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Abstract. The results of polarization-correlation mapping of the fourth parameter of the two-point Stokes vector of microscopic images of histological 

sections of biological tissues with different architectonics of the optically anisotropic polycrystalline component are presented. The coordinate 

distributions of randomly generated values representing the modulus of the fourth parameter of the polarization-correlation vector from microscopic 

images of histological sections of fibrillar tissues (such as skin dermis) and parenchymal tissues (like spleen) have been replicated. The statistical analysis 

results of algorithmically generated coordinate distributions of random values representing the modulus of the fourth parameter of the polarization-

correlation vector from microscopic images of histological sections of biological tissues with varying morphological structures are provided. 
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MAPOWANIE POLARYZACYJNO-KORELACYJNE OBRAZÓW MIKROSKOPOWYCH TKANEK 

BIOLOGICZNYCH O RÓŻNEJ STRUKTURZE MORFOLOGICZNEJ 

Streszczenie. Przedstawiono wyniki mapowania polaryzacyjno-korelacyjnego czwartego parametru dwupunktowego wektora Stokesa z obrazów 

mikroskopowych przekrojów histologicznych tkanek biologicznych o różnej architekturze optycznie anizotropowego składnika polikrystalicznego. 

Odtworzono rozkłady współrzędnych losowo generowanych wartości reprezentujących moduł czwartego parametru wektora korelacji polaryzacji 

z obrazów mikroskopowych przekrojów histologicznych tkanek włóknistych (takich jak skóra właściwa) i tkanek miąższowych (takich jak śledziona). 

Przedstawiono wyniki analizy statystycznej algorytmicznie wygenerowanych rozkładów współrzędnych losowych wartości reprezentujących moduł 

czwartego parametru wektora korelacji polaryzacji z obrazów mikroskopowych przekrojów histologicznych tkanek biologicznych o różnej strukturze 

morfologicznej. 

Słowa kluczowe: polaryzacja, korelacja, wektor Stokesa, analiza statystyczna, tkanki biologiczne 

Introduction 

Laser polarimetry techniques have gained extensive 

use in diagnosing the optically anisotropic characteristics 

of morphological structures within biological tissues and liquids 

[1–3]. Currently, a wide class of optical-electronic devices 

has been created for the instrumental implementation of such 

polarimetric techniques [4, 5, 7]. Using the latest methods 

of polarization Stokes parametric mapping, diagnostically relevant 

relationships between polarization maps of azimuth 

and polarization ellipticity and statistical moments of 1-4 orders 

are determined [1, 6, 8]. As a result, the possibility of successful 

diagnosis of pathological (cancer) and necrotic (time of death) 

conditions of biological tissues was demonstrated [9, 10, 13].  

At the same time, such methods do not provide information 

about the correlation structure of polarization maps of biological 

objects. There is a small number of publications devoted 

to the correlometry of polarization images [11, 14]. However, 

such information can be decisive in improving the sensitivity  

of laser polarimetry methods [12, 15, 16]. 

Our research focuses on investigating the polarization-

correlation patterns within laser fields of histological sections 

from biological tissues with varying morphological structures. 

We aim to identify the most sensitive diagnostic markers 

by statistically analyzing the coordinate distributions 

of the modulus of two-point parameters of the Stokes vector [15]. 

1. Two-point parameters of the Stokes vector 

For the analytical description of the spatial correlation 

structure of stationary distributions of random values of complex 

amplitude values of laser object fields of optically anisotropic

biological layers, a matrix of mutual spectral density is used, 

which has the following form 

 𝑊𝑖,𝑗(𝑝1, 𝑝2) = 𝐸𝑖
∗(𝑝1) ⋅ 𝐸𝑗(𝑝2), 𝑖, 𝑗 = 𝑥, 𝑦 (1) 

By applying the given matrix operator, the following 

analytical expressions were introduced for the set of "two-point" 

parameters of the Stokes vector 

 𝑆0 = 𝑊𝑥𝑥(𝑝, 𝑝2) +𝑊𝑦𝑦(𝑝1, 𝑝2) (2) 

 𝑆1 = 𝑊𝑥𝑥(𝑝1, 𝑝2) −𝑊𝑦𝑦(𝑝1, 𝑝2) (3) 

 𝑆2 = 𝑊𝑥𝑦(𝑝, 𝑝2) +𝑊𝑦𝑥(𝑝1, 𝑝2) (4) 

 𝑆3 = 𝑖[𝑊𝑦𝑥(𝑝1, 𝑝2) −𝑊𝑥𝑦(𝑝1, 𝑝2)] (5) 

where 

 

{
 
 

 
 𝑊𝑥𝑥(𝑝1, 𝑝2) = 𝐸𝑥

∗(𝑝1)𝐸𝑥(𝑝2)

𝑊𝑦𝑦(𝑝1, 𝑝2) = 𝐸𝑦
∗(𝑝1)𝐸𝑦(𝑝2)

𝑊𝑥𝑦(𝑝1, 𝑝2) = 𝐸𝑥
∗(𝑝1)𝐸𝑦(𝑝2)

𝑊𝑦𝑥(𝑝1, 𝑝2) = 𝐸𝑦
∗(𝑝1)𝐸𝑥(𝑝2)

 (6) 

here 𝐸𝑥
∗(𝑝1), 𝐸𝑥(𝑝2) and 𝐸𝑦

∗(𝑝1)𝐸𝑦(𝑝2) – orthogonal components 

of amplitude 𝐸 in neighbors (𝑝1 𝑎𝑛𝑑 𝑝2) points 

of object field; "∗" – notation of complex conjugation operation. 

2. Laser polarization – correlometry optical 

technique 

The optical and functional block diagram of laser polarimetry, 

used in numerous studies [13] of biological layers, is shown 

in Fig. 1. 
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Fig. 1. Optical and functional block diagram of the polarimeter, where 1 – He-Ne laser; 2,3 – collimator; 4 – quarter-wave stationary plate; 6, 9 – mechanically moving quarter-

wave plates; 5, 10 – analyzer and polarizer; 7 – biological layer; 8 – microlens polarizing; 11 – CCD camera; 12 –computer 

3. The method of polarization mapping 

of the polarization-correlation vector 

The experimental method for Stokes correlometry mapping 

of the biological layer's object field involves the following series 

of procedural steps. By applying two-dimensional discrete Fourier 

transforms, distributions of complex amplitudes of the object field 

are reproduced. 

Using a series of the following analytical ratios, 

the parameters of the polarization-correlation vector are calculated 

 𝑆1
12 = 𝐴11 + 𝑖𝐵11 (7) 

 𝐴11 = 𝐸𝑥1𝐸𝑥2 cos(Θ𝑥2 − Θ𝑥1) − 𝐸𝑦1𝐸𝑦2 cos(Θ𝑦2 − Θ𝑦1) (8) 

 𝐵11 = 𝐸𝑥1𝐸𝑥2 sin(Θ𝑥2 − Θ𝑥1) − 𝐸𝑦1𝐸𝑦2 sin(Θ𝑦2 − Θ𝑦1) (9) 

 |𝑆1
12| = √𝐴11

2 + 𝐵11
2  (10) 

 Arg𝑆1
12=𝑎𝑟𝑐𝑡𝑔 (

𝐵11

𝐴11
) (11) 

 𝑆2
12 = 𝐴22 + 𝑖𝐵22 (12) 

 𝐴22 = 𝐸𝑥1𝐸𝑥2 cos(Θ𝑥2 − Θ𝑥1) − 𝐸𝑦1𝐸𝑦2 cos(Θ𝑦2 − Θ𝑦1) (13) 

 𝐵22 = 𝐸𝑥1𝐸𝑥2 sin(Θ𝑥2 − Θ𝑥1) − 𝐸𝑦1𝐸𝑦2 sin(Θ𝑦2 − Θ𝑦1) (14) 

 |𝑆2
12| = √𝐴22

2 + 𝐵22
2  (15) 

 Arg𝑆2
12=𝑎𝑟𝑐𝑡𝑔 (

𝐵22

𝐴22
) (16) 

 𝑆3
12 = 𝐴33 + 𝑖𝐵33 (17) 

 𝐴33 = 𝐸𝑥1𝐸𝑦2 cos(Θ𝑦2 − Θ𝑥1) − 𝐸𝑦1𝐸𝑥2 cos(Θ𝑥2 − Θ𝑦1)(18) 

 𝐵33 = 𝐸𝑥1𝐸𝑦2 sin(Θ𝑦2 − Θ𝑥1) − 𝐸𝑦1𝐸𝑥2 sin(Θ𝑥2 − Θ𝑦1) (19) 

 |𝑆3
12| = √𝐴33

2 + 𝐵33
2  (20) 

 Arg𝑆3
12=𝑎𝑟𝑐𝑡𝑔 (

𝐵33

𝐴33
) (21) 

 𝑆4
12 = 𝑄 + 𝑖𝐹 (22) 

 𝐴44 = 𝐸𝑦1𝐸𝑥2 cos(Θ𝑥2 − Θ𝑦1) − 𝐸𝑥1𝐸𝑦2 cos(Θ𝑦2 − Θ𝑥1)(23) 

 𝐵44 = 𝐸𝑦1𝐸𝑥2 sin(Θ𝑥2 − Θ𝑦1) − 𝐸𝑥1𝐸𝑦2 sin(Θ𝑦2 − Θ𝑥1) (24) 

 |𝑆4
12| = √𝐴44

2 + 𝐵44
2  (25) 

 Arg𝑆4
12=𝑎𝑟𝑐𝑡𝑔 (

𝐵44

𝐴44
) (26) 

The technique for measuring two-point parameters 

of the Stokes vector is given in detail in [1]. Here, for better 

comprehension of the experimental data, we offer only concise 

theoretical details regarding the measured magnitude of the fourth 

parameter of the Stokes vector |𝑆4
12| in microscopic images 

of histological sections of biological tissues.  

 |𝑆4
12| = √𝐴44

2 + 𝐵44
2 ; (27) 

 𝐴44 = 𝐸𝑦1𝐸𝑥2 cos(Θ𝑥2 − Θ𝑦1) − 𝐸𝑥1𝐸𝑦2 cos(Θ𝑦2 − Θ𝑥1)(28) 

 𝐵44 = 𝐸𝑦1𝐸𝑥2 sin(Θ𝑥2 − Θ𝑦1) − 𝐸𝑥1𝐸𝑦2 sin(Θ𝑦2 − Θ𝑥1) (29) 

here 𝐸𝑦1; 𝐸𝑥2 і 𝐸𝑥1; 𝐸𝑦2 ‒ orthogonal components of the complex 

amplitude of laser radiation are the distinct aspects of the laser 

light's complex wave properties, observed at different points 

within a digital microscopic image of histological sections 

of biological tissues; Θ𝑥1,𝑥2; and Θу1,у2 ‒ phase angles. 

4. The arrangement and statistical characteristics 

of polarization-correlation maps specific 

to the skin dermis 

We investigated the variation in parameters 

within polarization-correlation maps, specifically focusing 

on the modulus of the fourth parameter of the polarization-

correlation vector in microscopic images of histological sections 

of skin dermis. This exploration encompassed different 

polarization states of the incident laser beam, including linearly 

polarized states with specified azimuths 00; 900; 450. 

In a series of fragments of Fig. 2 presents the results 

of polarization-correlation mapping of microscopic images 

of histological sections of the dermis of the skin (a representative 

sampling of 23 samples) of people who died as a result 

of myocardial infarction. 

 Analysis of the results of polarization-correlation mapping 

of the modulus of the fourth parameter of the polarization-

correlation vector 𝑆4
12 microscopic images of histological sections 

of the skin dermis revealed: 

 All layered polarization-correlation maps of the modulus 

of the fourth parameter |𝑆4
12|(𝑚 × 𝑛) the two-point Stokes vector 

parameters within a microscopic image of a histological section 

of skin dermis exhibit both coordinate and topographical 

heterogeneity – Fig. 2 – fragments (1)–(3). 

 Histograms of distributions of the modulus of the fourth 

parameter |𝑆4
12|(𝑚 × 𝑛) of the two-point Stokes vector have 

a main extremum |𝑆4
12|(𝑚 × 𝑛) and a fairly wide range 

of changes in random values 0.55÷0.75≤|𝑆4
12|≤ 1 – Fig. 2 – 

fragments (4)–(6). 

The quantitative coordinate structure of the distributions 

of the modulus of the fourth parameter |𝑆4
12|(𝑚 × 𝑛) of the two-

point Stokes vector is characterized by the results of statistical 

analysis [1] ‒ table 1. 

A comparative examination of the statistical moment values 

presented in table 1 revealed: 

 The statistical moments of higher orders, which describe 

the asymmetry and kurtosis of the distributions of the modulus 

|𝑆𝐾4
12|(𝑚 × 𝑛) in a microscopic image of a histological section 

of skin dermis, are significantly higher compared 

to the mean and dispersion values of such distributions ‒ 

𝑍3;4(|𝑆𝐾4
12|) ≫ 𝑍1;2(|𝑆𝐾4

12|). 

 The discrepancies among the values of all statistical moments 

𝑍𝑗=1;2;3;4(|𝑆𝐾4
12|) computed for varying states of polarization 

of the probing laser radiation are negligible, not surpassing 

15%–20%. 
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Fig. 2. Polarization-correlation maps 𝑆𝐾1,2(𝑚 × 𝑛) and histograms 𝐺(𝑆𝐾1,2) of distributions 𝑆𝐾1,2 of a microscopic image of a histological section of the dermis 

of the skin for different states of polarization Ρ of probing laser radiation 

Table 1. Polarization dependences of the magnitude of statistical moments 

of the 1st – 4th orders characterizing the polarization-correlation maps 

|𝑆𝐾4
12|(𝑚 × 𝑛) of a microscopic image of a histological section of the skin dermis  

Ρ 00 450 900 

𝑍1 0.065±0.004 0.076±0.005 0.081±0.005 

𝑍2 0.078±0.004 0.087±0.005 0.098±0.006 

𝑍3 1.83±0.11 1.67±0.09 1.51±0.08 

𝑍4 3.04±0.16 2.82±0.15 2.71±0.14 

 
From a physical standpoint, the observed characteristics 

of polarization-correlation maps within microscopic images 

of histological sections of skin dermis can be linked 

to the predominant influence of fluctuations in random values 

of phase shifts (φ) between orthogonal right- and left-circular 

polarized components of the object laser radiation 

on the magnitude of the fourth parameter of the polarization-

correlation vector ‒ |𝑆𝐾4
12|~√2𝜑1𝜑2 [14]. The sources of circular 

birefringence in the skin dermis are the optically active molecular 

domains found within the papillary layer. These domains 

are composed of protein molecules such as collagen and elastin. 

They exhibit circular birefringence and are characterized 

by relatively small geometric dimensions, typically ranging from 

approximately 2 µm to 5 µm. Moreover, these domains 

are randomly distributed within the volume of experimental 

samples of histological sections of the skin dermis. 

When scanning step by step ∆𝑝 = 𝑝2 − 𝑝1 the correlation between 

the phase shift values of circular birefringence along a series 

of lines in a digital microscopic image of skin dermis histological 

sections is relatively low. This is primarily due to the mismatch 

in sizes and coordinate locations of partial optically active 

molecular domains, along with the deterministic linear 

scanning step.  

The limited impact of changes in the polarization state 

of the irradiating laser radiation on the statistical structure 

of coordinate distributions of random values of the fourth 

parameter of the polarization-correlation vector in microscopic 

images of skin dermis histological sections is linked 

to the azimuthal symmetry observed in the arrangement 

of optically active molecular domains. 

5. The arrangement and statistical characteristics 

of polarization-correlation maps specific 

to the spleen 

In a series of segments from figure 3, the outcomes 

of polarization-correlation mapping are displayed for microscopic 

images of histological sections of spleen parenchymal tissue 

obtained from individuals who passed away due to myocardial 

infarction. 

Analyzing the data obtained from polarization-correlation 

mapping involves examining the coordinate distributions 

of random values representing the modulus of the fourth 

parameter |𝑆𝐾4
12| analysis of the two-point Stokes vector of object 

fields within histological sections of spleen tissue unveiled 

a rise in the correlation consistency of the coordinate structure 

of maps |𝑆𝐾4
12|(𝑚 × 𝑛) for microscopic images of histological 

sections of spleen parenchymal tissue consists of histograms 

depicting distributions of random values representing the modulus 

of the fourth parameter of the two-point Stokes vector |𝑆𝐾4
12| 

have a large range of variation and probability of eigenvalues that 

are different from zero |𝑆𝐾4
12| ≠ 0 ‒ Fig. 3 – fragments (4)–(6). 

Quantitative polarization-correlation maps of microscopic 

images of histological sections of spleen parenchymal tissue 

present statistical moments ranging from the 1st to the 4th orders, 

as detailed in table 2. 
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Examining the data provided in table 2 uncovered 

the superiority of higher-order statistical moments, which portray 

the asymmetry and kurtosis of distributions of random values 

of the quantity |𝑆𝐾4
12|(𝑚 × 𝑛), over the eigenvalues of statistical 

moments of the 1st and 2nd orders. Minor differences (no more 

than 15%-20%) between the values of 𝑍𝑖=1;2;3;4(|𝑆𝐾4
12|) across 

various states of laser irradiation polarization of samples from 

histological sections of spleen parenchymal tissue. 

The physical analysis of the results obtained from polarization 

correlation mapping of microscopic images of histological 

sections of the spleen reveals several identified relationships. 

In the parenchymal architecture of spleen tissue, circular 

birefringence emerges as the predominant mechanism of optical 

anisotropy. The optically active molecular domains within 

the spleen stroma exhibit larger geometric dimensions 

and are more commonly distributed throughout the volume 

of experimental samples of parenchymal tissue, as opposed 

to the circularly birefringent protein complexes found 

in the papillary dermis of the skin. The parenchymal architecture

of the polycrystalline component within spleen tissue contributes 

to a heightened degree of correlation in phase shifts between 

the left- and right- circularly polarized components of the object 

amplitude of laser radiation. As a result of the aforementioned 

factors, distributions of random values representing the modulus 

of the fourth parameter |𝑆𝐾4
12| he polarization-correlation vector 

of microscopic images of histological sections of the spleen 

exhibits significantly larger values and a wider range of variations 

compared to similar parameters determined for the object field 

of samples of fibrillar tissue in the skin dermis. 

Table 2. Statistical moments of the 1st-4th orders characterizing polarization-

correlation maps of a microscopic image of a histological section of the spleen  

Ρ 00 450 900 

𝑍1 0.088±0.005 0.11±0.006 0.13±0.007 

𝑍2 0.13±0.007 0.142±0.008 0.154±0.008 

𝑍3 1.48±0.08 1.57±0.09 1.38±0.07 

𝑍4 2.63±0.14 2.74±0.15 2.46±0.13 

  

 

 

Fig. 3. Polarization-correlation maps 𝑆𝐾1,2(𝑚 × 𝑛) and histograms 𝐺(𝑆𝐾1,2) of distributions 𝑆𝐾1,2 of a microscopic image of a histological section of the spleen for different 

states of polarization 𝛲 

6. Conclusions 

1) Mapping polarization-correlation vector maps' fourth 

parameter from microscopic images of histological sections 

of biological tissues with various architectures of the optically 

anisotropic polycrystalline component was conducted. 

2) It has been determined that all polarization-correlation maps 

depicting the modulus of the fourth parameter |𝑆4
12|(𝑚 × 𝑛) 

of the two-point Stokes vector in microscopic images 

of histological sections from both skin dermis and spleen 

exhibit coordinated and topographically heterogeneous 

characteristics. 

3) Through statistical analysis of the distributions of random 

values representing the modulus of the fourth parameter 

of the polarization-correlation vector in microscopic images 

of histological sections from fibrillar (skin dermis) 

and parenchymal (spleen) biological tissues, it was revealed

that the values of higher-order statistical moments 

characterizing the asymmetry and kurtosis of the distributions 

of the modulus |𝑆𝐾1,2|(𝑚 × 𝑛) in microscopic images 

of histological sections of both skin dermis and spleen 

are significantly larger compared to the mean and dispersion 

values of such distributions ‒ 𝑍3;4(|𝑆𝐾1,2|) ≫ 𝑍1;2(|𝑆𝐾1,2|). 
4) The disparities between the values of statistical moments 

of the 3rd and 4th orders are notably 2–3 times higher, 

suggesting their potential utility as diagnostic indicators 

for pathological alterations in the morphological structure 

of biological tissues. 
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