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Abstract. An intracranial aneurysm is a swelling in a weak area of a brain artery. The main cause of aneurysm is high blood pressure, smoking, and head 

injury. A ruptured aneurysm is a serious medical emergency that can lead to coma and then death. A digital subtraction angiogram (DSA) is used to detect 
a brain aneurysm. A neurosurgeon carefully examines the scan to find the exact location of the aneurysm. A hybrid model has been proposed to detect 

these aneurysms accurately and quickly. Visual Geometry Group 16 (VGG16) and DenseNet are two deep-learning architectures used for image 

classification. Ensembling both models opens the possibility of using diversity in a robust and stable feature extraction. The model results assist 
in identifying the location of aneurysms, which are much less prone to false positives or false negatives. This integration of a deep learning-based 

architecture into medical practice holds great promise for the timely and accurate detection of aneurysms. The study encompasses 1654 DSA images from 
distinct patients, partitioned into 70% for training (1157 images) and 30% for testing (496 images). The ensembled model manifests an impressive 

accuracy of 95.38%, outperforming the respective accuracies of VGG16 (94.38%) and DenseNet (93.57%). Additionally, the ensembled model achieves 

a recall value of 0.8657, indicating its ability to correctly identify approximately 86.57% of true aneurysm cases out of all actual positive cases present 
in the dataset. Furthermore, when considering DenseNet individually, it attains a recall value of 0.8209, while VGG16 attains a recall value of 0.8642. 

These values demonstrate the sensitivity of each model to detecting aneurysms, with the ensemble model showcasing superior performance compared 

to its individual components. 
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KOMPLEKSOWE BADANIE: WYKRYWANIE TĘTNIAKA WEWNĄTRZCZASZKOWEGO 

ZA POMOCĄ HYBRYDOWEGO GŁĘBOKIEGO UCZENIA SIĘ VGG16-DENSENET 

NA OBRAZACH DSA 

Streszczenie. Tętniak wewnątrzczaszkowy to obrzęk w słabym obszarze tętnicy mózgowej. Główną przyczyną tętniaka jest wysokie ciśnienie krwi, palenie 

tytoniu i uraz głowy. Pęknięcie tętniaka jest poważnym stanem nagłym, który może prowadzić do śpiączki, a następnie śmierci. W celu wykrycia tętniaka 

mózgu stosuje się cyfrową angiografię subtrakcyjną (DSA). Neurochirurg dokładnie bada skan, aby znaleźć dokładną lokalizację tętniaka. Zaproponowano 
model hybrydowy do dokładnego i szybkiego wykrywania tych tętniaków. Visual Geometry Group 16 (VGG16) i DenseNet to dwie architektury głębokiego 

uczenia wykorzystywane do klasyfikacji obrazów. Połączenie obu modeli otwiera możliwość wykorzystania różnorodności w solidnej i stabilnej ekstrakcji 

cech. Wyniki modelu pomagają w identyfikacji lokalizacji tętniaków, które są znacznie mniej podatne na fałszywie dodatnie lub fałszywie ujemne. 
Ta integracja architektury opartej na głębokim uczeniu się z praktyką medyczną jest bardzo obiecująca dla szybkiego i dokładnego wykrywania tętniaków. 

Badanie obejmuje 1654 obrazów DSA od różnych pacjentów, podzielonych na 70% do treningu (1157 obrazów) i 30% do testowania (496 obrazów). 

Złożony model wykazuje imponującą dokładność 95,38%, przewyższając odpowiednie dokładności VGG16 (94,38%) i DenseNet (93,57%). Dodatkowo, 
złożony model osiąga wartość pełności 0,8657, co wskazuje na jego zdolność do prawidłowej identyfikacji około 86,57% prawdziwych przypadków 

tętniaka spośród wszystkich rzeczywistych pozytywnych przypadków obecnych w zbiorze danych. Ponadto, biorąc pod uwagę DenseNet indywidualnie, 

osiąga on wartość pełności 0,8209, podczas gdy VGG16 osiąga wartość pełności 0,8642. Wartości te pokazują czułość każdego modelu w wykrywaniu 
tętniaków, przy czym model zespołowy wykazuje lepszą wydajność w porównaniu z jego poszczególnymi komponentami. 

Słowa kluczowe: DenseNet, DSA, model hybrydowy, tętniak wewnątrzczaszkowy, VGG16 

Introduction 

An enormous weak spot in the brain artery causes 

an intracranial aneurysm, which is a dangerous condition. 

Weakness of the artery walls in some areas can lead to aneurysm 

formation, posing a great risk to those affected. When 

an intracranial aneurysm ruptures, it causes a medical emergency 

that can lead to serious damage, including the possibility of coma 

and death. For prompt intervention and improved patient 

outcomes, intracranial aneurysms must be accurately and quickly 

detected. Among the major risk factors for the development 

of an intracranial aneurysm are head trauma, smoking, and high 

blood pressure. These factors can lead to wall disruption, 

highlighting the need to identify and monitor aneurysms 

in individuals with these conditions. The identification 

of intracranial aneurysms was made meticulously and precisely 

possible through the utilization of Cutting-edge imaging 

techniques like magnetic resonance imaging (MRI), computed 

tomography (CT) scans, and exceptionally accurate digital 

subtraction angiography (DSA). However, these methods may not 

always provide the accuracy or speed required to diagnose 

aneurysms, especially in emergencies. In recent years, 

the intersection of medical imaging and artificial intelligence (AI) 

has opened the door to better and more effective diagnoses. Deep 

learning-based designs attract attention due to their ability 

to analyse medical images accurately and quickly. Among these

models, the two main options are Visual Geometry Group 16 

(VGG16) and DenseNet [5], which are widely used in image 

classification [1]. VGG16 and DenseNet have been successful 

in many types of image classification. However, accurate 

and timely detection of intracranial aneurysms is a unique 

challenge that can be solved by combining the advantages of these 

two methods. This study leverages the power of deep learning 

by providing composite models that leverage diversity inference 

provided by VGG16 and DenseNet [8]. 

The main objective is to implement a model that can quickly 

and accurately detect intracranial aneurysms in DSA images while 

minimizing negative-related risks. The integration of deep 

learning-based architectures into the realm of medical practice 

offers significant potential to reshape the landscape of aneurysm 

diagnosis, emphasizing the importance of early detection 

and precise localization. This study offers a comprehensive 

exploration of the proposed hybrid model, delving into 

the methodology, evaluation, and results. Furthermore, 

it highlights the potential implications of this discovery in clinical 

practice, underscoring the significance of early detection. 

The ensuing sections of this study will provide detailed insights 

into the methods, evaluations, and outcomes, shedding light 

on how this hybrid model can significantly enhance the precise 

identification of intracranial aneurysms, particularly in DSA 

images, thereby advancing the field of medical imaging 

and patient care. 

komad
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1. Literature review 

Cheol Kim et al. [12] utilized the Alеxnеt_v2 architecture, 

achieving superior accuracy over human assessors in a computer-

aided system. Despite this success, limitations such as a small 

dataset and variability from user-selected ROIs were 

acknowledged, signaling the need for broader studies to enhance 

model robustness and generalization. 

Gurunathan et al. [10] proposed CNN-based models, boasting 

high accuracy rates of 98.6% for normal and 98% for abnormal 

cases. However, the challenges associated with demanding data 

requirements and complexities in model interpretation underscore 

the ongoing efforts required for optimization and practical 

application. 

Hossain et al. [11] presented a deep CNN architecture 

for brain tumor detection, emphasizing its accuracy advantages. 

Yet, they acknowledged the complexity and resource requirements 

as significant drawbacks. The study's comprehensive assessment, 

utilizing F1 scores and balanced statistics, highlighted the need 

for a nuanced evaluation approach. 

Stember et al. [20] employed U-net and CNN for Magnetic 

Resonance Angiography. However, the study revealed 

challenges, particularly in achieving a lower F1 score, pointing 

to the importance of dataset quality in model performance. 

Xinke Liu et al. [14] introduced a modified UNet-based 3D 

CNN with excellent segmentation accuracy, particularly 

in handling 3D DSA pictures. Despite its strengths, challenges 

such as lower accuracy for smaller aneurysms were noted. 

The evaluation, encompassing F1 scores and error analysis, 

identified specific areas for improvement. 

Haihan Duan et al. [7] implemented cascade CNNs 

for intracranial aneurysm identification, highlighting their 

precision but acknowledging computational complexity 

and extended training cycles as drawbacks. The study emphasized 

the critical role of the dataset in ensuring model robustness 

and generalization. 

Chen et al. [6] introduced a system for early detection using 

contrast-unenhanced magnetic resonance angiography, 

showcasing high sensitivity and low false positive rates. 

This suggests practical applicability for automated screening 

in routine examinations, addressing the need for efficient 

identification of suspected aneurysm areas. 

Takahiro Nakao et al. [17] proposed a deep neural network 

model for diagnosing cerebral aneurysms, emphasizing the high 

accuracy achieved. However, challenges such as the model's 

limitations in detecting tiny aneurysms underscore the importance 

of broader datasets for increased generalizability and therapeutic 

effectiveness. 

Yuan et al. [22] introduced DCAU-Net for segmenting 

intracranial aneurysms, showcasing superior accuracy 

and efficiency. The model's utilization of dense blocks 

and Convolution Block Attention Module (CBAM) contributed 

to enhanced segmentation performance. Comparative experiments 

highlighted its advantages over other models, emphasizing 

its potential in clinical applications. 

Jun Hyong Ahn et al. [2] introduced a Multiview CNN-

ResNet50 model for classifying rupture risk in tiny intracranial 

aneurysms. The algorithm demonstrated high sensitivity, 

specificity, accuracy, and F1 score, suggesting its utility 

in assessing rupture likelihood. 

Daiju Ueda, MD et al. [21] developed a deep-learning 

framework for detecting brain aneurysms using time-of-flight 

MRI, achieving improved detection rates. The focus on avoiding 

misses, though resulting in lower specificity, prompted 

suggestions for further improvements, including incorporating 

additional imaging data for comprehensive evaluations. 

Agus Eko Minarno et al. [15] applied SVM and DenseNet 

to MRI images for brain tumor categorization and achieved

an impressive 99.65% accuracy. This study underscores 

the effectiveness of deep learning strategies in accurately 

identifying brain tumor categories. 

Bincy Chellapandi et al. [5] discussed plant disease detection 

using a self-built CNN model and achieved superior performance 

with over 93% accuracy. This study also explored the application 

of transfer learning to enhance the accuracy of plant disorder 

detection. 

Zeng et al. [23] proposed a method for enhancing detection 

accuracy using successive image fusion (SIF), achieving 

an impressive 98.89% accuracy with 3D-RA projection images. 

The study demonstrated the robustness and effectiveness 

of the proposed framework. 

Belaid et al. [4] presented a model that combines VGG16 

CNN and GLCM features for brain tumor classification 

and achieved a 96% accuracy. This study highlighted the potential 

of this approach for accurate tumor categorization. 

Sourodip et al. [9] utilized an enhanced U-Net architecture 

with VGG-16 for brain tumor categorization via MRI, 

outperforming basic U-Net and other CNNs with pixel accuracies 

of 0.997. The study highlighted the superior performance 

of the enhanced U-Net architecture. 

Wufeng Liu et al. [13] achieved a 96% accuracy rate for rice 

leaf disease identification using a hybrid neural network model 

with enhanced attention. The study demonstrated the model's 

efficiency in identifying and classifying diverse types of rice leaf 

diseases. 

Yufan Zhou et al. [24] proposed a method for diagnosing brain 

tumors using composite 3D MR images, achieving accurate tumor 

diagnosis without detailed annotations. The study emphasized 

the potential of dense convolutional neural networks and recurrent 

neural networks for accurate diagnosis and categorization. 

Martinson Ofori et al. [18] presented an approach for reducing 

DL model complexity in precision agriculture systems 

by combining ensemble learning, model compression, 

and transfer learning for sustainability and cost-effectiveness. 

This study addressed the limitations of DL models in precision 

agriculture. 

Muhammad Mujahid et al. [16] utilized machine learning 

and signal processing for early-stage Alzheimer's disease 

detection, achieving promising accuracies of 97.35% and 99.64%, 

respectively, in terms of the area under the curve (AUC). 

The study explored different datasets and techniques, 

demonstrating the potential for improving the accuracy 

of diagnosing Alzheimer's disease. 

Rahil Shahzad et al. [19] employed a deep learning system 

to identify active aneurysms in aSAH patients via CT 

angiography; the system was effective and had high sensitivity 

for detecting aneurysms of unusual sizes. The study demonstrated 

the model's accuracy in detecting and classifying large arteries. 

Al Okashis et al. [3] developed an autonomous model 

for hemorrhage detection via MRI, achieving 89.2% accuracy 

and 100% sensitivity. The study evaluated the impacted brain area 

by applying segmentation-based feature extraction for efficient 

detection. 

2. Proposed methodology 

The intended system architecture strives to guarantee accurate 

and fast detection of intracranial aneurysms. The system 

is designed by ensembling two widely used pre-trained models, 

VGG16 (Visual Geometry Group 16) and DenseNet, which are 

commonly employed for image classification. By concatenating 

the outputs of both models, the system leverages feature extraction 

from both networks. Fig.1 illustrates the process flow diagram 

of the methodology. Integrating these advanced CNN models 

for analyzing medical images results in robust, error-free, 

and timely detection of aneurysms in the intracranial section. 
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Fig. 1. Process flow model 

2.1. Raw dataset 

The dataset utilized in this study was gathered from 

various hospitals. It contains images of the Vascular system 

of the intracranial section of the Brain. These images are captured 

using the Digital Subtraction Angiographic Technique which 

incorporates advanced X-ray Technology, Contrast dye, 

and monitoring equipment that ensures safe imaging of Brain 

Vascularity. The dataset contains 1654 DSA images composed 

from the unique cases of 5 patients. The dataset consists 

of two classes: the positive class, comprising 446 images 

containing aneurysms, and the negative class, comprising 

1208 images that do not contain aneurysms. Fig. 2 represents 

the sample images of raw dataset. 

 

Fig. 2. Raw dataset 

2.2. Data preprocessing 

The collected DSA images have varying dimensions, 

contrasts, and levels of sharpness. To standardize the dataset, 

it has undergone two preprocessing steps. 

2.2.1. Lossless compression and resizing 

The initial step involves standardizing all the images 

to a uniform size. Within this dataset, the images include details 

such as scan layer numbers, which must be eliminated through 

cropping. After the cropping process, all the images are resized 

to dimensions of 512512 using the Lanczos filter. The Lanczos 

filter is employed for resizing the images to the specified 

dimensions while also preserving image quality and minimizing 

aliasing effects. This is achieved through a weighted convolution 

filter that calculates new pixel values by considering a limited 

number of neighboring pixel values, resulting in smoother images. 

2.2.2. Brightness enhancement 

The DSA images exhibit low contrast and variations 

in brightness due to the different diameters of blood vessels. 

Additionally, smaller structures are hardly visible in these images. 

These issues can be addressed by applying a CLAHE (Contrast 

Limited Adaptive Histogram Equalization) filter. An excessive 

brightness ratio of 1.2 has been employed to overcome 

this problem, enhancing visibility without over-amplifying 

the blood vessels. This technique improves contrast and visibility 

by dividing the image into tiny blocks and equalizing 

the histogram of each block. Fig. 3 represents a sample of refined 

dataset. 

 

Fig. 3. Processed images 

2.3. Split data 

The preprocessed and refined images have been split into 

training data and testing data. In total, there are 1,654 images. 

Out of these, 70% of the data, which amounts to 1,158 images, 

is designated as the training dataset, while the remaining 30%, 

comprising 496 images, is assigned to the test dataset. This 

division ensures a robust evaluation of the model's performance 

and allows for effective training on a diverse range of examples. 

By carefully partitioning the dataset in this manner, we aim 

to optimize the model's ability to generalize to unseen data, 

thereby enhancing its overall efficacy in real-world applications.  

2.4. Train deep learning models 

To assess the accuracy of various deep learning models, 

multiple models were trained with the same dataset to compare 

their performance and select the one with the highest accuracy. 

The preprocessed data was trained by choosing diverse model 

architectures. The trained models were evaluated on the test data 

by comparing key metrics. After comparing the results, the model 

with higher performance is selected. This rigorous evaluation 

process ensures that the chosen model not only performs well 

on the training data but also generalizes effectively to unseen test 

data, enhancing its reliability for real-world applications. 

By systematically testing different architectures and comparing 

their performance, we aim to identify the most suitable model 

for the given task, thereby maximizing the accuracy and efficiency 

of our deep learning system. 

2.4.1. DenseNet 

The data was trained utilizing a pre-existing Deep Learning 

model DenseNet-121 [8]. To initiate model training, the pre- 

trained DenseNet-121 model was loaded with pre-trained 

weights from the ImageNet dataset. Data augmentation was 

implemented through the `ImageDataGenerator`, introduces 

variations to the training images. Techniques such as rotation, 

shifting, shearing, zooming, and flipping, coupled with rescaling, 

contribute to a more diverse dataset. The setup involved excluding 

the upper classification layers and configuring it to accept input 

images with specific dimensions. The layers of the DenseNet-121 

model were locked, ensuring that they would not be modified 

during the training process. Custom classification layers were 

added above the pre-trained model. To reduce the spatial 

dimensions of the feature maps, GlobalAveragePooling2D 

was applied. Following that, dense layers incorporated with 

Rectified Linear Unit (ReLU) Trigger purposes, and a final dense 

layer with a sigmoid activation function was added to produce 

binary classification results. The model was compiled using 

the Adam optimizer employing a learning rate of 0.0001. 

For binary classification, the binary cross entropy loss function 
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was utilized, and precision was chosen as the evaluation metric. 

After completing the training process, the model demonstrated 

a success rate of 93.57%. 

Algorithm 1: Image Classification using DenseNet121. 

Input: train_ dir: Training data directory; test_dir:Testing data 
directory;img_width, img_height:Image dimensions; batch_size: Batch 

size; 

Output: Trained DenseNet121-based model; 
Step 1: Import Libraries;Load TensorFlow and the required modules; 

Step 2: Data and Parameters:Specify the data directories, image 

parameters, and batch size; 
Step 3: Data Augmentation;Prepare the data generators with data 

augmentation; 

Step 4: Load the DenseNet121 Model;The DenseNet121 model is loaded 
with pretrained weights; 

Step 5: Customize the top layers;Add custom classification layers; 

Step 6: Compile the model;Compile the model with the specified 
optimizer and loss function; 

Step 7: Callbacks;Define the model checkpoint and early stopping 

callbacks; 

Step 8: Train Model;Train the model with specified settings; 

Step 9: Assess Model;The model's performance was assessed on the test 

dataset; 

2.4.2. VGG16 

The data were trained utilizing a pre-existing deep learning 

model VGG16. The training process commenced by loading 

the pretrained VGG16 model with weights initially trained on the 

ImageNet dataset. Data augmentation was implemented through 

the `ImageDataGenerator`, introduces variations to the training 

images. Techniques such as rotation, shifting, shearing, zooming, 

and flipping, coupled with rescaling, contribute to a more diverse 

dataset. The model's configuration excluded the top classification 

layers and allowed input images with specified dimensions. 

The layers of the VGG16 model were frozen to prevent 

updates during training, and the model deliberately excluded 

the uppermost classification layers. Additional custom 

classification layers were placed on the pretrained model. 

A flattening layer was applied to the base model's output. 

Subsequently, two dense layers with ReLU activation functions 

were introduced, and a final dense layer with a sigmoid activation 

function was included to produce binary classification results. 

The model was constructed with the Adam optimizer using 

a designated learning rate of 0.0001. Binary cross entropy served 

as the loss function for binary classification, and accuracy was 

chosen as the evaluation metric. Following the training process, 

the model achieved an accuracy of 94.38%. 

Algorithm 2: Image Classification Using VGG16 

Input: train_ dir: Training data directory; test_dir:Testing data 
directory;img_width, img_height:Image dimensions; batch_size: Batch 

size; 

Output: Trained VGG16-based model; 
Step 1: Import Libraries;Load necessary TensorFlow libraries; 

Step 2: Data and Parameters:Specify the data directories and image 

parameters; 
Step 3: Data Augmentation;Prepare the data generators with 

augmentation; 

Step 4: Load the VGG16 Model;The VGG16 model is loaded with 
pretrained weights; 

Step 5: Customize the top layers; add custom classification layers; 

Step 6: Compile the model;Compile the model with the specified 
optimizer and loss function; 

Step 7: Callbacks;Define the model checkpoint and early stopping 

callbacks; 
Step 8: Train Model;Train the model with specified settings; 

Step 9: Assess Model;The model's performance was assessed on the test 

dataset; 

2.4.3. Hybrid model 

After training the two models, DenseNet121 and VGG16, 

respectively, achieved accuracies of 93.17% and 92.32%. 

To create a hybrid model, both pretrained models, DenseNet121 

and VGG16, are loaded with weights from the ImageNet dataset. 

Both models are connected to exclude their top classification 

layers and to accept input from the previously defined input layer. 

For transfer learning, all the layers of both models are frozen 

so that they cannot be changed during the training process. Global 

average pooling layers are added to both the DenseNet121 

and VGG16 models [22], which diminishes the spatial dimensions 

of the feature maps. Now, the outputs of the global average 

pooling of both models are concatenated into a single 11 tensor. 

Two custom dense layers are added to it: the first is ReLU, with 

256 units. Each unit computes a weighted sum of input features, 

allowing nonlinearity in the model and the ability to learn complex 

relationships. The final layer is the sigmoid layer with a single 

unit, which is typically used for binary classification tasks. 

The hybrid model is prepared by using pretrained models as input 

layers and custom dense layers as output layers. The model 

is assembled in combination with. The Adam optimizer, 

incorporating a designated learning rate of 0.0001. The accuracy 

of the hybrid model was evaluated. It achieved an accuracy 

of 95.38%. 

Algorithm3:CombinedModel: DenseNet121 and VGG16 

Input: train_ dir: Train datadir; test_dir: Test data 
dir;img_width,img_height:Img dimensions; batch_ size: Batch size; 

Output: Combined model for binary classification; 

Step 1: Import Libraries; Load TensorFlow and modules; 
Step 2: Define the input and layers; define the input shape and create 

layers; 

Step 3: Load the pretrained models; 
The DenseNet121 and VGG16 models are loaded with pretrained weights; 

Step 4: Freeze layers: Freeze layers in both models; 

Step 5: Combine the outputs; 
Combined_output = Concatenate ([GlobalAvgPool (DenseNet121 output), 

GlobalAvgPool (VGG16 output)]) 
Step 6: Custom dense layers; 

x = Dense (combined output, 256; activation =′ relu′)output = Dense (x, 1; 

activation =′ sigmoid′); 
Step 7: Create the combined model; Create the combined model with 

input and output; 

Step 8: Compile the model; Compile the model with the specified 
optimizer and loss function; 

Step 9: Data generators; Define the data generators for the training and 

test data; 
Step 10: ModelCheckpoint; Define a ModelCheckpoint to save the best 

model; 

Step 11: Train and evaluate; Train the model with data generators and 

evaluate the best model; 

3. Results and comparitive analysis 

The dedicated test dataset is subsequently used to assess 

the trained models. This stage facilitates a detailed evaluation 

of each model's performance. Various crucial performance 

indicators, such as the ROC-AUC, precision, accuracy, F1 score, 

and recall curve, were computed to provide a comprehensive 

assessment of each model's capabilities. Analyzing these metrics 

helps identify the model that excels in our specific task, 

simplifying the decision-making process for further deployment 

or analysis. Table 1 shows the comparison of the various models 

on the above-mentioned parameters. By meticulously examining 

these metrics, we gain insights into the strengths and weaknesses 

of each model, enabling us to make informed decisions regarding 

their suitability for practical implementation in real-world 

scenarios. 

Table 1. Performance metrics 

Model Accuracy Precision Recall F1 SCORE ROC-AUC 

Hybrid 0.9538 0.9587 0.8657 0.9098 0.9712 

DenseNet 0.9357 0.9322 0.8209 0.8730 0.9675 

VGG16 0.9438 0.9206 0.8642 0.8923 0.9650 

 

Figures 4a, b, and c show the confusion matrices, which 

represent the performances of VGG16, DenseNet, and the hybrid 

model, respectively. These matrices offer insights into the models' 

classification accuracy by illustrating the distribution of true 
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positive, true negative, false positive, and false negative 

predictions across different classes. Additionally, in figures 5a, b, 

and c, the ROC-AUC curves are shown for VGG16, DenseNet, 

and the hybrid model, respectively. These curves provide 

a graphical representation of the models' performance in terms 

of true positive rate against false positive rate across 

different threshold values. Analyzing both confusion matrices 

and ROC-AUC curves aids in understanding the strengths 

and weaknesses of each model's classification capabilities, 

facilitating informed decision-making for model selection 

and further optimization. 

Table 2 illustrates a comparison of the accuracies 

of architectures proposed in various studies previously discussed. 

Upon examination, it is evident that the ensembled model 

of VGG16 and DenseNet exhibits higher accuracy compared 

to the others. The hybrid model benefits from the complementary 

strengths of both VGG16 and DenseNet, leveraging VGG16's 

robust feature extraction capabilities and DenseNet's dense 

connectivity to achieve superior performance. 

By combining the strengths of these two architectures, 

the hybrid model achieves enhanced accuracy, demonstrating 

the effectiveness of ensemble methods in deep learning. 

By combining the strengths of these two architectures, 

the hybrid model achieves enhanced accuracy, demonstrating 

the effectiveness of ensemble methods in deep learning. Ensemble 

methods leverage the diverse perspectives and capabilities 

of multiple models to create a more robust and reliable system. 

In this case, integrating features from both DenseNet and VGG16 

allows the hybrid model to capture a wider range of image 

characteristics and patterns, leading to improved performance 

in detecting intracranial aneurysms. This approach not only 

increases accuracy but also enhances the model's resilience 

to noise and variability in the data, making it more suitable 

for real-world applications where robustness is critical. 

a)  

b)  

c)  

Fig. 4. Confusion matrices of: a) DenseNet, b)VGG16, c) hybrid model 

a)  

b)  

c)  

Fig. 5. ROC-AUC Curves of: a) DenseNet, b) VGG16, c) hybrid model 

 

Fig. 6. Bar Graph representing accuracy comparison 

Table 2. Comparative analysis 

Reference number Architecture Accuracy 

[18] Ensembled model (VGG, Resnet, DenseNet) 91.2% 

[2] A multi-view CNN-ResNet50 81.72% 

[12] CNN 76.84% 

[14] CNN and MIP 94.2% 

[7] Cascade CNN 93.5 

 Ensembled Model (VGG16, DenseNet) 95.38% 

4. Conclusion 

DenseNet and VGG16 stand out as prominent deep learning 

models widely employed for image classification, with this study 

focusing on the detection of intracranial aneurysms in DSA 

images. Remarkably, the DenseNet and VGG16 models 

showcased outstanding performance, achieving accuracies 

of 93.57% and 94.38%, respectively. DenseNet's proficiency 

in feature extraction, facilitated by its deep network architecture, 

and VGG16's high efficiency due to its straightforward design 

contributed to their respective successes. Specifically, for recall 

values, VGG16 demonstrated a recall of 0.8642, while DenseNet 

exhibited a slightly lower but still commendable recall of 0.8209. 

Combining the strengths of both models in a hybrid approach 
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yielded a significantly higher accuracy of 95.38%. Notably, 

the hybrid model, with a recall value of 0.8657, not only surpassed 

individual model performances but also showcased enhanced 

robustness and superior generalizability to previously unseen 

data. In conclusion, the hybrid model successfully fulfil 

all the objectives of detecting aneurysms in DSA images with 

remarkable efficiency, demonstrating the synergistic power 

of leveraging diverse deep learning architectures. The ensembled 

model, by combining the strengths of DenseNet and VGG16, 

achieves a level of performance that exceeds what either 

model can achieve individually. Ensembling is a useful technique 

for improving model performance by leveraging the comple-

mentary strengths of multiple models, in this case, enhancing 

feature extraction and detection sensitivity for more effective 

identification of intracranial aneurysms in DSA images. 
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