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Abstract. In agricultural soil analysis, the challenge of soil salinization in regions like Krishna District, Andhra Pradesh, profoundly impacts soil health, 
crop yield, and land usability, affecting approximately 77,598 hectares of land. To address this issue, three machine learning algorithms are compared 

for classifying salinity levels in the coastal area of Krishna district, Machilipatnam. This study utilizes Landsat-8 images from 2014 to 2021, correcting 

for cloud cover and creating a true-color composite. The study area is defined and visualized. Twelve indices, derived from Landsat imagery, 
are incorporated into the analysis. These indices, including spectral bands and mathematical expressions, are added as image bands. The median of these 

indices is calculated, and sample points representing both non-saline and saline areas are used for supervised machine learning. The data is divided 

into two sets: training and validation. The study evaluates Random Forest, Classification and Regression Trees, and Support Vector Machines 
for classifying soil salinity levels using these indices. The RF algorithm produced an accuracy of 92.1%, CART produced 91.3%, and SVM produced 86%. 

Results are displayed on the map, representing predicted salinity levels with distinct colors. Performance metrics are evaluated, and they assess algorithm 

performance. The research involved gives insights into the classification of soil salinity using machine learning, which could represent an efficient solution 

to the problem of soil salinization in Machilipatnam. 
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IDENTYFIKACJA GLEB ZASOLONYCH W STREFIE PRZYBRZEŻNEJ DYSTRYKTU KRISHNA, 

ANDHRA PRADESH, Z WYKORZYSTANIEM DANYCH TELEDETEKCYJNYCH I TECHNIK 

UCZENIA MASZYNOWEGO 

Streszczenie. W rolniczej analizie gleby, wyzwanie zasolenia gleby w regionach takich jak dystrykt Krishna, Andhra Pradesh, głęboko wpływa na zdrowie 
gleby, plony i użyteczność gruntów, wpływając na około 77 598 hektarów ziemi. Aby rozwiązać tę kwestię, porównano trzy algorytmy uczenia 

maszynowego do klasyfikacji poziomów zasolenia w obszarze przybrzeżnym dystryktu Krishna, Machilipatnam. W badaniu wykorzystano obrazy Landsat-8 

z lat 2014-2021, korygując je pod kątem zachmurzenia i tworząc kompozycję w prawdziwych kolorach. Obszar badań został zdefiniowany 
i zwizualizowany. Do analizy włączono dwanaście wskaźników pochodzących ze zdjęć Landsat. Wskaźniki te, w tym pasma widmowe i wyrażenia 

matematyczne, są dodawane jako pasma obrazu. Mediana tych wskaźników jest obliczana, a przykładowe punkty reprezentujące zarówno obszary 

niezasolone, jak i zasolone są wykorzystywane do nadzorowanego uczenia maszynowego. Dane są podzielone na dwa zestawy: treningowy i walidacyjny. 
W badaniu oceniono Random Forest, Classification and Regression Trees i Support Vector Machines pod kątem klasyfikacji poziomów zasolenia gleby 

przy użyciu tych wskaźników. Algorytm RF uzyskał dokładność 92,1%, CART 91,3%, a SVM 86%. Wyniki są wyświetlane na mapie, przedstawiając 

przewidywane poziomy zasolenia za pomocą różnych kolorów. Oceniane są wskaźniki wydajności i wydajność algorytmów. Przeprowadzone badania dają 
wgląd w klasyfikację zasolenia gleby przy użyciu uczenia maszynowego, co może stanowić skuteczne rozwiązanie problemu zasolenia gleby 

w Machilipatnam. 

Słowa kluczowe: zasolenie gleby, wskaźnik zasolenia, teledetekcja, uczenie maszynowe, przewidywanie 

 

Introduction 

Raising the salt content of the soil is a process known as soil 

salinization, which hinders plant growth and causes the land 

to deteriorate. The region’s economy, farmers’ well-being, 

and agricultural output are all negatively impacted by saline soils. 

Several reasons might lead to soil salinization, including 

dry climates, irrigation, inadequate drainage, and rising sea levels. 

Water absorption is mainly impacted by soil salinity on plant 

growth. Crops cannot absorb enough water to survive, even when 

the soil is sufficiently moist. Soils contaminated by salt are 

becoming a global issue [5]. It is regarded as a significant barrier 

to increasing agricultural output to feed the world’s expanding 

population. Worldwide, salt-affected soils (SAS) affect around 

1125 million hectares of land, of which humans cause 76 million 

hectares [15]. 6.74 million hectares of land in India have soils 

contaminated by salt [22]. 

2.956 m ha of saline soil and 3.77 m ha of sodic soil make 

up India’s 6.727 m ha (2.1% of the country’s total geographical 

area) of salt-affected land (SAL) [7]. Due to soil salinization, 

the nation loses 16.84 million tons of agricultural output yearly, 

at Rs 230.20 billion [24]. Andhra Pradesh state has approximately 

0.6 m ha of SAS, which also comprise both saline and sodic soils 

[24]. Andhra Pradesh state has approximately 0.6 m ha of SAS, 

which also comprise both saline and sodic soils [8]. The rising sea 

level and changing climate may accelerate soil salinization, 

making developing countries with high population densities more 

vulnerable than other areas. 

According to Zhu [34], salinity and high alkalinity harm soil 

fertility, damaging the land and making it harder for plants 

to thrive. Due to the challenging climate, soil salinity is vital 

in semi-arid locations, mainly when food and fiber are in short 

supply [16]. It has been shown that the conventional approach 

of gathering soil samples and analyzing them in a lab afterward 

needs to be revised and appropriate to meet the rate 

of development of this phenomenon, particularly given how 

expensive, time-consuming, and challenging it is to update these 

methods.  

Soil salinity maps have been created using more remote 

sensing data and techniques. Globally, a great deal of study 

has been done during the past three decades on mapping soil 

salinity using satellite photos. Soil salinity may now be accurately 

and promptly assessed at various locations and times because 

of the development of satellite data availability and analysis 

capabilities. Based on topography data, climatic conditions, land 

use data, etc., various spatial models have been tested to assess 

saline soil [12]. Normalized Differential Vegetation Index 

(NDVI), Generalized Difference Vegetation Index (GDVI), 

Enhanced Vegetation Index (EVI), Normalized Difference 

Salinity Index (NDSI), and Salinity Indices (SI), are some 

of the spectral indices used in soil salinity mappings. 

Researchers have employed various machine learning 

techniques, including Random Forest (RF), Support Vector 

Machine (SVM), and Classification and Regression Trees 

(CART). However, they discovered that the RF method was 

the most accurate of these techniques [31, 33]. 
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1. Literature review 

Kabiraj et al. [17] utilized remote sensing techniques 

to analyze the Land use pattern of SAL. Satellite data from 

Sentinel-2, Landsat-8, and Landsat-5, plus topographical 

data from Shuttle Radar Topographical Mission were acquired 

in 2020, 2015, and 2009. Twenty spectral indices were analyzed, 

including vegetation indices for drought, soil salinity indices, 

and topographical characteristics. The researchers applied 

the RF model to detect SAL, using 593 soil samples for training 

and validation. The predicted SAL extent in 2020 was 134.4 sq. 

km using kfold cross-validation with an overall accuracy of 93%. 

The SAL area increased by 11.6% during the study period. 

The study has distinguished the role of remote sensing techniques 

in assessing SAL, which can be the best tool to quantify 

unproductive lands for reclamation or some other productive 

utilization. 

Kumar et al. [21] described a machine learning-based 

approach to effectively observe and classify SAS of Raibareli 

district of Uttar Pradesh, India, comparing three popularly used 

machine learning techniques: Logistic Regression, SVM, and RF. 

The authors carried other salinity indices and principal 

components by analysing of various Landsat 8 OLI/TIRS bands, 

and they used nearby data such as nearness to canals and streams. 

To determine the best satellite image for determining 

soil salinity based on 5-fold cross-validation, Kabiraj et al. [18] 

compared Sentinel2 and Landsat-8 data from 2020 in their study 

to evaluate SAL in West Bengal, India. Using the RF model, 

the researchers analysed a variety of spectral indices of vegetation 

and soil salinity. 

To map the salinity of soil, Aksoy et al. [2] employed Landsat-

8 OLI, Sentinel-2A, ground-based electrical conductivity data, 

CART, RF, and Support Vector Regression (SVR). With the help 

of three machine-learning algorithms, one vegetation index, three 

soil salinity indices, and a wetness band, they produced eight soil 

salinity maps. They used Information from the ground, Landsat 

photos, and environmental factors are all considered. 

Sentinel-2 Multispectral Imager data and machine learning 

techniques were utilized by Wang et al. [32] to measure and map 

soil salinity in arid regions precisely. Three machine learning 

techniques were used: RF, SVMs, and Artificial Neural Networks 

(ANN). The research gathered 160 soil-mixed samples, divided 

them into 30% for verification and 70% for modeling, and then 

classified them using the K-S algorithm. With an R2 of 0.88, 

RMSE of 4.89 dS m1, and RPIQ of 1.96, the SVM model fared 

better than the RF and ANN models regarding accuracy 

and performance. According to the SVM model's soil salinity 

mapping, farmland at higher altitudes showed increased salinity 

caused by prolonged irrigation and secondary salinization. This 

work provides a scientific justification for simulating dirt. 

Through statistical research, Asfaw et al. [3] identified 

the strongest correlation between the spectral indices and the soil's 

electrical conductivity (EC) after using Landsat images to produce 

several spectral indices. They created a single model 

by combining the EC data from field measurements 

with the spectral indices seen remotely. They identified places 

with high soil salinity by using this model to build a salinity map 

of the research area. 

Hoa et al. [14] used five machine-learning models 

with Sentinel-1 Synthetic Aperture Radar (SAR) C-band data. 

Gaussian Processes (GP), RF, SVR, Multilayer Perceptron Neural 

Networks (MLP-NN), and Radial Basis Function Neural 

Networks (RBFNN) were the models that were employed. 

Assessing the Mean Absolute Error and Root Mean Square Error 

was part of the performance evaluation process for the five 

models. 

Rani et al. [26] conducted a study to precisely ascertain 

the extent of the damaged soils to identify and monitor 

the affected areas in the Unnao district of Uttar Pradesh, India. 

The Landsat 8 image bands, different salinity indices calculated 

from those bands, Digital Elevation Model data, groundwater 

depth data, proximity to the canal, and MODIS NDVI 16-day 

composite data have all been subjected to the RF machine learning 

technique. 

2. Proposed methodology 

The methodology (Fig. 1) employed in this study consists 

of three sections aimed at investigating soil salinity 

in the Machilipatnam region: Study Area, Data Collection 

and Processing, Selection of Predictors and Modeling. 

 
Fig. 1. Methodology for identifying salt-affected soils 
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2.1. Study area 

The study area is Masulipatnam (now Machilipatnam), one of 

India’s ancient coastal towns on the east coast, part of the Krishna 

district, Andhra Pradesh [25]. It is located at 16°11′ N latitude 

and 81° 8 ′ E longitude [20]. The map of the study area is depicted 

in Fig. 2. Machilipatnam is notable because it is the location 

of a prominent magnetic anomaly zone affecting an area 

of approximately 10,000 square kilometers in the Bay of Bengal 

[30]. In Machilipatnam, there are five main types of wastelands: 

salt-affected, coastal, waterlogged/marshy, and barren land types, 

which can help with groundwater development, agricultural, 

forestry, and reclamation efforts [23]. Machilipatnam’s average 

yearly temperature ranges from 18 to 32℃, with a higher 

frequency of around 25℃ [13]. There are four wet and four 

dry years every 25 years in the Krishna zone of Andhra Pradesh, 

with an average rainfall of 926.8 mm, with 60% coming from the 

south-west monsoon and 26% from the north-east monsoon [4]. 

 

Fig. 2. Study area’s location 

2.2. Data collection and processing 

Fig. 3 provides a general overview of the data collection 

and processing. The study utilized satellite images of Landsat 8 

Collection 2 Tier 1 calibrated top-of-atmosphere (TOA) 

reflectance obtained from June to September with less than 40% 

cloud cover from 2014 to 2021, accessible in the Google Earth 

Engine (GEE). 

 

Fig. 3. Flowchart for data collection and processing 

Supercomputers are not necessary for users to search, analyze, 

and visualize large geospatial datasets because of GEE’s vast 

geospatial databases, which include Landsat images and other 

ready-to-use products. The GEE web application, rapid data 

processing, and implementation of machine learning algorithms 

leverage Google’s computer infrastructure through an application 

programming interface library and a development environment 

that supports Python and JavaScript. The chosen Landsat satellite 

images were imported from the GEE data library and carefully 

filtered using various GEE methods in the code editor area. 

To be more precise, the ee.ImageCollection.filterDate was used 

to separate images taken between June 1st and September 30th, 

which are the kharif seasons of every year from 2014 to 2021. 

To minimize atmospheric interference and ensure data quality, 

images with a cloud cover of more than 40% were excluded using 

ee.ImageCollection.filter.Metadata. With the help of the ’assets’ 

tool and ee.ImageCollection.filter in the code editor, 

the study region defined by a shapefile was quickly included 

in the analysis and focused on the relevant geographic area. 

Then, a single dataset called kharifCollection was created 

by combining the merged Landsat collections from every 

year using ee.ImageCollection.merge. Utilizing the 

ee.algorithms.Landsat.simple.CloudScore, which evaluates 

and modifies the cloud presence in the image, and an image 

correction function called applyCorrection were developed 

to minimize cloud interference. 

The ee.ImageCollection.map is then used to apply this 

adjustment to the previously created Landsat image collection 

during kharif seasons (i.e., kharifCollection), creating a new 

collection called correctedCollection. By choosing the appropriate 

Landsat bands (B4, B3, and B2) and defining visualization 

parameters for clarity, the script also sets up a true color 

composite. A function is developed to clip the corrected images 

to the designated study area to guarantee that attention is focused 

on the pertinent geographic area. The final step involves 

calculating the median of the cropped images and applying 

the selected visualization parameters to the Map.addLayer to show 

the result as a layer on the map. By generating and showing 

a cloud-corrected true color composite (Fig. 4) for the study 

region during the kharif seasons, the complete method makes 

it feasible to examine the land cover with better clarity 

and precision. Geometric imports are used for marking the soil 

samples. There are two types of markings: saline feature collection 

markings and non-saline feature collection markings based 

on the collected samples from the soil database. 

 

Fig. 4. True Color Image of the study area where clouds are masked 

The current study used 430 soil samples in total. These soil 

samples were acquired from the Agricultural Research Station, 

Machilipatnam soil database, during the kharif seasons of 2019 

and 2020. After generating soil leachate at a soil/water ratio 

of 1:2.5, the electrical conductivity values of the soil samples were 

evaluated using a digital multiparameter measuring apparatus. 

The EC values are classified into two categories: saline (>4 ds/m) 
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and non-saline (<2 ds/m) [6]. Our study area samples have not 

encountered any EC values falling within the intermediate range. 

The points that have been chosen via coordinates from the soil 

database are shown in Fig. 5. 

 

Fig. 5. Soil Sample points obtained from soil database 

2.3. Selection of predictors and modeling 

Because Machilipatnam lies in an arid zone [29], spectral 

indices are an efficient approach for detecting soil salinity in dry 

and semi-arid locations [11]. This study chose commonly used 

indicators of soil salinity to build a robust classification within 

the soil salinity model. The purpose is to examine and compare 

these indicators for subsequent refinement in selection. Fig. 6 

provides an overview of selecting predictors and building a model. 

 

Fig. 6. Flowchart for selection of predictors and modeling 

The study used Landsat 8 Operational Land Imager (OLI) (B2, 

B3, B4, B5, B6, B7) related to earth indicators. Table 1 shows 

various indices along with their formulas. 

A function named calculateSalinityIndices was developed 

to compute 11 salinity indices and one vegetation index from 

a given Landsat image. Each index is derived by unique 

mathematical equations incorporating distinct spectral bands, 

such as near-infrared, red, green, and shortwave infrared. 

Using ee.Image.expression, the indices are computed, 

and ee.Image.select is used to link the bands with their names. 

These indices capture many aspects of the landscape’s salinity 

characteristics. Then this function is applied to each image in the 

previously corrected Landsat collection, correctedCollection, 

using the map function, resulting in a new image collection named 

salinityIndicesCollection. This collection comprises the original 

Landsat bands combined with the newly calculated salinity 

indices, significantly enriching the dataset for subsequent analysis 

by providing valuable information related to soil salinity across 

the kharif seasons in the chosen study region. This stage is critical 

for acquiring a full understanding of salinity dynamics 

and potential impacts on agricultural regions.  

Table 1. Salinity and vegetation indices of Landsat-8, along with their formulas 

Index Formula Reference 

SI1   

SI2  [9] 

SI3   

SI4   

SI5  [8] 

SI6   

SI7   

SI8  [1] 

SI9  [1] 

NDSI  [19] 

CRSI  [28] 

NDVI  [27] 

 

The GEE script employs machine learning techniques 

to perform a thorough examination of soil salinity. To get ready 

for classification, additional processing is done on the salinity 

indices that were calculated from Landsat imagery and previously 

recorded in the salinityIndicesCollection. Using the median 

values, the script first condenses the collection into a single image. 

The computed salinity indices and particular spectral bands 

are then chosen by using ee.Image.sampleRegions to provide 

a dataset that is used to train and evaluate a RF classifier. The data 

is divided into training and validation sets, with 30% going toward 

validation and 70% going toward training. Using the training 

dataset, the RF classifier is trained considering variables like 

the bag fraction (0.6) using the bagFraction parameter 

and the number of trees (18) using the numberOfTrees parameter. 

To generate a salinity classification map, the trained classifier 

is applied to the complete collection of salinity indicators. 

The final map is viewed in the GEE map view and is colored 

to mark areas that are saline (red) and non-saline (green). Fig. 7 

demonstrates the mapping of salt affected soils using RF.  

 

Fig. 7. Soil salinity map of Random Forest 
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ee.Feature(null,ee.Dictionary()) is used to retrieve 

the feature importance values of the developed RF model. 

To determine the relative significance of different spectral 

bands and salinity indices, get(‘importance’)) is used. 

ee.Image.sampleRegions, ee.ImageCollection.randomColumn, 

ee.Classifier.smileRandomForest, and ee.Image.classify are 

among the GEE functions that are used to make the analysis, 

categorization, and interpretation of soil salinity patterns easier. 

For a complete analysis of the RF model’s performance, confusion 

matrix computation and accuracy metrics are computed using 

ee.Classifier.ConfusionMatrix, ee.ConfusionMatrix.accuracy, 

and ee.ConfusionMatrix.fscore.  

The pixel area for each classified region is then computed 

by adding a band of the classified cover to an image representing 

pixel areas. The ee.Image.reduceRegion function is performed 

to aggregate the pixel area information, grouping the data based 

on the salinity classification. The resulting aggregated data is then 

analyzed to obtain information about non-saline and saline areas. 

For each salinity class, the script calculates and formats the total 

area in square kilometers. The final output, stored in the variable 

result, is a dictionary outlining the extent of non-saline and saline 

areas within the study area, giving quantitative insights into 

the geographic distribution of soil salinity as determined 

by the RF classification. 

The script implements the ee.Classifier.smileCart 

method to measure soil salinity, replicating the structure 

of the previously stated RF script. Initially, the CART classifier 

is trained using the provided training dataset, which comprises 

input attribute indices and salinity labels. The trained classifier 

is then applied to the complete collection of salinity indices, 

salinityIndicesCollection, resulting in the production of a salinity 

classification map called cartClassified. The CART mapping 

of SAS is shown in Fig. 8. 

This map is visually depicted on the GEE map, with color 

distinctions for non-saline (green) and saline (red) areas. Feature 

importance values are extracted from the trained CART model, 

revealing insights into the significance of specific spectral 

bands and salinity indices for categorization. Confusion matrix 

computation and accuracy metrics are computed for a thorough 

examination of the CART model’s performance. The script also 

calculates the areas within the research region that have been 

recognized as non-saline and saline, providing quantitative 

information about the geographical distribution of soil salinity 

based on the CART classification. 

 

Fig. 8. Soil salinity map of Classification and Regression Trees 

The script evaluates soil salinity using the ee.Classifier.libsvm 

method has a structure similar to the previously discussed RF 

and CART scripts. The SVM classifier is first trained using 

the specified training dataset, which includes input properties 

represented by indices and salinity labels. The trained SVM 

classifier is applied to the whole collection of salinity indices, 

yielding a salinity classification map termed svmClassified. 

This map is visualized on the GEE map, with different hues 

indicating non-saline (green) and saline (red) locations. 

The trained SVM model is used to derive feature importance 

values, which provide insight into the significance of various 

spectral bands and salinity indices for categorization. The script 

then computes confusion matrix metrics and accuracy 

measurements, allowing for a thorough evaluation of the SVM 

model’s performance. The script calculates and displays the areas 

within the study area recognized as non-saline and saline, giving 

quantitative information on the geographic distribution of soil 

salinity based on the SVM classification. Fig. 9 depicts the 

mapping of SAS using SVM. 

 

Fig. 9. Soil salinity map of Support Vector Machine 

3. Results and discussion 

The mean value of soil EC was obtained as 5.76 ds/m, with a 

range of 0.21 to 14.40 ds/m. 15.3% and 84.6% of the soil samples 

have EC values greater than 4 ds/m and less than 2 ds/m. The 

standard deviation of the soil samples was obtained as 3.25 ds/m. 

The hyperparameter was utilized to find the optimal number of 

trees as well as bag fraction. The RF model, obtained by giving 18 

trees with a 0.6 bag fraction, had a maximum training accuracy of 

91.8% and validation accuracy of 92.1%. Using the RF model, a 

variable of importance (VIMP) was derived. Twelve variables 

were used to train the RF model. The top 5 important factors were 

SI5, B2, B4, SI4, and SI1, and their VIMP scores were 8.94, 8.18, 

8.04, 7.33, and 7.13 respectively. The maximum training accuracy 

of the CART model was 91.2% and the validation accuracy was 

91.3%. B2, B4, B5, CRSI, and SI5 were the top five important 

factors, with VIMP scores of 4.75, 2.00, 1.10, 0.83, and 0.63, 

respectively. The SVM model’s maximum training accuracy was 

85.6% and validation accuracy was 86%. The top five essential 

factors were B2, B4, B5, CRSI, and SI5, with VIMP scores the 

same as the CART model. The total SAL calculated by the RF, 

CART, and SVM models is 134 km2, 134 km2, and 112 km2, 

respectively. Table. 2 contains the details regarding the 

performance metrics of the three machine learning models. 

Table 2. Performance metrics of the Machine Learning models 

Metrics RF CART SVM 

Accuracy (%) 92.17 91.30 86.00 

Precision  0.93 0.87 0.78 

Recall  0.92 0.94 0.91 

F1-Score  0.92 0.90 0.94 

SAL (𝐾𝑚2) 134 134 112 
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4. Conclusion 

SALs of various categories have been measured using 

advanced remote sensing and machine learning approaches when 

combined with field-level EC data. This study leveraged imagery 

data from Landsat-8 and applied various Machine Learning 

algorithms to discern between saline and non-saline soils. As input 

variables for the three machine learning models, various spectral 

indexes of vegetation and soil salinity were used. The RF model’s 

hyperparameter was used to calculate the ideal number of trees 

and bag fraction to improve model accuracy. To map the salinity 

areas of soil accurately, high-resolution images are essential. 

Beyond salinity indices, spatial planning can offer a more 

comprehensive framework for future coastal management 

by combining predicted regional sea level rise, rainfall patterns, 

and land-use changes.  
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