
p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 3/2024      21 

artykuł recenzowany/revised paper IAPGOS, 3/2024, 21–28 

http://doi.org/10.35784/iapgos.5954 received: 28.02.2024 | revised: 23.05.2024 | accepted: 04.09.2024 | available online: 30.09.2024 

UTILIZING GAUSSIAN PROCESS REGRESSION FOR NONLINEAR 

MAGNETIC SEPARATION PROCESS IDENTIFICATION 
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Kryvyi Rih National University, Kryvyi Rih, Ukraine 

Abstract. This paper presents a novel approach utilizing Gaussian Process Regression (GPR) to identify dynamic models with nonlinear parameters 

in magnetic separation processes. It aims to address the complex and dynamic nature of these processes by employing advanced modeling methods. 

The effectiveness of GPR is demonstrated through its application to simulated signals representing real iron ore separation processes, highlighting 
its potential to enhance existing models and optimize processes. Conducted within the MATLAB, this research lays the groundwork for further 

advancement and practical implementation. The utilization of GPR in magnetic separation offers innovative modeling of nonlinear dynamic processes, 

promising improved efficiency and precision in industrial applications. 

Keywords: Gaussian process regression, magnetic separation, nonlinear modeling, dynamic systems 

WYKORZYSTANIE REGRESJI PROCESU GAUSSOWSKIEGO DO IDENTYFIKACJI 

NIELINIOWYCH PROCESÓW SEPARACJI MAGNETYCZNEJ 

Streszczenie. Niniejsza praca prezentuje nowatorskie podejście wykorzystujące regresję procesu Gaussa (Gaussian Process Regression, GPR)  

do identyfikacji modeli dynamicznych z parametrami nieliniowymi w procesach separacji magnetycznej. Celem jest uwzględnienie złożonego 
i dynamicznego charakteru tych procesów poprzez zastosowanie zaawansowanych metod modelowania. Skuteczność GPR jest demonstrowana poprzez 

jego zastosowanie do symulowanych sygnałów, reprezentujących rzeczywiste procesy separacji rudy żelaza, co podkreśla jego potencjał do ulepszania 

istniejących modeli oraz optymalizacji procesów. Badania przeprowadzone w środowisku MATLAB stanowią podstawę do dalszego rozwoju i praktycznej 
implementacji. Zastosowanie GPR w separacji magnetycznej pozwala na innowacyjne modelowanie nieliniowych procesów dynamicznych, obiecując 

poprawę wydajności i precyzji w zastosowaniach przemysłowych. 

Słowa kluczowe: regresja procesu gaussowskiego, separacja magnetyczna, modelowanie nieliniowe, systemy dynamiczne 

Introduction 

With the global rise in iron ore consumption, efficient ore 

processing methods are necessary [32]. Magnetic separation 

is a common method employed for removing impurities and low-

grade particles [3, 4] but faces challenges due to their instability 

and nonlinearity [13, 21, 28, 29]. This research introduces 

Gaussian Process Regression (GPR) for identifying the nonlinear 

dynamics in magnetic separation, offering a substantial 

improvement in understanding and optimizing this process. 

Traditional studies using linear models and static process analysis 

are limited in handling such complex interactions: 

1. The nonlinearity of the process, where the relationship 

between input parameters and output indicators cannot 

be adequately described by linear models [30]. 

2. The dynamic nature of the process with time delays, inertia, 

and feedback loops not accounted for by static models, leading 

to inaccuracies in describing and predicting process behavior [23]. 

3. The multifactorial nature and complex interactions among 

numerous factors influencing the efficiency of magnetic 

separation, which cannot be properly addressed by linear models 

[24]. 

4. Changes in the properties of the ore entering the enrichment 

process affect the course of the separation process, and models 

built on data for a specific type of ore may be inadequate when the 

raw material base changes [26]. 

5. Limited extrapolation of linear models obtained based on 

data within a certain range of parameter values, beyond this range, 

restricting their utility for optimization and prediction [7].  

Our main objective is to outline GPR's potential in identifying 

nonlinear aspects in magnetic separation. This research optimizes 

processes and advances the mining and beneficiation industry. 

It introduces new prospects for enhancing operating systems 

in the field. The novelty of this research is in its methodological 

progression. Using GPR provides a more accurate report 

of magnetic processes and the potential for real-time adaptive 

control systems adjusting to ore processing changes. Adopting 

GPR not only improves separation but also revolutionizes static 

models that fail to capture transient behaviors key to optimal 

magnetic separation. This work demonstrates the potential

for the development of predictive, automated systems using kernel 

functions, potentially revolutionizing the industry. These 

advancements bring forth higher levels of automation 

and efficiency, proving to be a unique and valuable addition 

to the academic and practical realms of the industry. 

1. Literature review 

A comprehensive analysis of the current state of research 

in the field of modeling magnetic enrichment processes for iron 

ores reveals that significant efforts are being directed towards 

the development and refinement of mathematical models that 

capture various facets of these complex processes [16, 20]. 

In their seminal work, Morkun et al. [17] delve into 

the intricacies of modeling the influence of key technological 

parameters on the quality indicators of concentrate and waste. 

They employ advanced statistical techniques to establish robust 

relationships between input variables and output characteristics, 

providing valuable insights into process optimization. Similarly, 

Tron et al. [19] present a novel approach to modeling 

the dynamics of magnetic separation using a combination 

of physical principles and data-driven methods. Their model 

demonstrates high accuracy in predicting the behavior 

of the system under various operating conditions. 

Furthermore, there is a growing focus on the development 

of automatic control systems for magnetic separation processes, 

which aim to optimize equipment operation modes and enhance 

overall enrichment efficiency [14, 15]. Morkun and Tron [14] 

propose an innovative control strategy based on real-time 

monitoring of key process parameters and adaptive adjustment 

of control setpoints. Their system has been successfully 

implemented in industrial settings, yielding significant 

improvements in concentrate quality and recovery. In a related 

study, Morkun et al. [15] explore the application of intelligent 

control techniques, such as fuzzy logic and neural networks, 

to handle the inherent nonlinearities and uncertainties in magnetic 

separation processes. 

Despite these advancements, the application of machine 

learning methods, particularly Gaussian processes, for modeling 

nonlinear dependencies in magnetic enrichment processes remains
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insufficiently explored. While some studies [18] have investigated 

the potential of these approaches in other areas of mineral 

processing, their systematic application to the specific domain 

of magnetic separation of iron ores is limited. Morkun et al. [18] 

demonstrate the effectiveness of Gaussian process regression 

in capturing complex nonlinear relationships in flotation 

processes, highlighting the promise of this technique for modeling 

other mineral processing operations. 

Given the critical importance of accurate modeling and control 

in optimizing the efficiency of magnetic separation processes, 

there is a pressing need to further investigate the capabilities 

and benefits of Gaussian process methods in this context. 

By leveraging the power of machine learning and probabilistic 

modeling, researchers can develop more sophisticated 

and adaptive models that can handle the inherent complexities 

and variabilities of these processes. Such advancements have 

the potential to significantly enhance the performance 

of enrichment plants and pave the way for the development 

of intelligent, self-optimizing control systems. 

In conclusion, while the current literature provides valuable 

insights into the modeling and control of magnetic enrichment 

processes for iron ores, there remain significant opportunities 

for further research and innovation. The application of Gaussian 

process methods represents a promising avenue for addressing 

the challenges associated with nonlinear dependencies 

and improving the accuracy and robustness of process models. 

By bridging the gap between traditional approaches and advanced 

machine learning techniques, researchers can unlock 

new possibilities for process optimization and contribute 

to the sustainable development of the iron ore industry. 

2. Nonlinear processes in enrichment 

In enrichment systems, the term 'nonlinearity' refers 

to complex interactions and processes that cannot be adequately 

described by linear models [2]. Enrichment systems encompass 

nonlinear material properties, parameter variability, and instability 

during the process [3]. Incorporating these aspects into models 

allows for better approximation and prediction of real enrichment 

conditions and outcomes. The diversity of conditions, such 

as temperature, pressure, substance concentration, leads 

to nonlinearity in the enrichment system. Accounting 

for nonlinearity is crucial for accurate modeling of enrichment 

processes for several reasons: complex component interactions, 

system parameter changes, process instability, non-standard 

influences. 

Research highlighted in sources [13, 28] shows that the iron 

content in both the concentrate (β) and the tails (θ) varies 

nonlinearly based on primary control factors [3]. This variability 

can be modeled using different mathematical functions. 

Specifically, our calculations suggest that the relationship between 

β and θ and the drum rotation speed of the magnetic separator, 

denoted as 'n', can be described through polynomial 

and exponential functions, as illustrated in Fig. 1 (author's own 

calculations and [13, 28]). 

 

Fig. 1. Dependence of iron content in the concentrate β (polynomial dependence) 

and in the tails θ (exponential dependence) on the drum rotation speed n 

As control influences, similar to the drum rotation speed, 

the pulp density δ, magnetic field intensity H, and additional water 

flow into the separator bath qw are widely used, which also have 

nonlinear dependencies on the regulated enrichment parameters 

[13, 21, 28, 29]. 

In the study [29], an example of more complex nonlinear 

dependencies is provided. One of them determines the iron content 

in the concentrate β depending on the interaction of drum rotations 

ω and feed density δ. The three-dimensional visualization of this 

dependency is presented in Fig. 2 (author's own calculations 

and [2]). 

 

Fig. 2. Approximation of the dependence of iron content in the concentrate (β) 

on drum rotations (ω) and feed density (δ) 

In the study [21], a stabilizing control system for the wet 

magnetic separation process with nonlinear elements 

is investigated. One of the subsystems of this scheme 

is represented by the dependence of iron content in the concentrate 

on the pulp density after the hydrocyclone, the nonlinear part 

of which can be expressed by equation (1): 

 𝛽 = −0,695𝛿2 + 0,893𝛿 + 0,712 (1) 

where β represents the iron content in the concentrate, and δ 

denotes the pulp density after the hydrocyclone. 

According to the complete structural diagram of the ore 

enrichment system described in the referenced work, the magnetic 

separator module consists of a nonlinear component characterized 

by formula (1) and a dynamic block composed of a serially 

connected aperiodic first-order block and a delay link, as shown 

in Fig. 3 (adapted [21]). 

 

Fig. 3. Structural diagram of the magnetic separator with pulp density control 

When inputting the pre-formed imitation control signal δ into 

the subsystem, the model output yields a response proportional 

to β, as shown in Fig. 4 (author’s calculations). In this case, 

by applying the principle of using only information regarding 

input and output signals in modeling, we can transition from 

a subsystem with specific internal content to the concept 

of a black box [12]. 

 

Fig. 4. Nonlinear relationship between input and output data in the magnetic 

separator control subsystem 
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3. Gaussian Process Regression 

Gaussian Process Regression (GPR) is a powerful machine 

learning method used to model nonlinear processes [9]. Unlike 

traditional regression methods such as linear regression [8], 

GPR enables modeling complex nonlinear dependencies between 

input and output variables [10, 11]. 

GPR is based on the concept of a Gaussian process, which 

is a set of random variables, any finite number of which has a joint 

Gaussian distribution. In the context of GPR, a Gaussian process 

is used to determine the distribution of a function that maps input 

variables to outputs [6, 10]. 

One of the key advantages of GPR is its ability to account 

for uncertainty in the model. GPR provides a probabilistic 

estimate of output values, allowing for consideration of noise 

in the data and uncertainty in the modeling process [9, 10]. 

GPR is also a flexible method that allows for the use 

of different covariance functions to model various types 

of nonlinear dependencies. The covariance function determines 

the degree of dependence between input points and influences 

the correlation between them [10]. 

Advantages of GPR: 

 modeling nonlinear relationships; 

 handling high-dimensional data; 

 optimization; 

 accounting for uncertainty; 

 resistance to overfitting. 

 

Limitations of GPR: 

 computational cost for large datasets; 

 sensitivity to the choice of covariance function. 

 

Overall, GPR is a powerful method for system identification 

and other modeling tasks where uncertainty and resistance 

to overfitting are important [6]. 

3.1. Rationale for choosing GPR 

The choice of GPR for modeling magnetic enrichment 

systems with nonlinear parameters is justified by several 

factors [9]: 

1. Nonlinearity: One of the main advantages of GPR 

is its ability to model complex nonlinear dependencies between 

input and output variables. In the case of magnetic enrichment, 

where processes may have complex and nonlinear nature, GPR 

can be an effective tool for capturing these characteristics. 

2. Noise presence: GPR handles noise in output data well. 

In the case of magnetic enrichment, where various factors 

affecting the process may be present, accounting for noise 

is an important aspect of modeling. 

3. Uncertainty: GPR provides the ability to account 

for uncertainty in the model, which can be useful in the case 

of complex technical systems where not all parameters can 

be precisely determined. 

4. Flexibility: GPR allows for the use of various covariance 

functions, providing flexibility in modeling diverse systems 

and considering their unique properties. 

Compared to other methods such as linear regression or neural 

networks, GPR has the ability to consider nonlinear dependencies 

without explicit definition of approximation functions. This makes 

it effective for modeling complex systems where nonlinearity 

plays an important role. Additionally, GPR may be more robust 

to data noise compared to other methods, making it attractive 

in conditions of uncertainty and mixed influences on the process. 

Thus, the choice of GPR for modeling magnetic enrichment 

systems is justified by its ability to account for nonlinear 

dependencies, handle data noise, consider uncertainty, 

and flexibility in choosing covariance functions. 

3.2. Comparative analysis with other methods 

of modelling nonlinear systems 

In a comparative analysis of methods for modeling nonlinear 

systems, including GPR, several methods can be considered, such 

as neural networks, Support Vector Machine (SVM), decision 

trees, and regression methods [11]. 

1. Neural networks: Neural networks are powerful tools 

for modeling nonlinear systems, capable of capturing complex 

dependencies between input and output data. They can be 

effective in solving complex prediction and classification tasks. 

However, neural networks may require a large amount of data 

for training and tuning, as well as complex optimization 

processes [25]. 

2. Support Vector Machine (SVM): SVM is an effective 

method for modeling nonlinear systems, especially in cases 

with high-dimensional data. They can work well with limited 

datasets and capture complex dependencies. However, SVM 

may be demanding in terms of tuning hyperparameters and may 

have limited ability to handle large datasets [5]. 

3. Regression methods: Classical regression methods, such 

as linear regression and polynomial regression, can be effective 

for modeling simple nonlinear dependencies [22]. They are simple 

and easily interpretable but may be limited in their ability 

to model complex nonlinear interactions. 

The advantages of GPR lie in its ability to handle nonlinearity 

and system dynamics, generalize to new data, and account 

for uncertainty and noise in the data. However, GPR may require 

a large amount of data for training and tuning hyperparameters, 

and may be limited in handling large datasets. 

In summary, the choice of a method for modeling nonlinear 

systems depends on the specific task, the volume and nature 

of the data, as well as the requirements for model accuracy 

and generalization. 

3.3. Covariance functions 

The covariance function serves as a key element 

of the Gaussian Process Regression model, determining the degree 

of dependence between input points and forming the correlation 

structure between them. The selection of an appropriate 

covariance function is crucial for building an effective GPR 

model capable of accurately capturing complex nonlinear 

dependencies in the data [1]. Fig. 5 illustrates an example 

of the influence of different covariance functions on data 

prediction, generated using the Interactive Gaussian Process 

Visualization online tool [33]. 

 
 a) b) 

Fig. 5. Example of using covariance functions on the same dataset: a) Matern 5/2; 

b) exponential 

As seen from Fig. 5, different covariance functions have 

varying impacts on the data prediction process. Therefore, 

in choosing the appropriate function, it is necessary to consider 

several data properties such as their type, structure, distribution, 

as well as the nature of relationships between features. For data 

with complex nonlinear dependencies, it may be advantageous 

to use covariance functions with high expressiveness 

that can adapt to different forms of variable relationships. 

On the other hand, for data with structured correlations, it may 

be beneficial to use simple covariance functions that effectively 

approximate local dependencies. Thus, the choice of covariance 

function should be made considering the specific characteristics 

of the dataset and the forecasting task. 
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There are several types of covariance functions, each with 

unique properties suitable for different types of data and modeling 

tasks. Some of the most common covariance functions include: 

 Exponential covariance function, characterized by rapid 

correlation decay with increasing distance between input 

points. It is well-suited for modeling data with local 

dependencies. 

 Squared-exponential covariance function, which 

is a generalization of the exponential covariance function 

allowing control over the smoothness of the function. 

It is suitable for modeling data with smoother dependencies. 

 Matérn covariance function is a flexible covariance function 

that allows control over both the degree of smoothness 

and the rate of correlation decay. It is suitable for modeling 

data with various types of dependencies. 

 Periodic covariance function is used for modeling data 

demonstrating periodic behavior. It is suitable for modeling 

seasonal data or data collected from periodic processes. 

 

The choice of covariance function depends on the specific 

modeling task and the nature of the data. Experimental tuning 

of the hyperparameters of the covariance function is often 

necessary to optimize the performance of the GPR model. 

Key differences between covariance functions include 

correlation decay rate, smoothness degree, and periodicity. 

In conclusion, covariance functions are an important 

component of GPR models, determining the degree of dependence 

between input points and influencing the correlation structure 

between them. Choosing the right covariance function is crucial 

for building an effective GPR model capable of accurately 

capturing nonlinear dependencies in the data. 

3.4. The methodology and training process GPR 

models 

The Gaussian Process Regression (GPR) methodology 

is a powerful tool for modeling and predicting nonlinear 

processes, such as those encountered in magnetic enrichment. 

This study aims to explore the application of GPR in the context 

of magnetic separation, utilizing data generated from a specific 

technological scheme described in the literature [21]. 

By employing GPR, we seek to develop an effective model 

capable of accurately capturing the complex relationships between 

input parameters and output indicators in the magnetic enrichment 

process. 

The methodology of training GPR models involves several 

key stages. Firstly, the input and output data for model training 

are prepared, which includes collecting and preprocessing relevant 

information about the magnetic enrichment process, such as pulp 

density, magnetic field intensity, water flow rates, and iron content 

in concentrate and tailings. The data used in this study is generated 

from a scheme representing the magnetic separator module 

and its nonlinear and dynamic components, as presented 

in the referenced literature [21]. This ensures that the training 

data accurately reflects the real-world process and its specific 

characteristics. 

Next, the data is divided into training and testing sets 

to evaluate the model's performance on unseen data. Since 

the dataset is generated randomly and contains normally 

distributed values, a 50-50 split is employed to ensure 

representativeness and preserve the statistical properties 

of the data. This allows for a reliable assessment of the model's 

generalization ability and predictive performance. 

Choosing the appropriate covariance function is crucial 

for building an effective GPR model, as it determines 

the dependence structure between input points. In this study, 

multiple covariance functions, including exponential, squared-

exponential, Matérn, and periodic functions, are investigated 

to identify the one that yields the best performance and minimizes 

prediction errors. 

The GPR model is then trained on the training data, 

establishing the relationship between input and output variables 

while accounting for nonlinearities and correlations. The trained 

model's performance is evaluated on the testing data by comparing 

predicted values with actual data points and calculating various 

metrics such as Root Mean Squared Error (RMSE), Coefficient 

of Determination (R-squared), Mean Squared Error (MSE), 

and Mean Absolute Error (MAE). These metrics provide 

a quantitative assessment of the model's goodness of fit 

and its ability to generalize to unseen examples. 

In conclusion, the GPR methodology offers a promising 

approach for modeling and predicting nonlinear processes 

in magnetic enrichment. By leveraging data generated from 

a specific technological scheme and employing rigorous training 

and evaluation procedures, this study aims to develop an accurate 

and reliable GPR model. The methodology encompasses 

data preparation, covariance function selection, model training, 

and performance evaluation, enabling the construction 

of an efficient model for predicting complex relationships 

in magnetic separation processes. The insights gained from 

this study can contribute to the optimization and control 

of magnetic enrichment operations, ultimately enhancing 

the efficiency and effectiveness of the overall process. 

4. Model identification 

4.1. Transition to the "black box" model 

In the study, we transition from the structural scheme 

of the magnetic separator (gray box) used in the work [21] 

to a "black box" model with a single input and a single output 

(SISO). In this process, we do not employ any physical 

understanding but construct the model solely based 

on experimental data using learning systems and the selected 

model structure. Modeling the black box can also be referred 

to as empirical modeling [25]. This transition allows us to focus 

on the system's external behavior without delving into the intricate 

details of its internal structure. 

To achieve this, we apply the principle of aggregating internal 

elements to the subsystem of the magnetic separator, as depicted 

in Fig. 3. Additionally, we consider assumptions regarding 

the limited availability of information regarding the system's 

structure. 

To provide the necessary signals at the input of the subsystem, 

we utilize a signal δ proportional to the pulp density, which 

is a crucial parameter in the magnetic separator control process. 

At the output, we obtain a signal β proportional to the iron content 

in the concentrate, which is a key result of the separation 

operation. The separation model can be presented as a black box, 

as illustrated in Fig. 6 (adapted from [27]). 

 

Fig. 6. SISO black box model obtained from the structural scheme of the pulp 

density-controlled magnetic separator 

The general representation of the system in a black box 

corresponds to the formula of the system's behavior [25]: 

𝑦(𝑡) = 𝑓(𝜑(𝑡)) + 𝑒(𝑡) 
where y(t) represents the iron content in the concentrate β; f(∗) 

denotes the modeled function; ϕ(t) stands for the parameter vector, 

in our case, the pulp density after the hydrocyclone δ; 

e(t) represents the influence noise. 

This approach confirms the effectiveness and adaptability 

of the black-box model in dealing with complex systems where 

accurately modeling internal processes is challenging. The black-

box model allows us to focus on the external behavior 

of the system and utilize system identification methods to build 

a model capable of predicting output variables based on input 

variables. 
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4.2. Data preparation 

To develop and evaluate the Gaussian Process Regression 

(GPR) model, a smoothed signal of 500 data points was employed 

as the input vector X. This signal was fed into a black-box 

dynamic model to generate the corresponding output vector Y, 

as illustrated in Fig. 4. The resulting signal underwent 

preprocessing to ensure its suitability for subsequent modeling 

and analysis, with an adequate number of data points for both 

model training and validation. 

In the context of optimal separator control, the study focuses 

on maximizing the iron content in the concentrate, denoted as β, 

by examining function (1). The optimal operating conditions, 

which determine the values of vector X, were identified at points 

where the iron content in the concentrate reached its maximum, 

particularly in the second and third quadrants. 

An additional objective of the study involves assessing 

the identification capabilities of GPR-trained models 

in the presence of noisy signals. This approach of incorporating 

noise during GPR modeling has been effectively applied 

in prior research [27]. 

In the magnetic ore enrichment process, several disruptive 

factors, or "noises," can be considered: 

 Iron content in the pulp (α). 

 Degree of material liberation (R). 

 Granulometric composition of the pulp (C). 

 Pulp flow rate (q). 

The study aims to investigate the robustness of identification 

methods when input data is subject to noise and to develop GPR-

based models that can adapt to such conditions. To achieve 

this, an additional vector of noisy data was generated based 

on the output data, with the noise level limited to a maximum 

of 0.1% of the output signal's maximum amplitude. 

For training purposes, the input vectors X, Y, and Y' were 

partitioned into two separate sets: a training set and a testing set, 

each containing 250 data points, as depicted in Fig. 7. 

 

Fig. 7. Training and testing sets of input and output data 

4.3. Model training 

Training of the GPR model and prediction of the output signal 

were conducted using MATLAB software in accordance with 

the general methodology [31]. 

% creation of training arrays including input, output, and output 

arrays with noise: 

x_train=x(1:250,:); 

y_train=y(1:250,:); 

y_trainnoised=y_train + 0.001*randn(size(x_train)); 

% creating a test data array similar to the training one: 

x_test=x(251:500,:); 

y_test=y(251:500,:); 

y_testnoised=y_test + 0.001*randn(size(x_test)); 

% training the fitrgp model on noise-free data using different 

covariance functions: squared exponential, exponential, 

Matérn32, Matérn52, rational quadratic. 

gprMdlsq = fitrgp(x_train,y_train, 

'KernelFunction','squaredexponential', 

'OptimizeHyperparameters','auto'); 

gprMdlexp = fitrgp(x_train,y_train, 

'KernelFunction','exponential', 

'OptimizeHyperparameters','auto'); 

gprMdl32 = fitrgp(x_train,y_train, 'KernelFunction','matern32', 

'OptimizeHyperparameters','auto'); 

gprMdl52 = fitrgp(x_train,y_train, 'KernelFunction','matern52', 

'OptimizeHyperparameters','auto'); 

gprMdlrq = fitrgp(x_train,y_train, 

'KernelFunction','rationalquadratic', 

'OptimizeHyperparameters','auto'); 

% predicting test data using models trained on noise-free data: 

[ypred1_sq,~, ~] = predict(gprMdlsq,x_test); 

[ypred1_exp,~, ~] = predict(gprMdlexp,x_test); 

[ypred1_32,~, ~] = predict(gprMdl32,x_test); 

[ypred1_52,~, ~] = predict(gprMdl52,x_test); 

[ypred1_rq,~, ~] = predict(gprMdlrq,x_test); 

% evaluation of the forecast quality using the Mean Squared 

Error metric: 

msesq=immse(ypred1_sq, y_test); 

mseexp=immse(ypred1_exp, y_test); 

mse32=immse(ypred1_32, y_test); 

mse52=immse(ypred1_52, y_test); 

mserq=immse(ypred1_rq, y_test); 

 

The accuracy assessment results of data forecasting using 

models trained based on different covariance functions indicate 

high model quality: all of them showed practically the same level 

of MSE quality indicator for the utilized data (table 1). 

Table 1. Comparison of the MSE metric for different datasets 

Model gprMdlsq gprMdlexp gprMdl32 gprMdl52 gprMdlrq 

MSE 8.959e-06 8.888e-06 8.928e-06 8.871e-06 8.888e-06 

 

 
 a) b) 

 
 c) d) 

Fig. 8. Plots of the minimum objective function value versus the number of function 

evaluations during hyperparameter optimization of GPR models using different 

covariance functions: a) squared exponential; b) exponential; c) Matern 3/2 

function; d) Matern 5/2 function 

 



26      IAPGOŚ 3/2024      p-ISSN 2083-0157, e-ISSN 2391-6761 

As illustrated in Fig. 8, the decrease in the minimum objective 

function value with an increasing number of evaluations indicates 

a successful hyperparameter optimization process for all 

considered covariance functions. According to the training results, 

all models, despite using different covariance functions, achieve 

optimal parameter values in approximately the same number 

of steps, ranging from 5 to 6. 

Based on the provided information and the conducted analysis, 

it can be confidently concluded that the squared exponential 

covariance function is the most reliable choice for the given 

Gaussian Process Regression (GPR) model. This assertion 

is supported by the fact that the range of the hyperparameter σ 

values, for which the expected improvement (objective function) 

is minimized, is an order of magnitude larger when using 

the squared exponential function compared to the other covariance 

functions, all other conditions being equal (Fig. 9). 

 
 a) b) 

 
 c) d) 

Fig. 9. Optimization of GPR model hyperparameters with different covariance 

functions: a) squared exponential; b) exponential; c) Matérn 3/2 function; d) Matérn 

5/2 function  

This wider range of optimal σ values demonstrates 

the robustness and flexibility of the squared exponential function 

in capturing the underlying patterns in the data. Consequently, 

a GPR model utilizing this covariance function is expected 

to exhibit superior generalization capabilities and be less 

susceptible to overfitting, making it a more dependable tool 

for modeling and prediction tasks. 

In light of these findings, it is strongly recommended 

to employ the squared exponential covariance function 

in the GPR model for this particular application. By leveraging 

its advantageous properties, the model is likely to yield more 

accurate and reliable results, ultimately leading to improved 

decision-making and enhanced performance in the given context. 

As previously mentioned, the analysis involved training fitrgp 

models with different covariance functions, such as 'squared 

exponential', 'exponential', 'matern32', 'matern52', and 'rational 

quadratic', on noise-free data. Subsequently, these models were 

utilized to predict test data. The models' forecasting quality 

was evaluated using the Mean Squared Error (MSE) metric. 

The results demonstrated high model accuracy. All the models 

exhibited similar levels of MSE for the applied data, with values 

in table 1 approximately ranging from 8.88e-06 to 8.96e-06. 

This indicates that the choice of covariance function 

in the Gaussian Process Regression (GPR) model does not 

significantly influence the prediction accuracy for the tested data. 

However, this result might be specific to the data used 

in this study, and different results might be obtained with 

different datasets or under different conditions. Additional tests 

with various data types and various noise levels may be necessary 

to understand the impact of the covariance function on the GPR 

model's accuracy better. 

In this regard, further model training was conducted in fully 

automatic mode: 

% automatic training of the fitrgp model on regular gprMdl1 

and noisy gprMdl2 output data: 

gprMdl1 = fitrgp(x_train,y_train); 

gprMdl2 = fitrgp(x_train,y_trainnoised); 

% forecasting test data using trained models: 

[ypred1_ts,~,yint1_ts] = predict(gprMdl1,x_test); 

[ypred2_ts,~,yint2_ts] = predict(gprMdl2,x_test); 

4.4. Processing and interpretation of the results 

During the forecasting process using the trained GPR models 

(gprMdlx), two key variables were obtained: 'ypredx_ts', 

representing the predicted values of the output data, and 'yintx_ts', 

denoting the 95% confidence interval, which reflects the quality 

of the output parameter prediction. 

Visualizing the test data output array alongside the predicted 

values and confidence interval offers valuable insights into 

the learning outcome, particularly the accuracy of data prediction 

using GPR methods (Fig. 10). 

 
 a) b) 

Fig. 10. Accuracy of Gaussian Process Regression training in the context of magnetic 

separation process identification: a) test data without noise; b) noisy test data 

In analyzing the data represented in Fig. 10, the accurate 

forecasting of both sets of test data is apparent. The high accuracy 

is endorsed by the close alignment of the Gaussian Process 

Regression (GPR) model's predictions with the actual test data. 

Significantly, these predictions fall within the 95% confidence 

interval throughout the entire range of testing, demonstrating 

the model's robust performance in predicting the intricacies 

of the magnetic separation process. 

The graphical comparison of predicted versus actual 

test values, depicted in Fig. 11, elucidates the appropriateness 

of the Gaussian Process Regression technique in accurately 

predicting the nonlinear dependencies inherent in magnetic 

mineral separation. The exhibited symmetry along the line 

of perfect correlation implies high predictive precision 

of the adopted model. The coherency between actual and predicted 

values, even when dealing with noisy data, affirms the robustness 

of the Gaussian Process Regression method in tackling 

the complexities of iron ore separation processes. 
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Fig. 12 presents the leave-one-out residuals (loores) 

for the Gaussian Process Regression models applied 

to the magnetic separation process data. The analysis of these 

residual plots reveals several key characteristics that are common 

to both the clean and noisy data models: 

1. Randomness: The residuals are randomly scattered around 

zero, suggesting the absence of systematic errors in the GPR 

models. This indicates that the models have effectively captured 

the underlying patterns in the data without introducing bias. 

2. Normality: The residuals exhibit an approximately 

symmetric distribution, which is consistent with the assumption 

of normality. This suggests that the GPR models have adequately 

accounted for the stochastic nature of the magnetic separation 

process. 

3. Homoscedasticity: The residuals display roughly equal 

variance across all values of the true response, indicating 

the absence of heteroscedasticity. This implies that the GPR 

models have successfully captured the variability in the data, 

regardless of the magnitude of the true response. 

 
 a) b) 

Fig. 11. Predicted vs Actual plot for the test data set in the magnetic separation 

process: a) Data without noise, showcasing the model's precision; b) noisy data, 

demonstrating the model's robustness in handling real-world process variations 

 
 a) b) 

Fig. 12. Leave-one-out residuals for the GPR models in the context of magnetic 

separation process identification: a) clean data, showcasing the model's performance 

under ideal conditions; b) noisy data, demonstrating the model's ability to handle 

real-world process variations 

However, there are notable differences in the shape 

and distribution of data points between the two models. 

In Fig. 11a, which represents the clean data model, the data points 

are more horizontally distributed, suggesting a weaker correlation 

between the true response and the predicted value. Conversely, 

in Fig. 11b, which represents the noisy data model, the data points 

exhibit a more elliptical distribution, indicating a stronger 

correlation between the true response and the predicted value. 

These findings suggest that the GPR models have 

effectively captured the complex nonlinear relationships present 

in the magnetic separation process data, even in the presence 

of noise. The models' ability to maintain randomness, normality, 

and homoscedasticity of residuals, despite the differences in data 

quality, highlights the robustness and adaptability of the GPR 

approach in modeling the intricacies of mineral processing 

systems. This underscores the potential of GPR as a powerful tool 

for process optimization and control in the context of magnetic 

separation and other mineral processing applications. 

In assessing the accuracy and efficacy of the developed 

Gaussian Process Regression (GPR) models, various error metrics 

were employed. These metrics include root mean squared error 

(RMSE), coefficient of determination (R-Squared), mean squared 

error (MSE), mean absolute error (MAE). These measures 

were applied to both training and testing datasets, enabling 

a comprehensive evaluation of the models' performance 

and reliability across different stages of training. The outcome 

of these metrics is presented in table 2. 

Table 2. Resulting metric values 

Metrics 
gprMdl1 gprMdl2 

Validation Testing Validation Testing 

RMSE 0.0031717 0.0029822 0.0033064 0.0031931 

R-Squared 0.66 0.47 0.64 0.43 

MSE 1.00666e-05 8.89376-6 1.0932e-5 1.0196e-5 

MAE 0.0024058 0.0024419 0.0025659 0.0026021 

 

The metric results suggest that the gprMdl1 model, developed 

on noise-free data, exhibits superior predictive accuracy during 

both validation and testing stages, as indicated by its lower 

RMSE, R-Squared, MSE, and MAE values compared to gprMdl2 

model. 

In conclusion, while noise-free data contribute to enhancing 

the model's prediction accuracy, the model trained on data 

with noise (gprMdl2) remains useful when tackling uncertainties 

or variations inherent in the output data. Therefore, the selection 

between noise-free and noisy data should be context-dependent 

and aligned with the specific accuracy demands in predicting 

magnetic separation processes of iron ores. 

5. Conclusions and future work 

This study investigated the application of Gaussian Process 

Regression (GPR) for identifying and modeling nonlinear 

processes in the magnetic separation of iron ores. The results 

confirmed the effectiveness of GPR in modeling the complex 

nonlinear dependencies inherent in these processes, both 

at the input and output, which poses significant challenges 

for other modeling approaches. GPR demonstrated high prediction 

accuracy in capturing these nonlinear relationships. 

Traditional approaches to modeling enrichment processes 

often face difficulties in accounting for the nonlinear interactions 

between input parameters (pulp density, magnetic field intensity, 

water flow rates, etc.) and the resulting indicators (iron content 

in concentrate, tailings, etc.). The application of GPR 

allows overcoming these limitations due to its ability 

to effectively approximate complex nonlinear dependencies based 

on experimental data. 

While the research focused on the magnetic separation 

of iron ores, the findings can be adapted to other types of ores 

and enrichment processes where nonlinear relationships 

are present. However, further studies are necessary to validate 

the effectiveness of GPR in these cases and to address 

the limitations of the current study, such as the limited 

experimental dataset and the exclusion of certain factors like 

particle size distribution, mineralogical composition, and moisture 

content, which may influence the separation process. 

The use of GPR in automatic control systems for magnetic 

separators also demonstrated significant potential for optimizing 

technological processes. 

Based on the obtained results, future work aims to conduct 

the following research: 

1. Detailed analysis of the impact of different covariance 

functions on the accuracy of the GPR model. 

2. Development and testing of prototypes of automatic control 

systems based on GPR models for magnetic separators. 

3. Expansion of research to systems with multiple inputs 

and outputs to study their influence on the process of iron ore 

separation. 
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4. Implementation of machine learning mechanisms 

for automatic adaptation of GPR models to changing operating 

conditions. 

5. Evaluation of the economic efficiency of implementing 

GPR-based systems in practice and identifying ways to optimize 

them to maximize benefits for the enterprise. 
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