
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2024 115

artykuł recenzowany/revised paper IAPGOS, 1/2024, 115–118

http://doi.org/10.35784/iapgos.5858 received: 02.02.2024 | revised: 20.02.2024 | accepted: 18.03.2024 | available online: 31.03.2024

RUNNING A WORKFLOW WITHOUT WORKFLOWS: A BASIC

ALGORITHM FOR DYNAMICALLY CONSTRUCTING AND TRAVERSING

AN IMPLIED DIRECTED ACYCLIC GRAPH IN A NON-DETERMINISTIC

ENVIRONMENT

Fedir Smilianets, Oleksii Finogenov
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

Abstract. This paper introduces a novel algorithm for dynamically constructing and traversing Directed Acyclic Graphs (DAGs) in workflow systems,
particularly targeting distributed computation and data processing domains. Traditional workflow management systems rely on explicitly defined, rigid

DAGs, which can be cumbersome to maintain, especially in response to frequent changes or updates in the system. Our proposed algorithm circumvents

the need for explicit DAG construction, instead opting for a dynamic approach that iteratively builds and executes the workflow based on available data
and operations, through a combination of entities like Data Kinds, Operators, and Data Units, the algorithm implicitly forms a DAG, thereby simplifying

the process of workflow management. We demonstrate the algorithm’s functionality and assess its performance through a series of tests in a simulated

environment. The paper discusses the implications of this approach, especially focusing on cycle avoidance and computational complexity, and suggests
future enhancements and potential applications.

Keywords: distributed computing, directed acyclic graph, pipeline processing

OBLICZANIE PRZEPŁYWÓW PRACY BEZ PRZEPŁYWÓW PRACY: PODSTAWOWY

ALGORYTM DYNAMICZNEGO KONSTRUOWANIA I PRZESZUKIWANIA NIEJAWNEGO

SKIEROWANEGO GRAFU ACYKLICZNEGO W ŚRODOWISKU NIEDETERMINISTYCZNYM

Streszczenie. W artykule przedstawiono nowy algorytm dynamicznego konstruowania i przejść skierowanych grafów acyklicznych (DAG) w systemach

zarządzania przepływem pracy, w szczególności tych ukierunkowanych na domeny obliczeń rozproszonych i przetwarzania danych. Tradycyjne systemy
zarządzania przepływem pracy opierają się na jawnie zdefiniowanych, sztywnych grafach DAG, które mogą być uciążliwe w utrzymaniu, zwłaszcza

w odpowiedzi na częste zmiany lub aktualizacje systemu. Proponowany algorytm pozwala uniknąć konieczności jawnego konstruowania SAG, zamiast tego

wybierając dynamiczne podejście, które iteracyjnie buduje i wykonuje przepływy pracy w oparciu o dostępne dane i operacje. Korzystając z kombinacji
jednostek, takich jak typ danych, operator i element danych, algorytm niejawnie buduje DAG, upraszczając w ten sposób proces zarządzania przepływami

pracy. Demonstrujemy funkcjonalność algorytmu i oceniamy jego wydajność za pomocą serii testów w symulowanym środowisku. W artykule omówiono

implikacje tego podejścia, ze szczególnym uwzględnieniem unikania pętli i złożoności obliczeniowej, a także zasugerowano dalsze ulepszenia i potencjalne
zastosowania.

Słowa kluczowe: obliczenia rozproszone, skierowane grafy acykliczne, potokowe przetwarzanie danych

Introduction

Workflows, pipelines and systems enabling them are

a mainstay of many different areas involving distributed

computation and data processing. Primarily, the systems

in question are based on Directed Acyclic Graphs, which in this

domain represent activities and order-of-operations relationships

between them. Thus, the graph of the workflow or a pipeline

needs to be directed to maintain the order of operations,

and acyclic to not cause an endless loop of computation.

In common workflow management systems the DAGs

are explicit, rigid, developed and maintained by the operator

of the system, which results in painstaking and meticulous

development, maintenance and update process. An extreme

scenario of that might be when a component commonly used

in the pipelines receives a breaking change, rising a need

to address the breaking change in every pipeline.

Thus, operator-defined DAG workflow runners, while

gracefully solving tasks they are intended for, impose a non-

insignificant burden, which should be considered and addressed

when designing, maintaining and improving applications that rely

on those systems.

This paper explores the possibility to execute workflows

without actually defining and maintaining directed acyclic graphs

by dynamically constructing and traversing a Directed Acyclic

Graph from a set of defined Operators with defined input

and output Data Kinds.

While exploring and constructing DAGs in an automated way

is frequently done in various domains, like cumulative risk

assessment [1] as well as epidemiology [4], the attention of these

researches is mostly driven towards causal inference and evidence

synthesis, which is an environment principally different

from workflow construction and execution, since causal graphs

are mainly a statistics tool.

1. Algorithm description

1.1. Conceptual overview

The main goal of the proposed algorithm is to enable a way

of dynamically constructing and traversing a Directed Acyclic

Graph using user defined data types and operations available

on those, with the possibility for the operations to be non-

deterministic in regards to their outputs, so that the operator could

return all, some or none of its possible output types, and output

them in any quantity desired. The traversal should be seeded

by a set of input data marked with their corresponding types,

and the algorithm should then be able to iterate over the data,

and the provided operators until it exhausts all calculations

possible with the input data, data returned by all executed

operators and all available operators. The proposed algorithm

should also be able to detect and avoid cycles so that the users

of the envisioned system using this algorithm would

be safeguarded against endless cyclic calculations and equipment

and maintenance time required to prevent, detect and stop those.

To achieve the goals and requirements established, presented

algorithm is designed around working with several primary

entities, which together are used to give a complete description

of a given execution with a set of given input, intermediary

and output data:

 Data Kind is a semantic label that is used to annotate

the required inputs of a given Operator, and any data that

exists within the scope of a given execution. It should also

be stated that the algorithm described here is not concerned

with data validation, so Data Kinds are merely labels.

One should conceptualize those as Types in Charles Sanders

Peirce’s Type-Token distinction.

 Operator is an atomic operation over a set of strictly defined

inputs of various Data Kinds, and may or may not output a set

komad
Stempel

116 IAPGOŚ 1/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

of outputs of arbitrary Kinds. Neither the size nor the Kind

labels of the outputs of a given operator are deterministic

from the perspective of the algorithm described here.

 Data Unit is a piece of data. If Data Kinds are Peirce’s Types,

then Data Units are Tokens. A given Data Unit consists

of a Data Kind label for the item, a reference to a file

containing said data, and an ancestry list, which describes

the sequence of Operators which resulted in the existence

of this Data Unit.

 Step is an execution of a given Operator with Data Units

matched to the inputs of an Operator.

Evidently, this set of entities does not describe a Directed

Acyclic Graph explicitly, instead opting for entities that are easy

to describe and maintain for the user of the envisioned system

exploiting proposed algorithm, thus the DAG exists from

the combination of these entities implicitly, rather than explicitly,

although it is possible to reconstruct it from these entities

for visualization purposes.

1.2. Algorithm details

For convenience, the algorithm is split into several functions.

In the following pseudocode, O is the set of all Operators

in the system, K is the set of all Data Kinds, S is the set

of all computed steps in a given execution, U is the set of all Data

Units (input and output to the Operators) in a given execution.

Algorithm 1 describes the general order of operations

of the proposed algorithm’s environment. On each turn, we solve

the next steps using the current Data Pool U, and execute those to

get new Data Units to add to U for the next turn of computations.

It should also be mentioned that the main loop does not

necessarily need to wait for all the computed steps to finish until

solving the next turn of new steps. To cut out the wait time

on longer operators, we suggest implementing this in a way

that would compute the next steps every time at least one

of the operators finishes executing. Since both the wait time

optimization, and the pseudocode for the ExecuteSteps

function are somewhat implementation specific and don’t

constitute the main proposal of this paper – we will omit them

here.

Algorithm 1: Main loop

Data: O, K, U satisfying ∀u ∈ U, u.dataKind ∈ K containing input data

provided by user

Result: U containing results of exhaustive computation with o ∈ O.

start:

S ← ∅;
repeat

 N ← SolveTurn(O,K,S,U);

 if N ≠ ∅ then

 U ← U ∪ ExecuteSteps(N,U);

 S ← S ∪ N;

 end

until N ≠ ∅
end

Function SolveTurn(O, K, S, U):
/* Get those operators, whose input kinds are satisfied with at least one

unit in execution’s data pool */

 O1 ← GetAvailableOperators(O, U);

 opsWithInputOptions ← map o ∈ O with

 SelectOperatorInputs(o, U);

 if opsWithInputOptions = ∅ then

 return ∅;
 end
/* Per operator, make a cartesian product of all available units per input

to create suitable sets of inputs that would constitute a Step to execute */

opsWithInputCombinations ← map
opsWithSatisfiedInputs with f(o) =

(operator:o.operator, inputCombinations:
{i1…in ∈ o.unitsPerInput|i1 × i2 × … × in});

 newSteps ← ∅;

 foreach o ∈ opsWithInputCombinations do

 foreach i ∈ o.inputCombinations do
 if

i does not contain duplicate units
then

 append (operator:o, input:i) to

 availableNewSteps;
 end

 end

 end

 N ← {n ∈ newSteps | n ∉ S};

 return N

Function GetAvailableOperators(O,U):

 kindsPresent ← map u ∈ U to u.dataKind;
 return

{o ∈ O| o.inputDataKinds ⊆ kindsPresent};
Function SelectOperatorInputs(o,U):

 matchingDataUnits ← 𝑓ilter U for u ∈ U,
 u.dataKind ∈ o.inputDataKinds;

 unitsPerInput ← empty Map;

 foreach input ∈ o.inputs do

 unitsPerInput[input.name] ←

empty List;

 foreach unit ∈ matchingDataUnits do

 if unit.dataKind = input.dataKind

 and ¬o.name ∈ unit.ancestors then

 append unit.id to

 unitsPerInput[input.name];
 end

 end

 end

 return (operator, unitsPerInput);

Function SolveTurn in Algorithm 1 contains the main order

of operations of proposed solution to the problem of discovery

and traversal of an implied Directed Acyclic Graph. The turn

is solved by first figuring out the operators that have the necessary

inputs to be executed – so that each of the inputs has at least

one Data Unit in the pool that matches the input’s data kind. After

that what we have is a set of data units per input satisfying

operator’s requirements. To produce a set of viable next steps

to execute we need to transform the sets of units per operator into

set of pairings, where the operator is paired with one data unit

per input. Since we need to exhaust all possible ways to compute

a given operator with given inputs, we accomplish that

transformation with a cartesian product of N sets, where N

is the amount of inputs of the operator. Once we have the steps

we can attempt, the only thing left is to filter out those operator-

units pairs which have not been yet executed.

By doing so, each time the Data Pool is appended with new

Units we still retry all possible combinations. If we went the way

of only checking the new Unit Kinds for possible operators,

we would miss executing the operators that had part of their inputs

satisfied with input data of the execution, part with (N-1)-th turn,

and part with N-th turn.

2. Experimental setup

To test the robustness of this algorithm in a semi-realistic

scenario, a test bench was devised. This test bench would

randomly generate 50 data kinds and 25 operators. Operators

are randomly generated to have 1-4 inputs. These inputs can

be either from the starting or middle third of the Data Kind array,

to facilitate formation of longer executions. The execution is then

seeded with three Data Units. After each pass, a random amount

of Data Units ranging from 0 to twice the amount of produced

valid next steps would be added to the data pool as descendant

from random steps to simulate random operator outputs.

The algorithm was implemented in TypeScript, and executed

as part of an HTTP server on a GKE non-Autopilot cluster with

one node. Time was measured using performance.now()

precision timing API. This implementation showed adequate

results – 0.5–1 ms for executions with <5 turns and <10 steps,

4–8 ms for executions with <5 turns and <50 executed steps

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2024 117

and 15–30 ms for executions with <15 turns and <50 executed

steps. Time taken on this scale can be considered negligible

when compared to time which would be spent by the system

to spawn, prepare and execute Kubernetes jobs or other ways

of executing operators.

3. Discussion

3.1. Cycle avoidance

Cycle avoidance in this approach is guaranteed by only

suggesting units to operator inputs that do not have this operator

in their ancestry. While in this basic approach it is suggested

to only keep operators in the ancestry, it might be beneficial to

track the ancestry unit-wise as well, which would enable the users

of the system exploiting this algorithm to run an execution on a set

of different datas of same type and still be able to track down

which results were achieved from which input data, which while

not good practice, is something that could be expected from real

world use.

Another problem of cycle avoidance in this algorithm

is the case of a hypothetical operator 𝑋 taking units of kinds 𝐴

and 𝐵 as inputs, and providing 𝐴 as the output. Currently,

as illustrated by figure 1, if the operator 𝑋 took 𝐴1 and 𝐵1,

and produced 𝐴2, and, by addition from the user or from some

other operator, data unit 𝐵2 would then appear, operator 𝑋 would

only be re-run with 𝐴1 and 𝐵2 as it’s inputs, while in a theoretical

scenario it might be beneficial to run 𝑋 with 𝐴2 and 𝐵2 as well,

despite 𝐴2 being produced by operator 𝑋 itself, as illustrated

by figure 2.

Fig. 1. Current solution to the hypothetical operator X scenario

Fig. 2. Possible solution to the hypothetical operator X scenario

While it’s assumed a described scenario is highly unlikely,

it could be argued that a use case described in Fig. 2 is a more

correct way to solve such a theoretical scenario.

3.2. Complexity

The complexity of presented algorithm is hard to point

out precisely due to the nature of processing several entities

at the same time and spawning new entities during the process,

but we can still analyse some of the aspects of it.

The theoretical narrow point of presented algorithm

is the computation of the cartesian product of sets of data units

per operator input, which has a complexity of 𝑂(2𝑛) with 𝑛 being

the number of operator inputs per specific operator. While 𝑂(2𝑛)

a horrible complexity, we consider that it’s highly unlikely

this will be a problem in the real world usage scenarios, since

an operator with hundreds of inputs is quite hard to imagine

and justify.

From the perspective of operator count (𝑛) and data unit (𝑚)

count the complexity of this algorithm can be described as 𝑂(𝑛𝑚).

3.3. Running at scale

While the pseudocode provided, and the preliminary

implementation of this algorithm are designed and presented

from a perspective of a central service which would orchestrate

the computation, it is obvious that there are uses and scenarios

where one service would not be enough to handle the amount

of data flowing through it.

From our perspective, this algorithm can also be implemented

in a decentralised and distributed manner by utilizing Pub/Sub [3]

or other distributed communication model based tools to trigger

both operator execution and the solution for the next possible

steps. Given that operator executors and the solvers will

be implemented in a stateless manner themselves, instead

outsourcing state and data handling to other distributed systems,

there should be no problems employing this approach

in a decentralised manner.

3.4. Future work and potential applications

The presented algorithm is a basic attempt at the described

problem. While it is a solution, there most probably are at least

slightly better ways to compute an implied DAG in such a manner,

from adding more features and possible nodes to the graph by

implementing a more thought-through version of cycle avoidance,

to optimizations in ways the operators, data units and possible

next steps are filtered down to produce valid next steps not

executed before.

The algorithm presented is intended to be used in software

requiring automated workflow management systems as a

replacement or a complement for CWL, Nextflow and other

similar systems commonly used in data engineering pipelines

and bioinformatical/biostatistical computations [5, 6], as well

as for running data through neural networks [2]. While it is

obvious this approach would not be a replacement for a significant

majority of use-cases of workflow systems in general,

the utilization of this algorithm in an envisioned system

is predicted to enable easier development of prototypes and small-

scale systems for scientific and bioinformatical computations

relying on data pipelines with lots of common components

by cutting down the time and effort spent on development

and maintenance of pipelines. We see the presented approach

as being especially valuable in circumstances with constantly

changing requirements that grow from the new and new

opportunities discovered during the process of developing with the

suggested approach.

Designed around non-deterministic outputs, the presented

algorithm also allows flexible and effortless branching

and expansion in a way that is not possible with CWL. Figure 3

describes a use case for a workflow system employing presented

algorithm to run three-dimensional CT scan analysis.

Fig. 3. Usage scenario for CT scan analysis

In this scenario, usable slice extractor would, for example,

filter out the slices which contain the area of interest – for

example, lungs in chest CT imaging, and pass them on to other

analyzers. As it’s impossible to predict how many slices would

be actually containing the area of interest due to inherent variety

in human bodies, the extractor would output an unpredictable

118 IAPGOŚ 1/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

amount of Data Units, for each of which the system will

automatically find and execute the according analysis operators.

The system would also allow easy extensibility with additional

three- and two-dimensional analyzers.

4. Conclusion

An algorithm for dynamic construction and traversal

of a workflow DAG was presented, with an aim to reduce user

effort in developing and maintaining workflows. The described

algorithm iterates over data and operators in the system, selecting

possible to run data-operator combinations on each step

of the algorithm until there is no more data-operator pairings

possible and not previously executed. The algorithm also avoids

cyclic computations, although in a way which would not allow

some theoretical uses. Experimental results indicate that

the algorithm is robust and avoids stalling and endless

computation and is able to generate and execute complex

workflows, supporting operators with uncertain outputs.

While the computation complexity of parts of this algorithm

are not ideal, practical implications of it seem insignificant

in real world situations. Future work will focus on refining cycle

avoidance mechanisms, optimizing performance, and development

of a Kubernetes-based system utilizing the presented algorithm.

Acknowledgements

Special thanks to Anton Shpigunov, Radek Janik, and Anton

Zhdan-Pushkin for their valuable perspectives and insights

during the development of the algorithm and the writing

of this paper. Their contributions were instrumental in shaping

both the technical and narrative aspects of this work.

References

[1] Brewer L. E. et al.: Causal inference in cumulative risk assessment: The roles

of directed acyclic graphs. Environment International 102, 2017, 30–41

[https://doi.org/https://doi.org/10.1016/j.envint.2016.12.005].

[2] Colonnelli I. et al.: Bringing AI pipelines onto cloud-HPC: setting a baseline

for accuracy of COVID-19 diagnosis. ENEA CRESCO in the Fight Against

COVID-19, 2021, 66–73 [https://doi.org/10.5281/ZENODO.5151511].

[3] Eugster P. Th. et al.: The many faces of publish/subscribe. ACM Comput.

Surv. 35(2), 2003, 114–131.

[4] Ferguson K. D. et al.: Evidence synthesis for constructing directed acyclic

graphs (ESC-DAGs): a novel and systematic method for building directed

acyclic graphs. International Journal of Epidemiology 49(1), 2019, 322–329

[https://doi.org/10.1093/ije/dyz150].

[5] Georgeson P. et al.: Bionitio: demonstrating and facilitating best practices

for bioinformatics command-line software. GigaScience 8(9), 2019, giz109

[https://doi.org/10.1093/gigascience/giz109].

[6] Jackson M. et al.: Using prototyping to choose a bioinformatics workflow

management system. PLOS Computational Biology 17(2), 2021.

M.Sc. Fedir Smilianets

e-mail: fedor.smile@gmail.com

Fedir Smilianets received his M.Sc. from National

Tecnhical University of Ukraine "Igor Sikorsky

Polytechnic Institute". Since 2021, he is a Ph.D.

student at the department of Computer Science

and Software Engineering, also working as a teaching

assistant there since 2023.

His research interests include machine learning

and systems for data processing in the cloud.

https://orcid.org/0000-0002-0061-7479

Ph.D. Oleksii Finogenov

e-mail: fenyatrashbox@gmail.com

Ph.D., docent at Department of Computer Science

and Software Engineering of National Technical

University of Ukraine "Igor Sikorsky Polytechnic

Institute".

Research interests include numerical analysis,

optimization methods, parallel computing, decision

making systems.

https://orcid.org/0000-0002-1708-5632

