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Abstract. Advances in cybersecurity are crucial for a country's economic and national security. As data transmission and storage exponentially increase, 

new threat detection and mitigation techniques are urgently needed. Cybersecurity has become an absolute necessity, with the ever-increasing transmitted 
networks from day to day causing exponential growth of data that is being stored on servers. In order to thwart sophisticated attacks in the future, it will 

be necessary to regularly update threat detection and data preservation techniques. Generative adversarial networks (GANs) are a class of unsupervised 

machine learning models that can generate synthetic data. GANs are gaining importance in AI-based cybersecurity systems for applications such 
as intrusion detection, steganography, cryptography, and anomaly detection. This paper provides a comprehensive review of research on applying GANs 

for cybersecurity, including an analysis of popular cybersecurity datasets and GAN model architectures used in these studies. 
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PRZEGLĄD GENERATYWNYCH SIECI PRZECIWSTAWNYCH 

DLA ZASTOSOWAŃ BEZPIECZEŃSTWA 

Streszczenie. Postępy w cyberbezpieczeństwie mają kluczowe znaczenie dla bezpieczeństwa gospodarczego i narodowego kraju. Ponieważ transmisja i 

przechowywanie danych gwałtownie rośnie, pilnie potrzebne są nowe techniki wykrywania i łagodzenia zagrożeń. Cyberbezpieczeństwo stało się absolutną 
koniecznością, ponieważ stale rosnąca liczba przesyłanych sieci z dnia na dzień powoduje wykładniczy wzrost danych przechowywanych na serwerach. 

Aby w przyszłości udaremnić wyrafinowane ataki, konieczna będzie regularna aktualizacja technik wykrywania zagrożeń i zabezpieczania danych. 

Generatywne sieci przeciwstawne  (GAN) to klasa modeli uczenia maszynowego bez nadzoru, które mogą generować dane syntetyczne. Sieci GAN zyskują 
na znaczeniu w systemach cyberbezpieczeństwa opartych na sztucznej inteligencji do zastosowań takich jak wykrywanie włamań, steganografia, 

kryptografia i wykrywanie anomalii. W artykule dokonano kompleksowego przeglądu badań nad zastosowaniem sieci GAN do celów cyberbezpieczeństwa, 

w tym analizę popularnych zbiorów danych dotyczących cyberbezpieczeństwa oraz architektur modeli GAN wykorzystanych w tych badaniach. 

Słowa kluczowe: modele generatywne, cyberbezpieczeństwo, uczenie maszynowe, sieci neuronowe, uczenie się bez nadzoru  

Introduction 

Cybersecurity is a set of strategies used to protect data, 

hardware, software, and other elements of the cyberspace against 

cyberattacks. Cyberspace needs are growing daily to boost 

economic growth, business trading, paying bills, internet banking 

and communication between people, businesses, and governments. 

Phishing, SQL Injection, Man in the Middle, ransomware attacks, 

Denial of Service (DOS), and the deployment of virus-based 

software are the various forms of fraudulent assaults. The term 

crypto jacking describes a new type of cyberattack that emerged 

in 2017 [2]. It's malicious software that insidiously invades 

computers and uses their processing power to mine crypto-

currency. Due to the development of the Internet of Things (IoT), 

which is increasingly interconnected, as well as the enormous 

volumes of data produced by the websites or servers used in cloud 

services by the corporates, individuals, governments there has 

been a significant increase in cyber-attacks or threats in recent 

years. In 2018, the Australian government's website was the target 

of a crypto-jacking attack, a form of cyberattack that 

is swiftly gaining pace in today's cyber culture. The security 

mechanisms are unable to recognise and stop hacks that are 

currently getting more complex and incredibly cheeky.  

With the majority of our vital infrastructure becoming digital, 

anomaly and cyber attack detection have grown in significance. 

Machine learning techniques offer a good substitute for resolving 

these issues. Researchers have been bringing the capabilities 

of machine learning (ML) to use to make their security systems 

better since ML came into existence. Deep learning techniques 

are widely utilised in the field of cybersecurity to combat these 

challenges.  

Assuming that the attacks are known, the majority of research 

that try to identify cyberattacks employ some kind of supervised 

learning. But gathering attack data is a difficult task, and attackers 

may now execute creative cyberattacks using a range of advanced 

techniques thanks to technological advancements, making it hard 

to forecast the kind of assault that will be launched. Furthermore, 

data labelling is an expensive and time-consuming procedure 

that involves the use of human resources that may be connected 

to human resources, and labelled data is not always available 

in real-world applications. To address this issue, semi-supervised 

techniques can be used. 

Generative Adversarial Networks (GANs) is a cutting-edge 

technique in unsupervised as well as semi-supervised modes [9]. 

The majority of existing techniques generate trained models using 

Markov chains. GANs, on the other hand, were developed to 

avoid using Markov chains due to their high computational 

complexity and cost. Besides data production, GANs may also be 

able to elude detection systems, making them useful in cyber 

security. 

GANs are gaining popularity due to these benefits. GANs can 

be used to solve a wide range of tasks, including image resolution 

[6], drugs prediction for a specific disease [29], patterns or object 

detection [25], retrieving images that contain a given pattern [22], 

remote sensing [11], Image to Image Translation, [32] and many 

others. GANs have a wide range of practical uses in the real 

world [6]. 

Section II provides an overview of GANs and the many GAN 

types, Section III discusses the many uses of GANs in the security 

sector, and Section IV introduces the various datasets that are put 

to use in these applications. 

1. Architecture 

The concept of Generative Adversarial Networks was 

developed in 2014 by a team of academics led by Ian Goodfellow 

[9]. GANs are a type of model that belongs to the genre 

of "generative models". The min-max, zero-summation game 

theory is the foundation of GANs. GANs are composed of two 

neural networks: the Generator and the Discriminator. 

The primary goal of the Discriminator is to acquire the ability 

to discern between genuine and fabricated distributions produced 

by the Generator. Conversely, the Generator's primary objective 

is to acquire the skill of generating counterfeit sample 

distributions with the intention of deceiving the Discriminator. 

The Generative Adversarial Network (GAN) has gained good 

prominence in recent years because to its wide range 

of applications in several fields such as computer vision, image 

identification, medical field etc.  
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1.1. Generative Adversarial Networks 

The architecture of GAN is as shown in the Fig. 1. 

The Generator (G) Network is responsible for producing 

the images by making use of the random noise Z. The images that 

were produced using noise were saved as G(z). The input, which 

is typically a random point in latent space with Gaussian noise. 

The discriminator network (D) is utilised to determine if an image 

belongs to an actual distribution or not. 

 

Fig. 1. Architecture of GAN 

G's goal is to maximise the likelihood that D will correctly 

identify the data as coming from the original dataset. The models 

compete against one another, with G aiming to maximise 

the probability and D attempting to minimise it. The following 

is the loss function used by GANs. 

The desired function of GAN is mathematically formulated 

using a min-max optimising framework, as denoted by equation 1. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷V(D, G) = 𝐸𝑥 log(𝐷(𝑥)) + 𝐸𝑧 log (1 − 𝐷(𝐺(𝑧))) (1) 

The likelihood that D is used on the actual data x is denoted 

by D(x), whereas the probability that D is used on the generated 

data G(z) is denoted by D(G(z)). E stands for the expectation. 

To improve the D, we want to make D(G(z)) to zero, 

and to improve the G, we want to make it to 1. The D is indecisive 

about the sample's authenticity if it returns a probability of 0.5. 

1.2. DCGAN 

There are certain architectural criteria for DCGANs, which 

were developed by Radford et al. [18]. In response to these needs, 

CNN made three significant changes to its underlying architecture. 

CNN adapted its structure in three ways to operate under these 

limitations. The accuracy of the network can be improved 

by swapping out the completely linked hidden layers 

and the pooling layers with Discriminator strided convolutions 

and generator fractional strided convolutions, respectively. 

The application of LeakyReLU activations throughout the whole 

discriminator network and ReLU activations throughout all layers 

of the generative model, with the exception of the final layer, 

is the second correction. Furthermore, the utilisation of batch 

normalisation will be incorporated by both the generator 

and discriminator. 

1.3. Cycle GAN 

When given two sets of visual input, CycleGANs can learn 

to translate between them without supervision [32]. CycleGANs 

join up two GANs and train them at the same time only. The goal 

here is to keep what is known as the cycle consistency for all 

times. The GAN pair loss terms are supplemented by a cycle loss 

term. Both pairs of GANs and the cycle loss term must 

be optimized. An illustration explains cycle loss. The architecture 

of CycleGAN is shown in the Fig. 2.  

For example, consider, the Cycle GAN has to learn to change 

summer (X) to winter (Y) nature images. The initial generator, 

denoted as "Generator X to Y" is trained to generate a winter 

image based on a given summer input image, so transforming the 

input from domain X to domain Y. The discriminator Y (DY) 

distinguishes between actual Y and the "generated Y". The second 

GAN pair converts and distinguishes from Y to X and X to X, 

respectively. After that, the newly created image is sent 

to "Generator Y to X," another generator, which transforms it back 

into CyclicX, the original image from the original domain X. 

Thus, cycle consistency requires consistent visuals when 

transforming one picture to winter and then back to summer. 

This transformation can be seen from the Fig. 3 [32]. 

 

Fig. 2. Cycle GAN 

 

Fig. 3. Summer to Winter [32] 

1.4. Cipher GAN 

A neural network architecture called a CipherGAN [32], 

inspired by CycleGANs, may perform unsupervised machine 

translation between two "languages". For some crypto systems, 

it can learn to translate i.e., either encrypt or decrypt between 

plaintext and ciphertext databases using the same encryption key. 

CipherGAN solves the issue of meaningless discrimination 

that often occurs with discrete data. One way to think about this 

is to contrast it with the case where the data is represented 

as a regular k-dimensional simplex. The created sample must 

be distinguishable from a point closer to the intended vertex, 

if the simplex contains the sample, but not the vertex. To solve 

this issue, Gomez et al. combined continuous relaxations of the 

discrete random variables with a suitable regularisation factor. 

2. GAN applications in security 

2.1. Neural cryptography 

Cryptography safeguards data and communications. 

Cryptographic protocols allow only authorized persons to read 

messages. Cryptography using deep learning is new and emerging 

topic. In the late 1990s, machine learning was used to build 

cryptographic protocols, however the security was poor [1]. 

The basic concept was to teach neural networks how to do some 

sort of cryptographic operation. For instance, train two neural 

networks to exchange keys or encrypt and decrypt data. This 

is in contrast to more conventional approaches, which typically 
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entail the explicit implementation of algorithms in order 

to accomplish the desired result. 

In late 2016, following the invention of GANs, a paper was 

published that described the process of two neural networks 

learning a symmetric key encryption system while being 

monitored by an opponent. Wu et al. research showed 

the possibility of biometric cryptography by encrypting facial 

features with Wasserstein Generative Adversarial Networks 

(WGAN-E) [12]. In order to keep data exchanged between a user's 

face characteristics and servers secure, they employ neural 

networks to learn how to do so. The training objectives only 

describe privacy rules; therefore, learning is not restricted to any 

particular cryptographic techniques. To address three significant 

issues in the blockchain, including inadequate security, 

poor efficiency, and difficult key recovery, the authors in [31] 

offered a key secret-sharing technique based on GANs. 

2.2. Image steganography 

Image Steganography is the procedure of hiding text, 

images, or videos inside a main image. In order to protect 

the confidentiality of the information, it has been concealed 

in a way that is imperceptible to the naked eye. The field of image 

generation is one where GANs have proven to excel. The process 

of image steganography involves the utilisation of two distinct 

inputs, namely the cover picture and the hidden picture, in order 

to produce a single output known as the stego image. The current 

GAN-based picture steganography techniques fall into one of five 

broad categories: the three-network GAN model; the coverless 

framework; the sender-receiver GAN architecture; the cycle-GAN 

oriented architectures; and the Alice, Bob, and Eve based model 

[14]. DCGAN-based Steganographic GAN (SGAN) [26], which 

is a straightforward DCGAN with three modules: Generator, 

Discriminator, and Stegoanalyzer has been introduced 

by Volkhonskiy et al. The generator models construct the stego 

pictures, the discriminator decrypts them and retrieves the hidden 

message, and the stegananalyzer listens in on the generator 

and generates the likelihood. To extract the confidential data from 

the created stego picture, a steganalyzer is added. The architecture 

of StegnoGAN is illustrated in the Fig. 4. 

 

Fig, 4. Architecture of Stegano GAN 

The secret information, which is typically text, and the cover 

image are sent into the generator in order to create the stego 

image. To determine if the created image is genuine or fraudulent, 

the discriminator faces off against the generator. The UT-GAN 

[28] design for the generator network was proposed by Jianhua 

Yang et al. based on U-Net. In the UT-GAN design, the generator 

is used to convert a cover image into an embedding change 

probability map. The embedding simulator which uses tanh 

function, receives the probability map, P, from the generator, 

as well as the random message. Once the cover picture and 

matching modification map have been included, the stego picture 

is generated. Later this change probability map and cover/stego 

pairs into the discriminator. U-Net is taken into consideration 

because to its effective performance in pixel wise segmentation. 

For a given label, ACGAN [18] can create images that are 

realistic and can also identify the label on the created images. 

The ACGAN architecture consists of a word segmentation

dictionary and picture database. Next, The Stego-ACGAN 

generative model is created. A hiding and extraction algorithm 

is then created to conceal and retrieve the data. 

2.3. Password detection 

In a time when data is valued as a commodity, it is crucial 

to safeguard sensitive information against identity theft. 

Therefore, it is crucial to continue using secure passwords. Hitaj 

et al. carried out and enhanced this approach using GANs 

to enhance the quality of password guessing [10]. The enhanced 

Wasserstein GAN is employed by PassGAN. As the number 

of layers increases, training error is reduced due to the generator 

and discriminator's structure, which consists of a sequence 

of residual blocks with short-cut connections between the layers. 

The authors in [10] tested this PassGAN with RockYou dataset. 

Despite being trained on the identical password dataset, PassGAN 

was able to guess more passwords than any of the other tools. 

A 15 % performance increase with PassGAN was suggested 

by Nam et al. [17]. The authors took a two-step strategy, 

first switching the architecture to a dual-discriminator network 

and then modifying the current loss function to one based 

on recurrent neural networks (RNNs). 

2.4. Intrusion detection 

An information system may suffer an intrusion if it is 

subjected to any kind of activity that is not authorised 

by the administrator and causes damage to the system. Therefore, 

we will consider an intrusion any attempt to compromise 

the information's availability, security, or confidentiality, 

no matter how slight. An IDS, or intrusion detection system, 

is a type of software that keeps an eye on a network in search 

of any potentially harmful activities and notifying the user as soon 

as it does so. Researchers have been investigating a variety 

of IDSs utilising various forms of artificial intelligence. 

IDS systems are divided into two types: signature-driven IDS 

and anomaly-driven IDS [12]. Anomaly-based systems, which 

is commonly used to detect previously undiscovered cyber 

dangers, whereas signature-based systems, which monitors 

network packets and correlates them to known or identified 

threats. The signature-based systems functions by comparing 

the incoming network data to a database of threat patterns – also 

known as signatures—that have been proven to represent 

malevolent activity. The IDS notifies the user or stops the attack 

if a match is found. In Anomaly-based systems, it keeps an eye out 

for abnormalities, or variations in network traffic, which could 

point to malicious activities. When an anomaly is found, then this 

IDS notifies or stops the attack. 

A new way of employing GANs was paved by the work 

of Schleg et al. [20]. Based on Wasserstein GAN (WGAN), 

IDSGAN [14] was developed by Zilong Lin et al., who presented 

blackbox attack strategies to trick intrusion detection systems. 

The basic block diagram of IDSGAN architecture can be seen 

in the Fig. 5. They achieved their goal by launching artificially 

created attacks. Since attackers don't know how the detection 

system works on the inside or what its parameters are, black-box 

attacks are used in the instances of adversarial attacks. IDSGAN 

uses a generator to change the original malicious track records into 

new ones that are harmful to the attacker. A discriminator sorts 

of examples of tracks into groups and learns the real-time black-

box detection system in a dynamic way. The BiGAN architecture 

is introduced to the anomaly’s detection area by Zenati et al. [30]. 

The BiGAN include an encoder network in addition to the 

generator network to map the latent space to data distribution.  

The Fig. 5 briefs about the architecture used for 

the applications of different security domains which are 

discussed in this chapter. The advantages and disadvantages 

of the architectures along with data sets used are also tabulated 

in the table 1. 
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Fig. 5. Architecture of IDSGAN  

Table 1. Brief Summary of different architectures of GAN and their applications 

Different 

Applications 
Architecture Advantages Disadvantages 

Datasets 

used 

Image 

Steganography 

SGAN 

based on 

DCGAN 

[26] 

More Secure 

Gives the 

Probability, 

Not the Secret 

Information 

CelebA 

ACGAN 

[18] 

Robust and 

Secure 

Complicated 

Design 
MNIST 

Neural 

Cryptography 

W-GAN 

[27] 

More Accurate 

and Low 

Execution Time 

Decrytion 

Efficiency is 

comparitively 

low 

LFW 

GAN [1] 

Enabled a novel 

approach to use 

GANs in 

cryptography 

Weak 

Encryption 

Model 

- 

GAN in 

Block chain 

[31] 

High 

Communication 

Efficiency and 

Flexibility 

Complex 
USC-

SIPI 

Intrusion 

Detection 

GAN [20] 

Enabled a novel 

approach to use 

GANs 

Anomaly score 

is difficult to 

interpret 

NSL-

KDD 

BiGAN [30] 

Using an 

autoencoder like 

architecture 

makes the 

learning faster 

A higher 

Anamoly score 

MNIST 

and 

KDD 

3. Datasets 

There are various datasets used to train cryptography, 

intrusion detection systems, image steganography, and other 

cybersecurity applications, however we will just examine the most 

frequently used datasets briefly. 

3.1.  MNIST Dataset 

There is a reduced set of handwritten digits from 0 to 9 

available for use in training and testing various algorithmic 

learning and artificial intelligence techniques called the MNIST 

[7]. This collection contains normalised, 28*28-pixel black-and-

white images. A total of 60,000 images makes up the training set, 

while only 10,000 images make up the testing set. 

3.2.  CIC-2017 dataset 

The Canadian Institute for Cybersecurity (CIC) generated the 

CIC-IDS2017 dataset in 2017 [21]. The most recent assaults, 

which closely mirror real-world data, are included in the CIC IDS 

2017 dataset. It has 86 network-related elements, including IP 

addresses and attack categories. In addition, the CIC has 

established eleven requirements for creating a trustworthy 

benchmark dataset. These standards include total traffic, available 

protocols, total interaction, total capture, heterogeneous nature, 

attack diversification, feature collection, and metadata. 

3.3.  AFDA dataset 

This is a host level intrusion detection system that 

is frequently used for testing intrusion detection systems. 

The Ubuntu OS is attacked using payloads and vectors in this 

dataset. In total, there are two datasets included here: the ADFA 

Windows Dataset [4] and the ADFA Linux Dataset [5] and [3]. 

3.4. UNSW-NB15 dataset 

Four different tools were used to produce the UNSW-NB15 

dataset [16]: the IXIA Perfect- Storm , the Tcpdump, the Argus, 

and the Bro-IDS tools. The Denial-of-Service attack, Exploits, 

Shellcode, Generic Assaults, and Worms are all examples 

of the kinds of attacks that can be crafted with the help of these 

tools. 

3.5. NSL-KDD dataset 

Tavallaee et al. [24] published this dataset on their website, 

which is more useful. In the training set, it removes any instances 

of duplicate data, eliminating classifiers' bias towards frequent 

records. The amount of records in train and test sets is chosen 

in such a way that the entire set may be executed economically. 

KDDTrain+ 20Percent only detected 20% of 25192 training 

examples. KDDTest+ has 22544 cases. 

3.6. CelebA dataset 

There are over 200K famous images in the CelebFaces 

Attributes Dataset (CelebA), each annotated with one of 40 

different attributes [15]. This dataset includes many poses 

and busy backgrounds. This dataset includes10,177 identities 

and 202,599 face photos. In addition to facial identification 

and detection, the dataset can also be used for landmark 

identification and facial editing. 

3.7. LFW dataset 

The Labelled Faces in the Wild Dataset (LFW) has 13,233 

face pictures [13]. Each image is of 250*250 size. The facial 

images in it are all from real life, thus recognition is challenging 

owing to multiple poses, brightness, gestures, age etc. Even 

images of the same person show a broad range of variation. Figure 

7 depicts an example of a facial image from the LFW dataset.  

4. Results 

The work is done using a laptop equipped with a Ryzen 7 

processor, 16 gigabytes of RAM, and NVIDA graphics processing 

unit. In this work, we followed the same architecture as in [9]. 

We evaluated the performance by using three metrics, i.e., 

Precision, Recall and F1 score. The results for the two datasets 

are tabulated in table 2. 

Table 2. Results of Anomaly Detection 

Dataset Recall Precision F1 Score 

KDD 0.8354 0.8165 0.8042 

CIC-2017 0.8412 0.8206 0.8307 

 

Precision: The part of values that the model identifies as accurate 

and pertinent to solving the issue statement is called precision. 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall: Recall is the percentage of data that the model properly 

classifies as positive.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score: F1 Score is the harmonic mean of both precision and 

recall. It is a better performance metric when the data is 

imbalanced.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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5. Conclusion 

Security applications research based on GANs is emerging. 

Current computing research focuses on information security. 

GANs can improve security and be used to examine cybersecurity. 

GANs research from neural cryptography, and image 

steganography, to train systems to better guard against attacks, 

offering us research possibilities for merging Cybersecure neural 

networks. Multiple GANs and variants that researchers have 

developed to deal with realistic security issues are also discussed 

in the paper. There's talk of how GANs have been used 

in steganography, intrusion detection, and neural cryptography 

to better monitoring security procedures and boost detecting 

systems in the fight against data sensitivity. GAN checks for both 

common and rare threats to IT infrastructure and the Internet 

of Things. It is most probable that GANs, when used 

in cybersecurity, can influence security advancements given 

the encouraging outcomes seen in various GAN applications.  

Any advancements in the use of GANs that eliminate the need 

for pre-processing data into images are advantageous for security 

field. Even with the wide variety of approaches available, 

there is always potential to enhance the data's availability 

and quality while simultaneously lowering processing times 

and computational needs. 
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