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Abstract. This manuscript explores a two-dimensional hyperchaotic map for generating chaotic oscillations. Hyperchaotic maps are finding increasing 
applications in various scientific and technological fields due to the unique properties of their generated oscillations. The studied map, based on two 

interconnected piecewise-linear functions, is one of the simplest for generating oscillations with a predetermined distribution of values across a continuous 

parameter space. This simplicity allows for wide applicability in various contexts. The paper presents simulation results demonstrating control over 
the parameters of the dynamic modes. Building upon these modeling results, a two-dimensional hyperchaotic system is implemented using an electric 

circuit. The chosen map is attractive due to its inherent simplicity and ease of parameter control. By adjusting these parameters, the distribution 
of the generated signal's values can be manipulated. The circuit consists of two symmetrical sections connected via feedback loops, employing 

four amplifiers with variable gain. The gain values act as the circuit's implementation of the control parameters. Chaotic oscillations are generated 

by applying a delayed clock signal from an external square wave generator to circuit elements. The obtained experimental results exhibit excellent 
agreement with the simulation data. 
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DWUWYMIAROWA MAPA HIPERCHAOTYCZNA DLA CHAOTYCZNYCH OSCYLACJI 

Streszczenie. W artykule przedstawiono badania dwuwymiarowej mapy hiperchaotycznej pod kątem oscylacji chaotycznych. Mapy hiperchaotyczne 

są coraz częściej wykorzystywane w różnych dziedzinach nauki i techniki ze względu na właściwości generowanych przez nie oscylacji. Mapa oparta 

na dwóch wzajemnie powiązanych, fragmentarycznie skorelowanych funkcjach jest jedną z najprostszych, które mogą generować oscylacje o zadanym 
rozkładzie wartości dla ciągłej przestrzeni parametrów sterujących. Umożliwia to szerokie zastosowanie takiego systemu w wielu zastosowaniach. 

Pokazano wyniki symulacyjnego sterowania parametrami modów dynamicznych. Na podstawie wyników modelowania zaprojektowano implementację 

obwodu elektrycznego dwuwymiarowego układu hiperchaotycznego. Wybór systemu wynika z jego prostoty i łatwości sterowania parametrami. Sterowanie 
parametrami systemu pozwala na zmianę rozkładu wartości generowanych sygnałów. Układ składa się z dwóch symetrycznych części połączonych ze sobą 

sprzężeniami zwrotnymi, opartych na 4 wzmacniaczach o zmiennym wzmocnieniu. Wartość wzmocnienia jest realizacją obwodu parametrów sterujących. 

Generowanie chaotycznych oscylacji następuje po postarczeniu do elementów opóźniających sygnału zegarowego z zewnętrznego generatora fali 
prostokątnej. Uzyskane wyniki eksperymentalne wykazują pełną zgodność z wynikami symulacji. 

Słowa kluczowe: mapa hiperchaotyczna, oscylacje chaotyczne, rozkład zmiennych, implementacja obwodu 

Introduction 

During the active development of information technology 

diversity and complexity of information security problems 

are continuously growing [2]. Data volume is continuously 

increasing, which causes an urgent necessity for high-quality 

generators of special signals to process and protect 

them. Therefore, a major focus of research in cryptography 

and telecommunications is the improvement and development 

of new approaches based on truly random and pseudorandom 

numbers [22]. A significant part of information processing issues 

can be solved through chaotic signals generated by nonlinear 

systems. Despite being deterministic, chaotic systems have 

unpredictable long-term behavior induced by instability which 

causes high sensitivity to initial conditions and parameters. This 

unique property spurred scientists to leverage chaos for various 

applications, including cryptographic algorithms, secure 

and covert communication [3, 9]. 

There are a large number of chaotic systems possessing 

different qualities which makes them not equally applicable to 

protect data. To be suitable for cryptography a chaotic system 

must correspond to strict criteria which the simplest systems are 

not able to meet [1]. In cryptographic applications, preference 

should be given to systems that produce time series whose values 

have a dense and uniform distribution across the continuous range 

of control parameters [7]. 

Ring-coupled discrete multidimensional maps are improved 

versions of one-dimensional linear piecewise functions [6, 13]. 

Implementation of such systems based on a CPU or FPGA 

demonstrates they possess excellent characteristics [5, 11]. 

Schematic implementation of ring-coupled maps presents 

a challenge due to the branching operators used in their defining 

mathematical models [8]. The general method for constructing 

discrete chaotic systems is described in [16]. The basis 

of the circuits is capacitors or sample-and-hold branches 

as memory elements, operational amplifiers for analog realization

of mathematical operations, and switches for controlling 

the circuit's operation. The state of circuits of discrete generators 

is changing under the influence of a clock signal. Any real circuit, 

including a generator of chaotic oscillations, is continuously 

influenced by thermal noise. This means that the chaotic dynamics 

will take place only in scale compared with the size of the attractor 

[20, 21]. Due to the inherent sensitivity of chaos, these noise 

disturbances will randomly alter the oscillation trajectory. 

Consequently, a physical oscillator exhibits chaotic behavior with 

additional random and continuous stochastic effects [4, 19]. 

To achieve a simpler schematic implementation 

for the random number generator based on ring-coupled maps, 

we propose utilizing a two-dimensional hyperchaotic map [10]. 

Simplification is achieved due to the absence of branching 

operators in the mathematical model. At the same time, 

the possibility of obtaining chaotic oscillations with 

a predetermined distribution of values for a continuous range 

of control parameters remains. 

The article is organized as follows. Section 1 covers 

the mathematical model, bifurcation diagrams, and Lyapunov 

exponents of a two-dimensional hyperchaotic system. Section 2 

details the design, components, operation, and experimental 

results of a developed generator circuit. The conclusions 

are presented in Section 3. 

1. Description of the hyperchaotic system 

Hyperchaotic system under study is a two-dimensional 

discrete chaotic map, described by the following equations [10]: 

 {
𝑥(𝑛 + 1) =  𝑎1𝑥(𝑛) − 𝑏1|𝑦(𝑛)| + 1

𝑦(𝑛 + 1) = 𝑎2𝑦(𝑛) − 𝑏2|𝑥(𝑛)| + 1
 (1) 

where 𝑎1,  𝑎2,  𝑏1 and 𝑏2 is system control parameters. To simplify 

the demonstration of chaotic modes in this paper, we assume 

that the control parameters are determined by the following rule: 

 {
𝑎1 = 𝑎2 = 𝑎
𝑏1 = 𝑏2 = 𝑏

 (2) 
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Dimension of the system (1) can be increased using a ring 

or mixed connections. In the case of a ring connection, system (1) 

will take the form: 

 

{
 
 

 
 
𝑥1(𝑛 + 1) =  𝑎𝑥1(𝑛) − 𝑏|𝑥2(𝑛)| + 1

𝑥2(𝑛 + 1) =  𝑎𝑥2(𝑛) − 𝑏|𝑥3(𝑛)| + 1

𝑥3(𝑛 + 1) =  𝑎𝑥3(𝑛) − 𝑏|𝑥4(𝑛)| + 1
⋮

𝑥𝑖(𝑛 + 1) =  𝑎𝑥𝑖(𝑛) − 𝑏|𝑥1(𝑛)| + 1

 (3) 

where i – dimension of the system.  

2. Analyzis of the hyperchaotic system 

System (1) can be chaotic or hyperchaotic depending 

on the value of parameters 𝑎 and 𝑏. Bifurcation diagram 

and Lyapunov exponents analysis are conventionally used 

to determine modes of oscillations. These methods also allow us 

to determine the range of control parameters and oscillation values 

for different modes. Knowing the ranges of parameters within 

which chaotic or hyperchaotic oscillations are possible 

has significant applied value. When the largest Lyapunov 

exponents is positive, chaotic oscillations occur in the system.

Hyperchaos occurs when there are two Lyapunov exponents 

greater than zero. In other cases, the oscillations will have 

a periodic structure or the system will converge to a fixed 

point [23].  

The bifurcation and Lyapunov exponents diagrams of system 

(1) are shown in Fig. 1. Fig. 1b and 1d reveal a wide range 

of control parameters that can induce chaos and hyperchaos 

in the system. Within the parameters ranges a = [-1; 0.48], 

b = 1.493 and a = [0.01], b = [1.42; 1.989], no periodic windows 

are detected. The distribution of the time series is continuous 

between the minimum and maximum values (see Fig. 1a, c). 

This continuous range of control parameters for generating 

non-periodic oscillations allows for the development of a random 

number generator based on a discrete hyperchaotic system 

implementation. As shown in Fig. 1b, when a = -0.95, b = 1.493, 

one Lyapunov exponent is positive 𝜆1 = 0.33, while the second 

is negative 𝜆2 = −0.048, which indicates the presence of chaotic 

oscillations in the system. 

To analyze the behavior and interdependence between 

output variables 𝑥(𝑛) and 𝑦(𝑛), chaotic system phase portraits 

are studied as shown in Fig. 2. 

  
a b 

  
c d 

Fig. 1. Two-dimensional map: bifurcation diagram – (а), Lyapunov exponent diagram as function of parameter a at 𝑏 =  1.493 – (b); bifurcation diagram – (с), Lyapunov 

exponent diagram as function of parameter b at 𝑎 =  0.01 – (d) 

    
a b c d 

Fig. 2. The phase portraits of map (1) in chaotic regime at 𝑎 =  −0.95, 𝑏 =  1.493 – (а); in hyperchaotic regimes at: 𝑎 =  −0.75, 𝑏 =  1.493 – (b); 𝑎 =  0.23, 

𝑏 =  1.493 – (c); 𝑎 =  0.01, 𝑏 =  1.98 – (d) 

When 𝑎 =  −0.95, 𝑏 =  1.493, the chaotic system (1) 

has one positive Lyapunov exponent. In this mode system 

produces identical oscillations and can be considered as two 

connected, identical subsystems that are in complete 

synchronization (Fig. 2a). Non-linear conversion function 

𝑥(𝑛 + 1) =  𝑓(𝑥(𝑛)) is piecewise linear map which consists 

of two two piecewise function (Fig. 3a).  

When parameter 𝑎 increases to 𝑎 =  −0.75, 𝑏 =  1.493 

two Lyapunov exponents are greater than zero 

(𝜆1 = 0.369, 𝜆2 = 0.21), which means that hyperchaos 

appears with phase portrait as shown in Fig. 2b. With 

a further increase in a, the system (1) remains hyperchaotic 

(see Fig. 2c).  
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An interesting case is the hyperchaotic regime at 𝑎 →  0, 

𝑏 =  1.493 in which both Lyapunov exponents are almost equal. 

The phase portrait exhibits a square-like region densely populated 

with dots (Fig. 2d). This indicates statistical independence 

of two variables 𝑥(𝑛) and 𝑦(𝑛). Detailed analysis of iterative 

diagrams (Fig. 3b and c) suggests that the system (1) is cross-

connected two tent maps with weak feedback in the form 

of addends 𝑎𝑥(𝑛) and 𝑎𝑦(𝑛). 
Analysis of test suites for pseudorandomness (eg, NIST 

or Diehard tests [15, 18]) reveals that the key requirement 

to sources of randomness in cryptography is uniform distribution 

of generated numbers. Histograms of the chaotic timeseries 

of system (1) are shown in Fig. 4. A uniform distribution is only 

observed for the case with 𝑎 = −0.0001, 𝑏 =  1.998 (Fig. 4c).  

A common method for randomizing chaotic time series 

involves rejecting several high-order bits in their binary 

representation [3]. This is because the higher-order bits 

significantly influence the formation of the phase portrait 

and the distribution of time series values. At the same time, 

the least significant bits ideally exhibit an unbiased balance 

between “0” and “1”, improving the randomness of the generated 

sequence. An alternative approach to improve the value 

distribution involves increasing the dimensionality according 

to equation (3) using cross-connections [5]. 

   
a b c 

Fig. 3. Graphical representation of nonlinear transformation functions at 𝑎 =  −0.95, 𝑏 =  1.493 – (а); 𝑎 =  0.01, 𝑏 =  1.98 – (b) and (c) 

   
a b c 

Fig. 4. Phase portrait and histogram distribution system (1): at 𝑎 =  −0.75, 𝑏 =  1.493 – (𝑎);  𝑎 =  0.01, 𝑏 =  1.98 – (𝑏);, 𝑎 =  0.0001, 𝑏 =  1.998 – (c) 

3. Electrical circuit and experiment 

Only analog dynamical system can generate truly chaotic 

signals [23]. In case of computer-based realization, regardless 

of the calculation format, chaotic signals will be distorted 

by rounding and timeseries become cyclic, due to operating 

in the finite field [12]. When implementing chaotic systems 

as electronic circuits, the precision of manufactured elements 

and disturbances caused by temperature fluctuations 

and other physical factors can impact their behavior. This can 

lead to discrepancies between real-world circuit behaviour 

and simulation results. While integral designs offer the most stable 

and accurate results, they come at a higher initial cost. Therefore, 

to study the basic modes of operation of the nonlinear system (1), 

this work utilized discrete elements (e.g., resistors, capacitors) 

in the circuit design. 

3.1. Electrical circuit 

To implement (1) as an electronic circuit, it requires rescaling 

the system into a form suitable for hardware tools. We achieve this 

by performing the following substitution: 

 
𝑢(𝑛) = 𝐸𝑢𝑥(𝑛)

𝑣(𝑛) = 𝐸𝑣𝑦(𝑛)
 (4) 

where 𝐸𝑢, 𝐸𝑣 is the regulation voltage that is set for 𝑢(𝑛) and 𝑣(𝑛) 
using two separate power supplies.  

By tuning 𝐸𝑢, 𝐸𝑣 it is possible to regulate the amplitudes 

of oscillation in circuit. 

In order to shift the values of parameter 𝑎1 and 𝑎2 to positive 

ranges, we introduce new parameters 𝐴1 and 𝐴2 such that: 

 
𝑎1 =  𝐴1 − 1
𝑎2 =  𝐴2 − 1

 (5) 

where 𝐴1 and 𝐴2 > 0. 

Considering (4) and (5), system (1) takes the following form: 

 {
𝑢(𝑛 + 1) =  (𝐴1 − 1)𝑢(𝑛) − 𝐵1|𝑣(𝑛)| + 𝐸𝑢
𝑣(𝑛 + 1) = (𝐴2 − 1)𝑣(𝑛) − 𝐵2|𝑢(𝑛)| + 𝐸𝑣

 (6) 

where 𝐴1,  𝐴2, 𝐵1 and 𝐵2 – are new parameters of the system. 

In this way, we obtained a system of equations that can be trivially 

implemented in the form of an electronic circuit. 

For the experimental study of chaotic oscillations generated 

by a hyperchaotic system (6), an electrical circuit shown in Fig. 5 

was developed. As well as the mathematical model (6), 

the scheme generally consists of two coupled parts. Separately, 

each of the parts consists of a block of sampling and holding 

devices, a block of setting 𝐸𝑢 or 𝐸𝑣, a full-wave rectifier 

and a block of mathematical operations based on operational 

amplifiers. 

Setting the regulation voltage for each part is performed 

by applying a voltage of ±12 volts to the variable resistors: 

for 𝐸𝑢 it is R17, for 𝐸𝑣 it is R20. Setting the value of control 

parameters 𝐴1, 𝐴2, 𝐵1, 𝐵2 also implemented on the basis 

of variable resistors. Specifically, resistors R33 and R6 are used 

to tune 𝐴1 and 𝐴2 respectively.  

For absolute value operation |𝑣(𝑛)|, a full-wave rectifier 

is used, consisting of two operational amplifiers (left part of U1) 

and diodes D1 and D2 (Fig. 5). Similarly, for absolute value 

operation |𝑢(𝑛)|, another full-wave rectifier is implemented using 

U3 and diodes D3 and D4. 

The sampling and holding function for both parts 

is implemented using two sample-and-hold chips LF398 

and a logic inverter based on a 2N2222 transistor Q1. Blocks U4 

and U5 are initialized with the values of 𝑢(𝑛 + 1) and 𝑣(𝑛 + 1), 
respectively, on the rising edge of the clock signal (provided 

by the pulse generator). Conversely, blocks U6 and U7 
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are initialized with the values of 𝑢(𝑛) and 𝑣(𝑛), respectively, 

on the rising edge of the inverted clock signal. This design ensures 

that during the first half period of the clock signal, capacitors C1 

and C2 hold the values of 𝑢(𝑛) and 𝑣(𝑛) from the previous 

iteration. In the second half period, capacitors C3 and C4 capture 

the current values of 𝑢(𝑛) and 𝑣(𝑛). Parameters 𝐵1 and 𝐵2 

are set using variable resistors P31 and P32, respectively. 

The specification and nominal values of all used components 

from Fig. 5 are given in table 1. 

 

Table 1. Components and the nominal values of the circuit elements 

Component Specification 

R1,R3,R5,R7,R8,R11-R16, 

R18, R19, R21-R30, R34-R36 
10 kOm ±5% 

R6, R17, R20, R31, R32, R33 variable resistors, 20 kOm ±5% 

R2, R4, R9, R10 20 kOm ±5% 

D1-D4 1N4001 

Q1 2N2222A 

C1-C4 10 nF ±5% 

U1-U3 TL084 

U4-U7 LF398 

 

Fig. 5. Electrical circuit of chaotic generator (4) 

The elements U1-U7 are powered by a bipolar 12-volt power 

supply. The inverter has a separate power supply that provides 

+5 volts to the base of the transistor through resistor R35. 

A clock signal is applied to switch between sample and hold states 

of chips U4-U7. The system will generate chaotic oscillations 

at the frequency of the clock signal. The frequency of the clock 

signal is less than 100 KHz because discrete general-purpose 

elements are used. At higher frequencies, the system will 

be unstable. 

3.2. Experiment 

To experimentally investigate the chaotic oscillator, 

we constructed a breadboard prototype using the components 

listed in table 1.  

According to the specified requirements, we provide 

the corresponding power supply voltages. To demonstrate 

the generator's various chaotic operating modes, we set the clock 

signal frequency to 10 kHz. The experimental oscillograms 

of the generated signals are shown in Fig. 6.  

While the experimental data for oscillations 𝑢(𝑛) and 𝑣(𝑛) 
appear random and unpredictable in Fig. 6a, b, c. The actual 

transformation function, as evidenced by the simulation results, 

is indeed piecewise linear as shown in Fig. 6d, e, f. 

The phase portraits in Fig. 6g, h, i depict the hyperchaotic 

regimes of the oscillator, shown up to scaling factors 𝐸𝑢 

and 𝐸𝑣 similar to Fig. 3. 

To control the amplitude of the oscillations, parameters 𝐸𝑢 

and 𝐸𝑣 were set as follows: Fig. 6a, d, g – 𝐸𝑢 ≈ 𝐸𝑣 = −4 V; 

Fig. 6b, e, h, c, f, i – 𝐸𝑢 ≈ 𝐸𝑣 = −5.5 V.  

Analysis of numerical and experimental results shows that 

the schematic implementation of the hyperchaotic system 

preserves all its original properties, even when noise and other 

physical processes present. 

The goal of further research is the development 

of a higher-speed circuit based on high-precision components 

and a comprehensive statistical study of the obtained 

chaotic oscillations and generator operating modes. This will 

ultimately lead to minimizing the influence of various physical 

processes on the generator's operation. 
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Fig. 6. Hyperchaotic oscillations: 𝑢(𝑛) – upper signal , 𝑣(𝑛), – lower signal – (a, b, c); nonlinear conversion function 𝑢(𝑛) = 𝑓(𝑣(𝑛 + 1)) – (d, e, f); phase portrait at: 

R31≈R32≈14.93 kOm, R6≈R33≈2.5 kOm – (g); R31≈R32≈12.3 kOm, R6≈R33≈16.6 kOm – (h); R31≈R32≈12.3 kOm, R6≈R33≈10.0 kOm – (i) 

4. Conclusions 

The study demonstrates that the system exhibits complex 

behavior across a wide range of control parameter values. 

Computer modeling revealed the system's ability to operate 

in both chaotic and hyperchaotic regimes. Adjusting parameters 

of system allows control over the distribution of generated 

timeseries, making it relevant for various applications. 

Furthermore, a mathematical model suitable for circuit 

implementation was developed to explore the system's 

properties. This model was used to design an electronic 

circuit with discrete components. Experimental results 

of the resulting chaotic oscillator generator aligned well 

with the simulations. The influence of noise and parameters’ 

mismatch was found to be minimal on the system's operation. 

Future research will focus on improving the generator's 

performance by utilizing high-precision components. 
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