
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2024 141

artykuł recenzowany/revised paper IAPGOS, 2/2024, 141–148

http://doi.org/10.35784/iapgos.5856 received: 01.02.2024 | revised: 27.04.2024 | accepted: 12.05.2024 | available online: 30.06.2024

MODELING ROBOTECHNICAL MECHATRONIC COMPLEXES

IN V-REP PROGRAM

Laura Yesmakhanova
Taraz Regional University named after Dulati M. K., Taraz, Kazakhstan

Abstract. The article clarifies the issues of modeling robotic systems in the V-REP program and provides skills in modeling the process of robotic

and mechatronic complexes operation taking into account the laws of physics. The aim of the research paper is to investigate a 3D robotic simulator based

on a distributed control architecture: control programs (or scripts) can be directly attached to objects in the scene and executed simultaneously
in a streaming or non-streaming mode. V-REP can be used for remote monitoring, for hardware control, for rapid prototyping and verification, for rapid

algorithm development/parameter tuning, for safety retesting, for robotics education, factory automation simulation, etc.

Keywords: robotics, simulator, simulated environment, V-Rep

SYMULACJA ROBOTYCZNYCH ZESPOŁÓW MECHATRONICZNYCH W PROGRAMIE V-REP

Streszczenie. Artykuł wyjaśnia kwestie modelowania systemów zrobotyzowanych w programie V-REP i zapewnia umiejętności modelowania procesu

działania robotów i zespołów mechatronicznych z uwzględnieniem praw fizyki. Celem artykułu jest zbadanie symulatora robotycznego 3D opartego

na rozproszonej architekturze sterowania: programy sterujące (lub skrypty) mogą być bezpośrednio dołączane do obiektów na scenie i wykonywane

jednocześnie w trybie strumieniowym lub niestrumieniowym. V-REP może być wykorzystywany do zdalnego monitorowania, kontroli sprzętu, szybkiego
prototypowania i weryfikacji, szybkiego opracowywania algorytmów / dostrajania parametrów, ponownego testowania bezpieczeństwa, edukacji robotyki,

symulacji automatyzacji fabryki itp.

Słowa kluczowe: robotyka, symulator, środowisko symulowane, V-Rep

Introduction

Nowadays, robotics is one of the most demanded

directions in the development of automated technological

systems and is actively used in such fields as medicine,

telecommunications, military and industry, as well as education.

The development of robotics and modeling technologies has led to

the emergence of a whole class of software - robotics simulators.

A simulator is a software platform that provides an opportunity to

create various scenarios using a user interface. The special

significance of simulators should be emphasized in robotics

training [7]. Virtual simulators differ significantly from general-

purpose simulation environments. They use an approach in which

the model has components that realize the same functions

as similar components in real robots. Therefore, while students

are still working with the virtual model, they learn how to work

with electrical actuators, mechanical elements, and control system,

which allows them to reduce risks without harming the learning

process.

Testing is the most common [5], but by no means the only

purpose of developing experimental platforms. For example, most

modern industrial robots have their own offline programming

systems, which includes an experimental modeling system. Such

systems perform all the necessary calculations for simulation

and visualize the process. Fig. 1 shows the interface of specialized

software for offline programming and testing of the executable

program of industrial robots [1] produced by ABB Robotics.

The modeling goal depends on the tasks at hand, and when

creating new robotic solutions, mainly on the development

stage. It can be hypothesis testing, design optimization,

testing of software implementing new algorithms of sensor

information processing and controlling behavior, and at later

stages – debugging of executable code before its launch

on the manipulator workstation controller.

There exists a number of software solutions for robotic

systems that allow creating simulations with high accuracy. These

include Gazebo [9] and V-REP [10], as the most popular

and having more functionality. These platforms have a wide range

of capabilities for modeling robots of different types, ranging from

floating to flying. The distinctive feature of the platforms is also

the ability to scale easily. However, the developer interface

in the V-REP program is significantly better than the interface

in Gazebo, where there is no development interface per se.

In addition, V-REP program regularly receives new updates, new

features and functions appear, while Gazebo is poorly supported

and no significant improvements have been seen in the last 3

years. In view of these facts, V-REP is currently the best solution

for those who are just starting to explore the possibilities

of modeling robotic systems and the peculiarities of creating

simulations for robots in order to start using them in practice.

Fig. 1. ABB Robot Studio program interface

1. V-REP software capabilities

The V-REP program interface is divided into several parts

depending on the purpose and is implemented in a window with

a graphical interface: the graphical window of the program is used

to control all built-in tools. Also worth mentioning is the console

window, which can be observed during the application startup,

but by default this window is hidden immediately. If necessary,

you can configure V-REP to always display the console by calling

"User settings" using the first button in the vertical toolbar.

The console window displays the plug-ins to be loaded and their

routines, which are only needed when working with plug-ins.

142 IAPGOŚ 2/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

Fig. 2. V-REP application window

Figure 2 shows the V-REP program interface with a rather

large set of active tools, but it should be understood

that simultaneous activation of all tools will lead to their mutual

overlapping.

1.1. Overview of V-REP tools

Change position, orientation and zoom. These are some

of the basic tools needed to enter the initial conditions

of the simulation. The "Object/Item Shift" tool (Fig. 3. left)

can be used to set the position of objects in the scene and scale

(reduce or enlarge the object). The "Object/Item Rotation" tool

(Fig. 3. right) allows you to set the object orientation in space.

Fig. 3. Position and Orientation tools

Changing object properties. The "Properties" tool is no less

frequently used when creating simulations in the V-REP program

and allows you to set various properties of objects and simulation

components. After activating the tool, the context menu

is displayed, which has two tabs. The first tab contains the list

of properties, which is specialized and depends on the type

of the selected object. The second tab of the tool's context menu

contains general properties that are similar for most objects.

Starting and stopping the simulation. For these tasks, there

is a set of toolbar buttons in the horizontal panel (Fig. 4)

that allow you to start the simulation (shown in Fig. 4, left),

stop (Fig. 4, middle) and end the simulation (Fig. 4, right).

Fig. 4. Tools for starting, stopping and finishing a simulation

Also in Fig. 4 to the left of the simulation start tool shows

the settings of the solver (library for modeling the laws

of physics), where you can change the simulation step,

the simulation mode and the used kernel of the physics engine.

Visual property management. The V-REP program

implements a mechanism of layer-by-layer separation of all visual

objects. This functionality is necessary because in the program

it is necessary to use the combination of components of different

types, and in such cases it becomes impossible to further work

with objects. For example, the presence of identical components

that have the same position, but model different properties,

leads to the fact that they become visually indistinguishable. That

is why it is necessary to use the "Layers" tool. The recommended

principle for layering is that components of the same type should

be on a separate layer (e.g. all joints). A total of 10 layers

are available in V-REP, and in the properties of each component

you can select the layer on which the element will be placed.

Once the elements have been layered, you can activate

the "layers" tool from the left toolbar and switch between layers.

Script management tool. Adding and removing scripts, as well

as changing the binding to individual components, is easily

accomplished through the simulation script hierarchy. However,

V-REP also has a duplicate "Scripts" tool that also allows you

to perform similar operations and often does so faster.

But for beginners in V-REP this tool can be difficult, because

the principle of its work is not as intuitive as a similar operation

through component hierarchies.

Form Editor. This tool is designed to edit the mesh

of the mechanical elements of the system being modeled. Setting

a finer mesh allows to obtain higher simulation accuracy,

but if you chop the mesh in all components, it leads to an increase

in the computational power consumed. Therefore, it is necessary

to set variable concentration grid sizes through manual grid

editing. This tool is most often needed when creating a simulation

based on 3D models that have been imported from a CAD system.

There are 3 modes of operation available in the shape editor:

triangle editing mode, vertex editing mode and edge editing mode.

Triangle editing mode. In this mode, the individual triangles

that make up the shape can be selected, after which they

can be deleted, the remaining voids can be closed, and they can

be subdivided into smaller triangles. Using the "Subdivide

triangles" button you can subdivide all triangles into smaller

triangles, i.e. each click reduces the size of triangles by 2 times.

Vertex editing mode. In this mode individual vertices

that make up the shape can be selected and then deleted.

You can also create new triangles by selecting 3 or more vertices

and pressing "Insert triangles".

Edge editing mode. In this mode the functions similar to those

described above are available. The only difference is that separate

edges of the shape are available for selection and editing.

Fig. 5. Forms editing tool

It should be noted that component forms cannot be edited

directly with this tool, but must be grouped in advance

and modified individually.

1.2. Writing scripts in V-REP program

As it was mentioned above, the V-REP platform supports

working with different programming languages, including

the most common ones, such as C++ and Python. Implementation

is performed using the Lua language, as this language is a built-in

language of V-REP, and you can start writing scripts immediately

after starting the program. A distinctive feature of Lua

is its simplicity: in many respects the syntax is similar

to the popular C language, which greatly simplifies the work

for those who are already familiar with the language. Scripts

in V-REP open great opportunities for realizing control of both

separate objects of the scene and the platform.

To begin with, it is necessary to remember that scripts

in V-REP are of two types: streaming and non-streaming.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2024 143

Let's consider the structure of a non-streaming script,

as recommended by developers and most often used. Such a script

always consists of several blocks.

Initialization block. The contents of this block are executed

only once when the simulation is started. This block contains such

operations as declaring the necessary variables and assigning

initial values to them. Also in this part of the script handlers

for controlling the scene objects are set.

Activation block. The contents of this block are iteratively

executed at regular intervals (simulation step). The part

of the script written in this block will be repeated until

the simulation is stopped or a critical error occurs (in which case

the simulation will also be stopped). The basic control algorithm

is described here.

Sensor control code block. The contents of this block

are executed as many times as the activation block. However,

the main V-REP script accesses this block only after the script

from the activation block has finished executing. This block

is designed to retrieve data from the sensors.

Simulation Completion Block. This block allows you

to selectively erase the data acquired during the simulation.

The script from this block starts executing once before

the simulation is terminated or the script is erased. This block

remains empty in most cases.

As a rule, no script is without the use of variables. In Lua,

you can declare new variables at any time, and you can also

specify their initial value when declaring them (e.g., Fig. 6,

line 9). It is also not necessary to specify the type of the variable.

Lua will determine it depending on the value that is assigned

to the variable for the first time. Variables with a numeric value

are treated as a floating point number. Variables with character

values and variables of logical type (possible values: "true"

or "false") are also allowed. There is also a function for destroying

(releasing) variables. All variables in Lua are global by default,

i.e. they can be accessed from any area.

Fig. 6. Example of an initialization script

Branching and loops are implemented in Lua as in most C-like

programming languages in slightly different terms.

The "If" conditional operator requires the mandatory

use of the "then/end" construct. A logical expression or variable

must be specified after the "If" keyword. The logical expression

is followed by the keyword "then", which begins the "body"

of the condition - the part of the script that will be executed

if the condition specified in the script is true. The conditional

operator has an optional component – an additional condition

"elseif" (elseif), the "body" of this condition – a part of the script

that will be executed only if the condition specified in the script

is false. Fig. 7 shows an example of using a conditional operator.

Fig. 7. An example of using a conditional operator and functions for outputting

information to the console window and status window

As with conditional statements, a control system is rarely

without at least one loop. Loops in Lua are defined using

keywords that denote the type of loop together with the keywords

"do" and "end". The order is as follows: first the type is specified,

then the loop execution condition, then the word "do",

followed by the "loop body" – the script fragment that will

be executed cyclically, and the loop ends with the word "end".

The most common loops are "while" and "for" loops. Fig. 8

shows an example of the simplest while loop, which increases

the value of the variable "k" by one until the condition "k<50"

becomes false.

Fig. 8. An example of using a "while" loop

Loops in Lua, like conditional branching, must end with

the keyword "end". Undefined variables have a default value

of "nil". In this case, only variables with the value "nil"

and "false" (the logical variable type "false") return false in the

loop condition, while the variable value "0" and ' ' return true.

The second type of loops that is most often used is "for".

This type is well suited for tasks where a counter loop is needed,

but it should be mentioned that in most cases "for" can be replaced

by a "while" loop with a few extra variables. An example of using

the "for" loop is shown in Fig. 9, this script fragment executes

100 iterations starting from 1 (including 1 and 100). In this

case, you can change the conditions, put 100 instead of 1

and 100 instead of 1, then the loop will be executed with changing

the value of the variable "i" from 100 to 1. Also in the "for" loop

there is an optional step parameter, by default the step is equal

to one, and there is no need to specify it. However, for cases when

it is necessary to use a step with a value other than 1,

it is necessary to specify it with a comma after the final value

(if a step 2 is required, then for the example in Fig. 9 it will

be the condition "i = 1, 100, 2").

Fig. 9. An example of using a "for" loop

Tables in Lua are the only structural element, they combine

the properties of an array, hash table ("key" – "value"), structure

and object. Most often tables are used as dictionaries, and the key

is of string (character) type by default. An example is shown

in Fig. 10. Line 11 declares a variable of type "table" and sets

2 keys and their corresponding values. The values can be accessed

by specifying the name of the table and the key with a dot

(example in Fig. 10).

Fig. 10. Example of using tables in Lua

As you can see from the example, it is allowed to use as a key

not only strings, but also all other types of variables that

are available in Lua.

Another and extremely important part of the programming

language are functions. You can create your own functions, or you

can use ready-made ones, which can be found in the Lua reference

book [7]. An example of a function defined by the developer

is shown in Fig. 11. As you can see from the example,

the function can take several values. Also functions can return

several values.

Fig. 11. An example of using a custom function in Lua

144 IAPGOŚ 2/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

Regular functions are already integrated into Lua when

writing V-REP scripts and begin with "sim". It is these functions

that are used to interact with the simulation: control, data reading,

debugging and many other tasks [8].

The V-REP program has a separate object class "Graph"

(graph), which can be used to easily visualize both data from

individual sensors and user data (regardless of the method

of acquisition). To add graphs to the simulation scenario, just

execute [Add→Graph] in the main menu. Next, it is necessary

to set the properties. To do this, select an object in the scenario

hierarchy and activate the "Object/Item Properties" tool.

In the context menu under "Data stream recording list" you must

click on "Add new data stream to record". In the context window

that appears (Fig. 12) it is necessary to specify the data type

and data source. If it is necessary to output the data from

the sensor to the chart, it is necessary to specify the data type

in the drop-down field "Data stream type" and the sensor name

in the field "Object/Item to record". Often there is a need

for preliminary processing of sensor data before displaying

it on a chart: this can be done by using a script as an intermediate

point where data processing will be performed. In this case,

it is necessary to specify in the chart settings that the data will be

displayed as user data.

Fig. 12. Context window of data stream creation in V-REP

After clicking "OK" in the "Data stream recording list"

section, a new data stream with the default name will appear.

Double-click on the name of the data stream to enter the name

editing mode. This name will be used to refer to the graph from

the script when outputting data.

Fig. 13. Script fragments for outputting user data to the chart using the V-REP

program

Fig. 14. Script fragments for reading data from sensors in the V-REP program

Figure 13 shows an example of a script fragment that outputs

user data from a script to a graph. In the example, on line 4

"Graph" is the name of the object, on line 7 "Red" is the name

of the data stream, and "data" is the name of the variable whose

value is displayed on the graph. To learn how to get data from

a sensor, see "Sensors".

Sensors. Different types of sensors are available in V-REP

program: force and moment sensors (force sensor), video sensors

(vision sensor), distance sensors (proximity sensor). Reading data

from sensors is performed in a script using special functions

(API-functions). Examples of reading data from "vision sensor"

and "proximity sensor" are shown in Fig. 14.

2. Conditions and methods of research

To model the operation of an industrial manipulator, we need

to simulate the process of an industrial manipulator equipped

with a sensor. The manipulator should be programmed to search

for an object of a given color that lies within the manipulator's

working area. After the object is detected, the manipulator should

stop the search and bring the end link to grab the object.

Fig. 15. Schematic representation of a manipulator

An industrial multi-link manipulator is a classic example

of a dynamic system in mechatronics and robotics. The deve-

lopment of a scenario that allows to simulate the process

of operation and the whole physics of interaction

of the manipulator components allows the most complete study

of the main aspects of modeling a large class of systems.

This paper reviews the creation of the simulation without

delving into the mathematical aspects of modeling, allowing us to

focus on the practical application aspects. The basic approaches

for modeling robot dynamics, as well as the Newton-Euler

method, which is used in V-REP to calculate the dynamics,

are discussed in detail in textbooks [4] and [11]. It is also worth

remembering that simulation does not give 100% accuracy, small

deviations are allowed at different stages of execution.

This paper assumes that the student already has the skills

to create three-dimensional models in any CAD system. If there

are no such skills, it is recommended to refer to the textbook [8],

or other similar literature. First, it is necessary to import

the already created 3D model of the manipulator from CAD-

system into V-REP. For this purpose it is necessary to save

the manipulator assembly with *.STL extension. Each element

of the assembly will be saved as a separate file. Files saved in STL

format save their coordinates, and in the future it will be

convenient to work with them in the V-REP program.

Start V-REP and in the main menu run [File → Import →

Mesh...], select all saved STL files and click "Open".

In the window that appears, select the item "1 unit represents

1 millimeter", which will allow you to set the correct scale

in the new coordinate system, you may also need to change

the "Mesh orientation". After all the settings have been correctly

set, it remains to click "OK" (Fig. 16).

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2024 145

Fig. 16. File import settings

After importing, the main window should display all models

(an example is shown in Fig. 17). You can also see that

in the hierarchy of scene objects there are new components

corresponding to each part of the industrial manipulator.

Fig. 17. Example of a manipulator imported from CAD system

To identify the types it is convenient to use the icons to the left

of the component name. Now all components have the type

"Composite random forms".

In the future, to make it more convenient to work with

the scene hierarchy, we will give each part of the manipulator

a name. The name should contain information about what kind

of component it is (for example, proximity to the base or other

information for easy identification).

The elements available at this stage can be used for simu-

lation, but this is not recommended because elements of this type

are not optimal for calculating physical properties. Therefore, let's

create modified copies of these elements that will be used

for physics modeling.

Select each component, right-click on its name and choose

[Add → Convex decomposition of selection...] in the pop-up

menu.

By changing the “Target nb of triangles of decimated mesh"

parameter, you can adjust the detail of the mesh of the created

object. The recommended range of values is from 500 to 1000.

Also in the context window of the tool there is a number of other

parameters that also allow you to create an optimized mesh.

Having set the necessary parameters (Fig. 18), click "OK".

This should be repeated for all components of the manipulator.

Note that there are new elements, and the icons to the left of them

differ from the icons of the elements we had.

Next, it is recommended to rename the new components so

that they have the same names as the original components, only

with the addition of the ending "_dyn" (remember that only Latin

letters are allowed in the name).

Fig. 18. Window for creating a copy with an optimized mesh for dynamics

simulations

After that, you need to link the source components to their

copies ("_dyn") in such a way that the dynamic components

are a "parent" to the source components. This can be done using

the "drag and release" method by selecting the source component

in the scene hierarchy (with the left mouse button held down)

and dragging it onto its copy with dynamic properties. The same

operation should be done for all components of the manipulator.

The result should be similar to the one shown in Fig. 19.

Fig. 19. Example of the manipulator scene hierarchy

Now there are objects in the scene that overlap each other,

and it is necessary to separate these objects into different display

layers. To do this, select an element with an optimized grid

and activate the "Properties" tool. In the "Common" tab find

the item "Camera visibility layers" and set the values for the first

row 0000 0000 and 1000 0000 for the second row of fields.

The same operation should be done with other elements that have

optimized grid.

As a result, we get visually the original manipulator, but with

the help of the "Layers" tool you can switch to displaying

components of another type. Fig. 20 shows the display of only

elements with optimized grid.

Now it remains to configure the elements in such a way

that the dynamic-optimized elements simulate dynamics, while

the original components do not participate in the calculations,

but only repeat the behavior of dynamic elements. So, open

the "Properties" of the dynamic element and click "Show dynamic

properties dialog". Next, we need to enable the "Body

is Respondable" and "Body is dynamic" functions. In the dynamic

parameters click on "Compute mass and inertia properties

for selected..." to automatically calculate mass and moments

of inertia based on geometry (Fig. 21), after that it is necessary

to enter material density and V-REP will calculate all dynamic

properties.

146 IAPGOŚ 2/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

The above operation should be repeated for all parts

of the manipulator except the base. The manipulator base

is fixed and should not be considered as a dynamic element,

but the "Respondable" property should be enabled.

Fig. 20. Example of a manipulator

Fig. 21. Window for setting dynamic properties of objects

The V-REP program has a function for setting the interaction

mask. The mask can be used to tell the program which elements

should be ignored. It is often the case that two solids

are connected by a hinge, and in a real situation they would

not act on each other. But in the V-REP program, when modeling,

we can get a coarse mesh, which is the basis for the calculation.

This causes the meshes of two adjacent elements to touch

each other, and to solve this problem we would have to recreate

a finer mesh, which would increase computer resources. Using

masks, you can easily solve such problems.

Let's use object masks to exclude the interaction

of neighboring elements of the manipulator from the calculation.

To do this, open the properties of the main element (manipulator

base, fixed link) and set the mask as shown in Fig. 22.

Further, each subsequent element of the tree structure must

have a local mask different from the mask of the previous element.

For example, the "Local respondable mask" of the element

following the base element will be 11110000, and the next

element will have the same mask as the base ("00001111"), and so

on with alternation.

If you try to run the resulting scenario, all parts

of the manipulator should fall apart, because there are no joints.

Fig. 22. Setting up a mask

To connect the parts of the manipulator components you need

to add joints ("Joint") of rotational type ("Revolute") to the scene.

This can be done through the main menu [Add → Joint →

Revolute], after which a new object is added to the scene.

The joint represents a certain axis, relative to which

the movements of the elements connected to the joint will

be performed. Proceeding from this it is necessary to precisely

set the position and orientation of the joints at the points

of relative rotation of the manipulator links. This task is one

of the most difficult, and in this case it is possible to resort

to some tricks. One of the possible approaches to this problem

is described below.

To position the hinges, we will use the coordinates

of the already existing elements of the manipulator. Press "Ctrl"

to select the hinge and the manipulator base, then go

to the "Position" tab of the "Object/Item Shift" tool and press

"Apply to selection". Switch to the "Object/Item Rotate" tool

and click "Apply to selection" in the "Orientation" tab.

But it happens that the hinge must be placed not in the center

of the pattern by all three coordinates, but in the middle, in a non-

standard place in a groove or on a ledge. In such a situation there

are two ways out: use relative displacement or relative rotation.

To do this, select only the hinge (two items can be selected at once

after the previous operation) and activate the "Object/Item Shift"

tool. In the "Translation" tab, select "Own frame" (coordinate

system associated with the current object) and enter the distance

from the current position to which you want to move the selected

object in the corresponding axes, then click "Translate selection".

Similarly, you can rotate the hinge in the "Rotation" tab

of the "Object/Item rotate" tool.

The above method solves the hinge positioning problem,

but in most cases it can be solved even faster if you take

advantage of the ability to separate elements with a mesh. Before

you do this, it is better to use an additional "draft" script. Create

another script and copy all the elements of the scene there. Next,

we should perform positioning in the draft scene and then copy

the already correctly positioned joint into the working scenario.

When copying objects from one scenario to another, their

properties are preserved. Copying and pasting are performed using

the keyboard shortcuts "Ctrl + C" and "Ctlr + V" respectively.

In the draft script, select an element of the "compound convex

shape" type and in the right-click context menu choose

"Edit"→"Grouping/Merging"→"Ungroup selected shapes".

Thus, we can divide the initial object into several very simple

shapes, and now we can use coordinates of any of the obtained

shapes for positioning the hinge. Using the already known

method, we set the necessary position and orientation, and then

copy the hinge from the draft to the working script.
Results. As a result of manipulations we managed to set

the exact location and orientation of the hinge. Having made

similar actions with other joints, it remains to set readable names,

so that it would be convenient to work with them in the future.

Fig. 23. Pictograms of different hinge types

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2024 147

Now that all the hinges are in place, we can set the links

between the elements. To do this, we create a tree structure

in the scene hierarchy, exposing some objects as children relative

to others. The hierarchy starts with the dynamic object

of the manipulator base, which is the first parent, followed

by the hinge, followed by the dynamic object closest to the base,

then the hinge, and so on.

Fig. 24 shows an example of the result to be obtained after

performing all the above actions.

Fig. 24. Hierarchy of objects and location of manipulator joints

For a more convenient display of the manipulator, you can

also remove the display of the visual properties of the joints.

Let's proceed to customizing the joints. Select the joint

in the scene hierarchy and execute the commands [Scene object

properties→Show dynamic properties dialog]. In the context

window "Joint Dynamic Properties" we will mark three important

items (Fig. 25).

 motor enabled (motor enabled/disabled),

 lock motor when target velocity is zero,

 control loop enabled (enable/disable cyclic control).

Fig. 25. Editing dynamic properties of a joint

Check the "Motor enabled" and "Control loop enabled"

checkboxes in all joints of the manipulator. The next step

is to install sensors.

Add a sensor via [Add→Proximity sensor→Ray type]

commands, then select this object and set the required position

and orientation (to the final link of the manipulator).

Set the binding to the final link of the manipulator in the scene

hierarchy. This sensor will determine the distance to the object.

Let's proceed to its configuration. Select the sensor and go to

[Scene object properties→Show volume parameters].

The "Offset" parameter is responsible for the distance from

which the counting starts, and the "Range" parameter

is responsible for the range of the sensor.

Add one more sensor, which will allow to determine the color

of the object. Execute the commands [Add→Vision

sensor→Orthographic type], set the necessary position

and orientation, then set the binding to the manipulator's end link.

We will not customize it in this work, as the default settings meet

all tasks.

Now let's add the cube that the manipulator will need to search

for. In the main menu choose [Add→Primitive shape→Cuboid],

select the necessary dimensions of the cube and press "OK".

Set the color in the window [Scene object properties→Adjust

color→ Ambient/diffuse component] and set its location within

the working area of the manipulator. To make the cube visible

for sensors, you should change its properties through

the tool [Scene object properties→Common]. It is necessary

to set the properties "Collidable", "Measurable", "Detectable"

and "Renderable" active, as shown in Fig. 26.

Fig. 26. Special properties of objects

For convenient display of the information received from

the sensor, let's add a dependency graph, which will be displayed

during modeling. Create the graph through the main menu

[Add → Graph], go to its properties and select "Add new data

stream to record". In "Data stream type" select "Various:

user-defined", and in "Object/items to record" select "User data"

and click "OK".

Let's proceed to the program part. Having selected the base

of the robot in the scene hierarchy, select [Add → Associated

child script → Non threaded] in the main menu. The script icon

will appear opposite the name, double-clicking on it opens

the script editing mode.

The following is a manipulator control script that was

implemented by one of the students. The script is far from optimal

both in terms of programming and implementation of the control

algorithm. The presented script is also universal, since

many parameters depend on the dimensions and features

of the manipulator. The algorithm searches for and attempts

to bring the end link to a cube of red color. Cubes of other colors

will be ignored by the manipulator.

Fig. 27. Initialization block of the final script

148 IAPGOŚ 2/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

Fig. 28. Control code block

Running the simulation.

Fig. 29. Result of modeling the manipulator

In order to save the manipulator as a whole model, it is enough

to additionally set "Object is model base" in the properties

of the base object (manipulator base) (Fig. 30).

Fig. 30. Manipulator base properties window, "Model definition" section

3. Conclusion

Modeling plays an important role in the development

of robotics. It allows us to create virtual robot models

and test them in different scenarios without the need for physical

implementation. It saves time and resources and also allows

us to study and optimize the behavior of robots before their

physical implementation.

The V-REP program uses the main approaches for modeling

the dynamics of robots, as well as the Newton-Euler method,

which is used to calculate the dynamics. The development process

is non-linear, and a good computer simulation environment avoids

many problems at an early stage, allowing to test both individual

robot units and simplified models implementing individual

functions.

In this paper, the basics of modeling robotic systems in V-REP

(Virtual Robotics Experimentation Platform) software, developed

by Coppelia Robotics and distributed freely under a free license

for educational purposes, were discussed in detail. The basic

approaches for creating simulations of the main types of robotic

systems are considered.

Reference

[1] ABB Robotic Studio software documentation

[http://developercenter.robotstudio.com/].

[2] Documentation for Lua developers. [http://www.lua.ru/doc/].

[3] Documentation of the open library of motion planning.

[http://ompl.kavrakilab.org].

[4] Kolyubin S. A.: Dynamics of robotic systems. ITMO University, 2017.

[5] Kolyubin S.: Modelling Metallic Shell. Robot modelling tools. Control

Engineering Russia 4(52), 2014.

[6] List of V-REP regular functions with detailed description.

[http://www.coppeliarobotics.com/helpFiles/en/apiFunctionListCategory.htm]

[7] Monitoring the development of educational robotics and IT-education in the city

of Moscow. Publishing Center ANO AIR Moscow 2017.

[8] Sorokin S. V., Soldatenko I. S.: Fundamentals of development and programming

of robotic systems. Tver 2017.

[9] The official website of the Gazebo developers. [http://gazebosim.org].

[10] The official website of the V-REP developers. [http://coppeliarobotics.com/].

[11] Zhurbenko P. A., Guznenkov V. N., Bondareva T. P.: SolidWorks 2016. Three-

dimensional modeling of parts and execution of electronic drawings. Tutorial.

Ph.D. Laura Yesmakhanova

e-mail: laura060780@mail.ru

Yesmakhanova Laura – graduate of the doctoral

program of the Lublin University of Technology.

Currently, she works as an associate professor at Taraz

Regional University at the Department of Automation

and Telecommunications. She is the author and co-

author of several scientific publications in the field

of the use of optoelectronic components in automated

control systems and fiber-optic communication lines.

https://orcid.org/0000-0002-3308-9676

