of the combined decoding algorithm of short LDPC codes 

From Fig. 1 it follows that the received word from 

the communication channel, the parameters of used LDPC code, 

belief propagation and differential evolution procedures are input 

data for this algorithm. First, the sub-process of conventional 

belief propagation decoding is performed. As a result of this 

sub-process, the log-likelihood ratio vector, the reliability vector, 

and the corresponding binary codeword are formed. If the parity-

heck equations are not equal to zero, then the transition 

to the sub-process of decoding based on differential evolution 

search is made. This sub-process uses the formed reliability vector 

as additional input information. After reaching the maximum 

number of iterations of differential evolution, the most probable 

error vector based on the modified parity-check matrix is formed. 

As a result of the implementation of this sub-process, 

the codeword is formed by applying the inverse transformation 

to the found error vector. The output of this decoding algorithm 

is an estimate of the most probable codeword, which is chosen 

as the transmitted codeword. 

The pseudocode of this decoding algorithm is presented 

in Fig. 2. 

 

Fig. 2. Pseudocode of the combined decoding algorithm of short LDPC codes 

The simulation was carried out for the AWGN communication 

channel for binary (64, 32) and (128, 64) short LDPC codes. 
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When implementing the developed decoding method, 

the following parameters were used: the maximum number 

of belief propagation decoding iterations 200T ; attenuation 

coefficient 1 ; differential evolution parameters – population 

size 40pN , maximum number of iterations 100L , 

differential weight 7.0F , crossover probability 8.0CR . 

To ensure the reliability of the results obtained, at least 100 

decoding errors were recorded for each value of the signal-to-

noise ratio. 

Simulation results of the proposed decoding method (belief 

propagation-differential evolution, BP-DE), standard decoding 

based on the belief propagation (BP), and maximum likelihood 

(ML) decoding for (64, 32) and (128, 64) LDPC codes are shown 

in Fig. 3 and Fig. 4, respectively. 

 

Fig. 3. Dependence of frame error rate (FER) on signal-to-noise ratio (SNR) 

for (64, 32) LDPC code 

 

Fig. 4. Dependence of the frame error rate (FER) on the signal-to-noise ratio (SNR) 

for (128, 64) LDPC code 

It follows from Fig. 3 and Fig. 4 that the proposed decoding 

method provides higher energy efficiency, which is measured 

in dB, compared to the classical decoding method based on belief 

propagation. For example, for the (64, 32) LDPC code, the energy 

gain from encoding with the frame error rate 
410FER  

is 0.4 dB, and for the (128, 64) LDPC code is 0.2 dB. On the other 

hand, the obtained results show that the energy efficiency 

of the proposed decoding method decreases for longer LDPC 

codes. In particular, for (128, 64) LDPC code with frame error rate 
410FER , the difference in the required signal-to-noise ratio 

between the developed decoding method and maximum likelihood 

decoding is about 1.5 dB. 

4. Conclusion 

Short LDPC codes are used to increase the reliability of data 

transmission and improve the energy performance of equipment 

in wireless networks of the Internet of Things. However, 

the efficiency of the classical belief propagation decoding method 

is significantly limited for short codes. 

The paper proposes an approach to decoding short LDPC 

codes based on the joint application of belief propagation 

and differential evolution procedures. These codes have a sparse 

parity-check matrix, therefore, to reduce the search area for error 

vec-tors based on differential evolution the least reliable basis 

is constructed. The simulation results in the AWGN 

communication channel showed that the proposed decoding 

method provides an additional energy gain from encoding 

compared to the classical decoding method. However, 

with an increasing the code length, the performance 

of the developed decoding method decreases, which does not 

allow reaching the maximum likelihood decoding limit. 

Thus, the presented iterative decoding method using 

the differential evolution procedure makes it is possible 

to increase the efficiency of data transmission in the infrastructure 

of the Internet of Things. 
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