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ALGORITHM FOR DYNAMICALLY CONSTRUCTING AND TRAVERSING 

AN IMPLIED DIRECTED ACYCLIC GRAPH IN A NON-DETERMINISTIC 

ENVIRONMENT  

Fedir Smilianets, Oleksii Finogenov 
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine 

Abstract. This paper introduces a novel algorithm for dynamically constructing and traversing Directed Acyclic Graphs (DAGs) in workflow systems, 
particularly targeting distributed computation and data processing domains. Traditional workflow management systems rely on explicitly defined, rigid 

DAGs, which can be cumbersome to maintain, especially in response to frequent changes or updates in the system. Our proposed algorithm circumvents 

the need for explicit DAG construction, instead opting for a dynamic approach that iteratively builds and executes the workflow based on available data 
and operations, through a combination of entities like Data Kinds, Operators, and Data Units, the algorithm implicitly forms a DAG, thereby simplifying 

the process of workflow management. We demonstrate the algorithm’s functionality and assess its performance through a series of tests in a simulated 

environment. The paper discusses the implications of this approach, especially focusing on cycle avoidance and computational complexity, and suggests 
future enhancements and potential applications. 
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OBLICZANIE PRZEPŁYWÓW PRACY BEZ PRZEPŁYWÓW PRACY: PODSTAWOWY 

ALGORYTM DYNAMICZNEGO KONSTRUOWANIA I PRZESZUKIWANIA NIEJAWNEGO 

SKIEROWANEGO GRAFU ACYKLICZNEGO W ŚRODOWISKU NIEDETERMINISTYCZNYM 

Streszczenie. W artykule przedstawiono nowy algorytm dynamicznego konstruowania i przejść skierowanych grafów acyklicznych (DAG) w systemach 

zarządzania przepływem pracy, w szczególności tych ukierunkowanych na domeny obliczeń rozproszonych i przetwarzania danych. Tradycyjne systemy 
zarządzania przepływem pracy opierają się na jawnie zdefiniowanych, sztywnych grafach DAG, które mogą być uciążliwe w utrzymaniu, zwłaszcza 

w odpowiedzi na częste zmiany lub aktualizacje systemu. Proponowany algorytm pozwala uniknąć konieczności jawnego konstruowania SAG, zamiast tego 

wybierając dynamiczne podejście, które iteracyjnie buduje i wykonuje przepływy pracy w oparciu o dostępne dane i operacje. Korzystając z kombinacji 
jednostek, takich jak typ danych, operator i element danych, algorytm niejawnie buduje DAG, upraszczając w ten sposób proces zarządzania przepływami 

pracy. Demonstrujemy funkcjonalność algorytmu i oceniamy jego wydajność za pomocą serii testów w symulowanym środowisku. W artykule omówiono 

implikacje tego podejścia, ze szczególnym uwzględnieniem unikania pętli i złożoności obliczeniowej, a także zasugerowano dalsze ulepszenia i potencjalne 
zastosowania. 

Słowa kluczowe: obliczenia rozproszone, skierowane grafy acykliczne, potokowe przetwarzanie danych 

Introduction 

Workflows, pipelines and systems enabling them are 

a mainstay of many different areas involving distributed 

computation and data processing. Primarily, the systems 

in question are based on Directed Acyclic Graphs, which in this 

domain represent activities and order-of-operations relationships 

between them. Thus, the graph of the workflow or a pipeline 

needs to be directed to maintain the order of operations, 

and acyclic to not cause an endless loop of computation. 

In common workflow management systems the DAGs 

are explicit, rigid, developed and maintained by the operator 

of the system, which results in painstaking and meticulous 

development, maintenance and update process. An extreme 

scenario of that might be when a component commonly used 

in the pipelines receives a breaking change, rising a need 

to address the breaking change in every pipeline. 

Thus, operator-defined DAG workflow runners, while 

gracefully solving tasks they are intended for, impose a non-

insignificant burden, which should be considered and addressed 

when designing, maintaining and improving applications that rely 

on those systems. 

This paper explores the possibility to execute workflows 

without actually defining and maintaining directed acyclic graphs 

by dynamically constructing and traversing a Directed Acyclic 

Graph from a set of defined Operators with defined input 

and output Data Kinds. 

While exploring and constructing DAGs in an automated way 

is frequently done in various domains, like cumulative risk 

assessment [1] as well as epidemiology [4], the attention of these 

researches is mostly driven towards causal inference and evidence 

synthesis, which is an environment principally different 

from workflow construction and execution, since causal graphs 

are mainly a statistics tool. 

1. Algorithm description 

1.1. Conceptual overview 

The main goal of the proposed algorithm is to enable a way 

of dynamically constructing and traversing a Directed Acyclic 

Graph using user defined data types and operations available 

on those, with the possibility for the operations to be non-

deterministic in regards to their outputs, so that the operator could 

return all, some or none of its possible output types, and output 

them in any quantity desired. The traversal should be seeded 

by a set of input data marked with their corresponding types, 

and the algorithm should then be able to iterate over the data, 

and the provided operators until it exhausts all calculations 

possible with the input data, data returned by all executed 

operators and all available operators. The proposed algorithm 

should also be able to detect and avoid cycles so that the users 

of the envisioned system using this algorithm would 

be safeguarded against endless cyclic calculations and equipment 

and maintenance time required to prevent, detect and stop those. 

To achieve the goals and requirements established, presented 

algorithm is designed around working with several primary 

entities, which together are used to give a complete description 

of a given execution with a set of given input, intermediary 

and output data: 

 Data Kind is a semantic label that is used to annotate 

the required inputs of a given Operator, and any data that 

exists within the scope of a given execution. It should also 

be stated that the algorithm described here is not concerned 

with data validation, so Data Kinds are merely labels. 

One should conceptualize those as Types in Charles Sanders 

Peirce’s Type-Token distinction. 

 Operator is an atomic operation over a set of strictly defined 

inputs of various Data Kinds, and may or may not output a set 
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of outputs of arbitrary Kinds. Neither the size nor the Kind 

labels of the outputs of a given operator are deterministic 

from the perspective of the algorithm described here. 

 Data Unit is a piece of data. If Data Kinds are Peirce’s Types, 

then Data Units are Tokens. A given Data Unit consists 

of a Data Kind label for the item, a reference to a file 

containing said data, and an ancestry list, which describes 

the sequence of Operators which resulted in the existence 

of this Data Unit. 

 Step is an execution of a given Operator with Data Units 

matched to the inputs of an Operator. 

 

Evidently, this set of entities does not describe a Directed 

Acyclic Graph explicitly, instead opting for entities that are easy 

to describe and maintain for the user of the envisioned system 

exploiting proposed algorithm, thus the DAG exists from 

the combination of these entities implicitly, rather than explicitly, 

although it is possible to reconstruct it from these entities 

for visualization purposes. 

1.2. Algorithm details 

For convenience, the algorithm is split into several functions. 

In the following pseudocode, O is the set of all Operators 

in the system, K is the set of all Data Kinds, S is the set 

of all computed steps in a given execution, U is the set of all Data 

Units (input and output to the Operators) in a given execution. 

Algorithm 1 describes the general order of operations 

of the proposed algorithm’s environment. On each turn, we solve 

the next steps using the current Data Pool U, and execute those to 

get new Data Units to add to U for the next turn of computations. 

It should also be mentioned that the main loop does not 

necessarily need to wait for all the computed steps to finish until 

solving the next turn of new steps. To cut out the wait time 

on longer operators, we suggest implementing this in a way 

that would compute the next steps every time at least one 

of the operators finishes executing. Since both the wait time 

optimization, and the pseudocode for the ExecuteSteps 

function are somewhat implementation specific and don’t 

constitute the main proposal of this paper – we will omit them 

here. 

 

Algorithm 1: Main loop 

Data: O, K, U satisfying ∀u ∈ U, u.dataKind ∈  K containing input data 

provided by user 

Result: U containing results of exhaustive computation with o ∈ O. 

start: 

 

S ← ∅; 
repeat 

 N ← SolveTurn(O,K,S,U); 

 if N ≠ ∅ then 

  U ← U ∪ ExecuteSteps(N,U); 

  S ← S ∪ N; 

 end 

until N ≠ ∅ 
end 

 

Function SolveTurn(O, K, S, U): 
/* Get those operators, whose input kinds are satisfied with at least one 

unit in execution’s data pool */ 

 O1 ← GetAvailableOperators(O, U); 

 opsWithInputOptions ← map o ∈ O with 

  SelectOperatorInputs(o, U); 

 if opsWithInputOptions = ∅ then 

  return ∅; 
 end 
/* Per operator, make a cartesian product of all available units per input 

to create suitable sets of inputs that would constitute a Step to execute */ 

opsWithInputCombinations ← map  
opsWithSatisfiedInputs with f(o) = 

(operator:o.operator, inputCombinations:  
{i1…in ∈ o.unitsPerInput|i1 × i2 × … × in}); 

 newSteps ← ∅; 

 foreach o ∈ opsWithInputCombinations do 

  foreach i ∈ o.inputCombinations do 
   if  

i does not contain duplicate units 
then 

    append (operator:o, input:i) to 

     availableNewSteps; 
   end 

  end 

 end 

 N ← {n ∈ newSteps | n ∉ S}; 

 return N 

Function GetAvailableOperators(O,U): 

 kindsPresent ← map u ∈ U to u.dataKind; 
 return 

{o ∈ O| o.inputDataKinds ⊆ kindsPresent}; 
Function SelectOperatorInputs(o,U): 

 matchingDataUnits ← 𝑓ilter U for u ∈ U, 
  u.dataKind ∈ o.inputDataKinds; 

 unitsPerInput ← empty Map; 

 foreach input ∈ o.inputs do 

  unitsPerInput[input.name] ← 

empty List; 

  foreach unit ∈ matchingDataUnits do 

   if unit.dataKind = input.dataKind 

    and ¬o.name ∈ unit.ancestors then 

    append unit.id to 

     unitsPerInput[input.name]; 
   end 

  end 

 end 

 return (operator, unitsPerInput);  

 

Function SolveTurn in Algorithm 1 contains the main order 

of operations of proposed solution to the problem of discovery 

and traversal of an implied Directed Acyclic Graph. The turn 

is solved by first figuring out the operators that have the necessary 

inputs to be executed – so that each of the inputs has at least 

one Data Unit in the pool that matches the input’s data kind. After 

that what we have is a set of data units per input satisfying 

operator’s requirements. To produce a set of viable next steps 

to execute we need to transform the sets of units per operator into 

set of pairings, where the operator is paired with one data unit 

per input. Since we need to exhaust all possible ways to compute 

a given operator with given inputs, we accomplish that 

transformation with a cartesian product of N sets, where N 

is the amount of inputs of the operator. Once we have the steps 

we can attempt, the only thing left is to filter out those operator-

units pairs which have not been yet executed. 

By doing so, each time the Data Pool is appended with new 

Units we still retry all possible combinations. If we went the way 

of only checking the new Unit Kinds for possible operators, 

we would miss executing the operators that had part of their inputs 

satisfied with input data of the execution, part with (N-1)-th turn, 

and part with N-th turn. 

2. Experimental setup 

To test the robustness of this algorithm in a semi-realistic 

scenario, a test bench was devised. This test bench would 

randomly generate 50 data kinds and 25 operators. Operators 

are randomly generated to have 1-4 inputs. These inputs can 

be either from the starting or middle third of the Data Kind array, 

to facilitate formation of longer executions. The execution is then 

seeded with three Data Units. After each pass, a random amount 

of Data Units ranging from 0 to twice the amount of produced 

valid next steps would be added to the data pool as descendant 

from random steps to simulate random operator outputs. 

The algorithm was implemented in TypeScript, and executed 

as part of an HTTP server on a GKE non-Autopilot cluster with 

one node. Time was measured using performance.now() 

precision timing API. This implementation showed adequate 

results – 0.5–1 ms for executions with <5 turns and <10 steps, 

4–8 ms for executions with <5 turns and <50 executed steps 
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and 15–30 ms for executions with <15 turns and <50 executed 

steps. Time taken on this scale can be considered negligible 

when compared to time which would be spent by the system 

to spawn, prepare and execute Kubernetes jobs or other ways 

of executing operators. 

3. Discussion 

3.1. Cycle avoidance 

Cycle avoidance in this approach is guaranteed by only 

suggesting units to operator inputs that do not have this operator 

in their ancestry. While in this basic approach it is suggested 

to only keep operators in the ancestry, it might be beneficial to 

track the ancestry unit-wise as well, which would enable the users 

of the system exploiting this algorithm to run an execution on a set 

of different datas of same type and still be able to track down 

which results were achieved from which input data, which while 

not good practice, is something that could be expected from real 

world use. 

Another problem of cycle avoidance in this algorithm 

is the case of a hypothetical operator 𝑋 taking units of kinds 𝐴 

and 𝐵 as inputs, and providing 𝐴 as the output. Currently, 

as illustrated by figure 1, if the operator 𝑋 took 𝐴1 and 𝐵1, 

and produced 𝐴2, and, by addition from the user or from some 

other operator, data unit 𝐵2 would then appear, operator 𝑋 would 

only be re-run with 𝐴1 and 𝐵2 as it’s inputs, while in a theoretical 

scenario it might be beneficial to run 𝑋 with 𝐴2 and 𝐵2 as well, 

despite 𝐴2 being produced by operator 𝑋 itself, as illustrated 

by figure 2. 

 

Fig. 1. Current solution to the hypothetical operator X scenario 

 

Fig. 2. Possible solution to the hypothetical operator X scenario 

While it’s assumed a described scenario is highly unlikely, 

it could be argued that a use case described in Fig. 2 is a more 

correct way to solve such a theoretical scenario. 

3.2. Complexity 

The complexity of presented algorithm is hard to point 

out precisely due to the nature of processing several entities 

at the same time and spawning new entities during the process, 

but we can still analyse some of the aspects of it. 

The theoretical narrow point of presented algorithm 

is the computation of the cartesian product of sets of data units 

per operator input, which has a complexity of 𝑂(2𝑛) with 𝑛 being 

the number of operator inputs per specific operator. While 𝑂(2𝑛) 

a horrible complexity, we consider that it’s highly unlikely 

this will be a problem in the real world usage scenarios, since 

an operator with hundreds of inputs is quite hard to imagine 

and justify. 

From the perspective of operator count (𝑛) and data unit (𝑚) 

count the complexity of this algorithm can be described as 𝑂(𝑛𝑚). 

3.3. Running at scale 

While the pseudocode provided, and the preliminary 

implementation of this algorithm are designed and presented 

from a perspective of a central service which would orchestrate 

the computation, it is obvious that there are uses and scenarios 

where one service would not be enough to handle the amount 

of data flowing through it. 

From our perspective, this algorithm can also be implemented 

in a decentralised and distributed manner by utilizing Pub/Sub [3] 

or other distributed communication model based tools to trigger 

both operator execution and the solution for the next possible 

steps. Given that operator executors and the solvers will 

be implemented in a stateless manner themselves, instead 

outsourcing state and data handling to other distributed systems, 

there should be no problems employing this approach 

in a decentralised manner. 

3.4. Future work and potential applications 

The presented algorithm is a basic attempt at the described 

problem. While it is a solution, there most probably are at least 

slightly better ways to compute an implied DAG in such a manner, 

from adding more features and possible nodes to the graph by 

implementing a more thought-through version of cycle avoidance, 

to optimizations in ways the operators, data units and possible 

next steps are filtered down to produce valid next steps not 

executed before. 

The algorithm presented is intended to be used in software 

requiring automated workflow management systems as a 

replacement or a complement for CWL, Nextflow and other 

similar systems commonly used in data engineering pipelines 

and bioinformatical/biostatistical computations [5, 6], as well 

as for running data through neural networks [2]. While it is 

obvious this approach would not be a replacement for a significant 

majority of use-cases of workflow systems in general, 

the utilization of this algorithm in an envisioned system 

is predicted to enable easier development of prototypes and small-

scale systems for scientific and bioinformatical computations 

relying on data pipelines with lots of common components 

by cutting down the time and effort spent on development 

and maintenance of pipelines. We see the presented approach 

as being especially valuable in circumstances with constantly 

changing requirements that grow from the new and new 

opportunities discovered during the process of developing with the 

suggested approach.  

Designed around non-deterministic outputs, the presented 

algorithm also allows flexible and effortless branching 

and expansion in a way that is not possible with CWL. Figure 3 

describes a use case for a workflow system employing presented 

algorithm to run three-dimensional CT scan analysis. 

 

Fig. 3. Usage scenario for CT scan analysis 

In this scenario, usable slice extractor would, for example, 

filter out the slices which contain the area of interest – for 

example, lungs in chest CT imaging, and pass them on to other 

analyzers. As it’s impossible to predict how many slices would 

be actually containing the area of interest due to inherent variety 

in human bodies, the extractor would output an unpredictable 
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amount of Data Units, for each of which the system will 

automatically find and execute the according analysis operators. 

The system would also allow easy extensibility with additional 

three- and two-dimensional analyzers. 

4. Conclusion 

An algorithm for dynamic construction and traversal 

of a workflow DAG was presented, with an aim to reduce user 

effort in developing and maintaining workflows. The described 

algorithm iterates over data and operators in the system, selecting 

possible to run data-operator combinations on each step 

of the algorithm until there is no more data-operator pairings 

possible and not previously executed. The algorithm also avoids 

cyclic computations, although in a way which would not allow 

some theoretical uses. Experimental results indicate that 

the algorithm is robust and avoids stalling and endless 

computation and is able to generate and execute complex 

workflows, supporting operators with uncertain outputs. 

While the computation complexity of parts of this algorithm 

are not ideal, practical implications of it seem insignificant 

in real world situations. Future work will focus on refining cycle 

avoidance mechanisms, optimizing performance, and development 

of a Kubernetes-based system utilizing the presented algorithm. 
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