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Abstract. The current article deals with the implementation of Reinforcement Learning based Field Oriented Control (FOC) for the induction motors (IM). 

It is pertinent to mention that although conventional controllers like PID are widely used in FOC induction, they are model-based and face problems such 

as parameter adjustment. PID controllers need to be tuned because of the approximations of the model, variations of the parameters during operation, 
and the external disturbances that are uncertain and unpredictable. RL is a machine learning approach that is model-free which can adapt 

to the variations and disturbances. Therefore, these controllers can be an excellent alternative to the conventional controllers. In this study, an RL-based 

controller was used to control the speed of the induction motor using the FOC and space vector modulation (SVM). Computational simulations were 
done using the MATLAB/SIMULINK to test the controllers’ performance under different operating conditions. This study highlights the effectiveness 

of RL in optimizing IM control, offering potential benefits in various industrial and automation applications. 
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STEROWANIE ZORIENTOWANE POLOWO DLA SILNIKÓW INDUKCYJNYCH 

OPARTE NA SZTUCZNEJ INTELIGENCJI 

Streszczenie. Niniejszy artykuł dotyczy implementacji uczenia ze wzmacnianiem (Reinforcement Learning – RL) opartego na sterowaniu polowym (FOC) 

dla silników indukcyjnych (IM). Należy wspomnieć, że chociaż konwencjonalne regulatory, takie jak PID, są szeroko stosowane w indukcji FOC, są one 

oparte na modelu i napotykają problemy, takie jak dostosowanie parametrów. Regulatory PID muszą być dostrajane ze względu na przybliżenia modelu, 

zmiany parametrów podczas pracy, oraz zewnętrzne zakłócenia, które są niepewne i nieprzewidywalne. RL to podejście oparte na uczeniu maszynowym, 

które jest wolne od modelu i może dostosowywać się do zmian i zakłóceń. Dlatego też regulatory te mogą być doskonałą alternatywą dla 
konwencjonalnych regulatorów. W niniejszym badaniu do sterowania prędkością silnika indukcyjnego wykorzystano sterownik oparty na RL, 

wykorzystujący FOC i modulację wektora przestrzennego (SVM). Symulacje obliczeniowe przeprowadzono przy użyciu MATLAB/SIMULINK w celu 

przetestowania wydajności sterowników w różnych warunkach pracy. Badanie to podkreśla skuteczność RL w optymalizacji sterowania IM, oferując 
potencjalne korzyści w różnych zastosowaniach przemysłowych i automatyzacji 

Słowa kluczowe: silnik indukcyjny, sterowanie polowe, przekształtnik NPC, uczenie ze wzmacnianiem, agent TD3 

Introduction 

Owing to their dependability and affordability, induction 

motors are widely used in industries [9]. Nonetheless, it can 

become difficult to control them particularly with respect to torque 

and motor speed regulation. Vector control, also known 

as Field Oriented Control (FOC), was thus developed to overcome 

such difficulties. Proposed in the 1970s by Hasse [8] 

and Blaschke [3], it allows for independent torque and flux 

control, like in a separately excited DC machine. By representing 

motor quantities in vector format, it ensures good performance 

characteristics in both the steady state as well as during dynamic 

conditions with good transient response. With FOC, the algorithm 

of control effects the transformation to the synchronous reference 

frame in which all the variables are expressed as DC quantities, 

and simplifies the control. Although direct control of induction 

motors (IM) in industry is commonly employed, there are 

limitations such as noise interference, disturbances, non-linearities 

and load variations [18]. Use of Artificial intelligence (AI) 

for direct control could address these concerns precisely 

and effectively. Reinforcement learning involves training a system 

using trial-and-error processes so that it can make decisions 

by itself. By selecting actions that lead to good results while 

avoiding an action that leads to bad ones the system learns how 

to maximize rewards [19]. This approach deals effectively 

with complex systems having multiple variables which are not 

well controlled through conventional techniques. This machine 

learning method learns on its own how best optimize performance 

but requires prior learning phase and may be more complicated 

in terms of implementation [5]. 

Multilevel inverters (MLIs) provide numerous advantages 

over conventional two-level voltage source inverters. These 

benefits include reduced ratings for individual devices, 

minimized harmonic distortion in the output voltage waveform, 

lower common-mode voltage, decreased 𝑑𝑣/𝑑𝑡 stress on power 

electronic components, and operation at reduced switching 

frequencies while maintaining the same total harmonic distortion 

(THD) in the output voltage [1]. Despite these advantages, MLIs 

also introduce several challenges, such as reduced reliability, 

lower efficiency, increased control complexity, and difficulties 

in maintaining capacitor voltage balance [2]. The three main 

topologies of multilevel converters are: Diode Clamped or Neutral 

Point Clamped, Flying Capacitor Multilevel and Cascaded 

H-Bridge (CHB) Multilevel [1].  

The most commonly used modulation techniques for MLIs 

are carrier-based sinusoidal pulse-width modulation (SPWM) 

and space vector modulation (SVM). Of the two, SVM has several 

advantages, such as better utilization of the DC link voltage, more 

flexibility in designing the switching pattern, lower switching 

frequency for the power devices, and easy implementation 

in digital systems [1]. This makes SVM a favourite for many 

industrial applications. This approach, commonly referred 

to as SVM-FOC, helps mitigate high ripple levels despite 

its inherent complexity. The SVM-FOC algorithm employs linear 

PI controllers for torque and flux to calculate the reference control 

voltages [11]. Traditional mathematical models in terms 

of conventional analytical techniques are generally based 

on approximate assumptions and do not consider unmodeled 

dynamics. Furthermore, such models can be affected by parameter 

variations due to environmental conditions and/or external 

disturbances during operation. Consequently, linear control 

approaches, such as PI controllers, cannot meet the optimal 

performance expectations. Leveraging artificial intelligence 

methods to FOC of IM fed from space vector modulated converter 

holds the promise of improving system’s performance [4].  

The application of the Q-Learning algorithm to determine 

the optimal action for each state within the environment 

is introduced in [13]. In this approach, states are defined 

by quantized values of electromagnetic torque and motor speed, 

while actions are represented by magnetic current. Simulation 

results indicate that this method can reduce power loss 

by approximately 50% compared to the standard FOC motor 

driver when the motor operates under low loads. To attain high 

estimation accuracy and a compact model size, the authors have 

employed physically-inspired neural network structures derived 

from expert knowledge, rather than arbitrary topologies 

(a technique known as hybrid modelling) [14]. The key benefit 

of this method is that training the embedded neural networks 

requires only recorded torque measurements, without the need 

for additional flux measurements. Across the entire operating 

range, this approach achieves a root mean square torque estimation 

error of just 1.0% relative to the nominal torque. In contrast, using 
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a standard open-loop current model to observe magnetic flux 

results in a normalized root mean square torque error of 4.6%. 

The design of a non-linear feedback controller for an induction 

motor utilizing a reinforcement learning agent is presented in [10]. 

The proposed controller operates using only the reference speed 

and the error (the difference between the reference speed 

and the actual output) as control inputs to generate the necessary 

torque, ensuring the rotor speed aligns with the reference speed. 

The reinforcement learning-based speed control algorithm 

is implemented, and the closed-loop system is thoroughly 

analysed. The results demonstrate that the proposed controller 

effectively manages the outer loop, which controls the induction 

motor's speed by taking various actions based on the given state. 

The performance of the proposed control schemes is validated 

under different operating conditions through simulation results. 

A method for generating a parameter lookup table that can achieve 

optimal torque across a wide range of currents and speeds, 

even when current commands are not set accurately is introduced 

in [12]. Utilizing the motor's testing data, this method employs 

a reinforcement learning algorithm to iteratively create 

the parameter lookup tables. Experimental results indicate that 

the proposed method can learn the appropriate parameters 

from operational data to produce optimal torque. Comparative 

studies reveal that this method can generate 5%–25% more torque 

than traditional model-based parameter estimation methods across 

various currents and speeds. Additionally, the proposed method 

features faster convergence and higher identification resolution 

compared to many conventional search-based methods. 

The aim of this paper is to design and simulate FOC for the IM 

fed from space vector modulated inverter using reinforcement 

learning. To evaluate the performances of the proposed method, 

we simulating different conditions: adding a load, changing 

the speed and then inversing it to evaluate how well the system 

adapt to different real-world scenarios. The simulations were done 
using MATLAB/SIMULINK and Reinforcement learning toolbox. 

1. Space vector modulation 

In the FOC strategy, SPWM is replaced by SVM for selecting 

voltage vectors. This approach maintains a constant switching 

frequency, effectively addressing the issue of high torque 

and phase current ripples—a key limitation of conventional FOC. 

SVM, first introduced in the late 1980s as an alternative to basic 

PWM, has since undergone extensive development in both theory 

and practical implementation. SVM is based on the space vector 

representation of the voltage output from the inverter. Unlike 

conventional PWM, it does not use separate modulators for each 

phase. Instead, reference voltages are expressed as a space voltage 

vector, representing voltage components in the complex plane. 

The core principle of SVM involves predicting the inverter voltage 

vector by projecting the reference vector onto the two adjacent 

vectors corresponding to two active switching states [17]. 

Based on inverter level, the switching vectors form 

a hexagonal diagram divided into six sectors, each spanning 60°, 

as illustrated in Figure 1. SVM offers several advantages, 

including reduced ripple, lower THD, and minimized switching 

losses [15]. 

 

Fig. 1. Diagram of voltage space vector 

The application time for each vector is determined through 

vector calculations, with any remaining time within the switching 

period allocated to the null vector. For instance, when the 

reference voltage lies in sector 1, as illustrated in Figure 2, it can 

be synthesized by combining the vectors 𝑉1, 𝑉2 and 𝑉0 (the zero 

vector) [7]. 

 

Fig. 2. Reference vector as a combination of adjacent vectors at sector 1 

The volt-second balance principle for sector 1 can be 

represented as: 

 𝑉𝑠
∗𝑇𝑧 = 𝑉1𝑇1 + 𝑉2𝑇2 + 𝑉0𝑇0  (1) 

 𝑇𝑧 = 𝑇1 + 𝑇2 + 𝑇0 (2) 

The application times for the voltage vectors, 𝑇1, 𝑇2, and 𝑇0, 

correspond to their respective durations within the sampling period 

𝑇𝑧. The values of 𝑇1 and 𝑇2, associated with the voltage vectors, 

are determined through straightforward projections.  

 𝑇1 =
𝑇𝑧

2𝑉𝑑𝑐
(√6𝑉𝑠𝛽

∗ − √2𝑉𝑠𝛼
∗ ) (3) 

 𝑇2 =
√2𝑇𝑧

𝑉𝑑𝑐
𝑉𝑠𝛼
∗  (4) 

Using 𝑉𝑑𝑐, the DC bus voltage, the switching times (duty 

cycles) can be calculated as follows [21, 22]. Figure 3 illustrates 

this process, while Table 1 provides a summary of the switching 

times (outputs) for each sector. 

 𝑇𝑎𝑜𝑛 =
𝑇𝑧−𝑇1−𝑇2

2
 (5) 

 𝑇𝑏𝑜𝑛 = 𝑇𝑎𝑜𝑛 + 𝑇1 (6) 

 𝑇𝑐𝑜𝑛 = 𝑇𝑏𝑜𝑛 + 𝑇2 (7) 

 

Fig. 3. Switching times of sector 1 

Table 1. Switching times for each sector 

Sector 1 2 3 4 5 6 

𝑆𝑎 𝑇𝑏𝑜𝑛 𝑇𝑎𝑜𝑛 𝑇𝑎𝑜𝑛 𝑇𝑐𝑜𝑛 𝑇𝑏𝑜𝑛 𝑇𝑐𝑜𝑛 

𝑆𝑏 𝑇𝑎𝑜𝑛 𝑇𝑐𝑜𝑛 𝑇𝑏𝑜𝑛 𝑇𝑏𝑜𝑛 𝑇𝑐𝑜𝑛 𝑇𝑎𝑜𝑛 

𝑆𝑐 𝑇𝑐𝑜𝑛 𝑇𝑏𝑜𝑛 𝑇𝑐𝑜𝑛 𝑇𝑎𝑜𝑛 𝑇𝑎𝑜𝑛 𝑇𝑏𝑜𝑛 

2. Modeling of the induction motor 

The equivalent IM model is a simplified representation 

of the motor using mathematical equations [16]. These equations 

were used to describe motor’s behavior in relation to current, 

voltage, torque and speed. This model is commonly employed 

in simulation studies and designing control systems [6]. 

The parameters of these models are usually obtained from 

experimental measurements or provided by motor manufacturers. 

Among these parameters there are stator phase resistance 𝑅𝑠 
and rotor phase resistance 𝑅𝑟, stator phase inductance 𝐿𝑠 
and rotor phase inductance 𝐿𝑟, the mutual inductance 𝐿𝑚 
and the electrical time constant 𝜏. 
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2.1. Voltage equations 

The matrices below summarize the 3 stator flow equations: 

 [
𝜙𝑎𝑠
𝜙𝑏𝑠
𝜙𝑐𝑠

] = [
𝐿𝑠 𝑀𝑠 𝑀𝑠

𝑀𝑠 𝐿𝑠 𝑀𝑠

𝑀𝑠 𝑀𝑠 𝐿𝑠

] [
𝐼𝑎𝑠
𝐼𝑏𝑠
𝐼𝑐𝑠

] +𝑀

[
 
 
 
 cos(𝜃) cos (𝜃 −

4𝜋

3
) cos (𝜃 −

2𝜋

3
)

cos (𝜃 −
2𝜋

3
) cos(𝜃) cos (𝜃 −

4𝜋

3
)

cos (𝜃 −
4𝜋

3
) cos (𝜃 −

2𝜋

3
) cos(𝜃) ]

 
 
 
 

[
𝐼𝑎𝑟
𝐼𝑏𝑟
𝐼𝑐𝑟

]  (8) 

 [𝐿𝑠𝑠] [𝑀𝑠𝑟] 
In a similar way, the rotor flow equations: 

 [
𝜙𝑎𝑟
𝜙𝑏𝑟
𝜙𝑐𝑟

] = [
𝐿𝑟 𝑀𝑟 𝑀𝑟

𝑀𝑟 𝐿𝑟 𝑀𝑟

𝑀𝑟 𝑀𝑟 𝐿𝑟

] [
𝐼𝑎𝑟
𝐼𝑏𝑟
𝐼𝑐𝑟

] +𝑀

[
 
 
 
 cos(𝜃) cos (𝜃 −

2𝜋

3
) cos (𝜃 −

4𝜋

3
)

cos (𝜃 −
4𝜋

3
) cos(𝜃) cos (𝜃 −

2𝜋

3
)

cos (𝜃 −
2𝜋

3
) cos (𝜃 −

4𝜋

3
) cos(𝜃) ]

 
 
 
 

[
𝐼𝑎𝑠
𝐼𝑏𝑠
𝐼𝑐𝑠

]  (9) 

 [𝐿𝑟𝑟] [𝑀𝑟𝑠] 

 [𝑉𝑠] = 𝑅𝑠[𝐼𝑠] +
𝑑

𝑑𝑡
([𝐿𝑠𝑠][𝐼𝑠]) +

𝑑

𝑑𝑡
([𝑀𝑠𝑟][𝐼𝑟])  (10) 

 [0] = 𝑅𝑟[𝐼𝑟] +
𝑑

𝑑𝑡
([𝐿𝑟𝑟][𝐼𝑟]) +

𝑑

𝑑𝑡
([𝑀𝑟𝑠][𝐼𝑠])  (11) 

2.2. Mechanical equations 

The characteristics of the induction machine include the 

electrical parameters (voltage, current, flux) and the mechanical 

ones (torque, speed) [6]. 

 {
𝐶𝑒 = 𝑝[𝐼𝑠]

𝑡[𝑀𝑠𝑟][𝐼𝑟]

𝐽
𝑑

𝑑𝑡
Ω = 𝐶𝑒 − 𝐶𝑟 − 𝑘𝑓Ω

  (12) 

𝐽 –   moment of inertia of the rotating masses, 𝐶𝑟 –   resistant torque 

applied to the machine shaft, 𝐶𝑒 –   electromagnetic torque, 

𝛺 –   rotor electrical speed, 𝐾𝑓   –   viscous friction coefficient. 

2.3. State equations 

An IM has the stator voltages 𝑉𝑠𝑑 and 𝑉𝑠𝑞  as control variables 

and as a disturbance the resisting torque 𝐶𝑟. Several state variables 

can describe the IM [6]. In our study, it will be represented 

by the stator currents and the rotor fluxes (𝐼𝑑𝑠, 𝐼𝑞𝑠, 𝜑𝑑𝑟, 𝜑𝑞𝑟). 

The mathematical model is in the form: 

 [𝑋̇] = [𝐴][𝑋] + [𝐵][𝑈]  (13) 

where: 

[𝑋]  – state vector, [𝑖𝑑𝑠, 𝑖𝑞𝑠, Φds, Φ𝑞𝑠]
𝑇

, [𝑈]  – command vector 

[𝑉𝑑𝑠, 𝑉𝑞𝑠 , 0, 0]
𝑇
, [𝐴], [𝐵]  – matrices related to flow control. 

The IM model in the form of an equation of state 

in a frame of reference linked to the rotating field can be written 

as follows: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑑

𝑑𝑡
𝑖𝑑𝑠  =

1

𝜎.𝐿𝑠
 [
𝑉𝑑𝑠 − (𝑅𝑠 +

𝑀2𝑅𝑟

𝐿𝑟
2 ) 𝐼𝑑𝑠 + 𝜎𝐿𝑠𝜔𝑠𝑖𝑞𝑠 +

𝑀

𝑇𝑟𝐿𝑟
φ𝑑𝑟

+𝜔𝑟
𝑀

𝐿𝑟
 φ𝑞𝑟

]

𝑑

𝑑𝑡
𝑖𝑞𝑠  =

1

𝜎.𝐿𝑠
[
𝑉𝑞𝑠 − (𝑅𝑠 +

𝑀2𝑅𝑟

𝐿𝑟
2 ) 𝐼𝑞𝑠 + 𝜎𝐿𝑠𝜔𝑠𝑖𝑑𝑠 +

𝑀

𝑇𝑟𝐿𝑟
φ𝑞𝑟

+𝜔𝑟
𝑀

𝐿𝑟
 φ𝑑𝑟

]

𝑑

𝑑𝑡
φ𝑑𝑟 =

𝑀

𝑇𝑟
𝐼𝑑𝑠 −

1

𝑇𝑟
φ𝑑𝑟 + 𝜔𝑠φ𝑞𝑟

𝑑

𝑑𝑡
φ𝑞𝑟 =

𝑀

𝑇𝑟
𝐼𝑞𝑠 −

1

𝑇𝑟
φ𝑞𝑟 + 𝜔𝑠φ𝑑𝑟

𝐶𝑒𝑚 =
𝑝𝑀

𝐿𝑟
(𝜑𝑑𝑟𝐼𝑞𝑠 −𝜑𝑞𝑟𝐼𝑑𝑠)

𝑑Ω

𝑑𝑡
=

1

𝐽
𝐶𝑒𝑚 −

𝐶𝑟

𝐽
−
𝐾𝑓

𝐽
Ω

(14) 

with: 𝜎 = 1 −
𝐿𝑚
2

𝐿𝑠𝐿𝑟
  equals the Dispersion Coefficient. 

3. Field-oriented control by reinforcement 

learning 

RL applied to direct control of induction motors is a novel 

approach in this field. The method employs machine learning 

techniques to dynamically adjust control parameters that improve 

the efficiency, performance and responsiveness of engine. 

It differs from traditional methods because it automatically adapts 

to changes in load and operating conditions thereby potentially 

increasing energy efficiency as well as reducing maintenance 

costs. The FOC for IM diagram is shown in Fig. 4. This section 

expounds on the principles and benefits associated with 

this emerging technology in IM control.  

 Automated decision-making (for actions and/or control) within 

a complex domain with unclear constraints. 

 Learning through experience, establishing a behavioral 

strategy (known as policy) based on observed failures 

or successes (reinforcements or rewards). 

 

Fig. 4. Field-oriented control for induction motors

3.1. The RL agent 

We used RL agent to replace the regulators of direct 

and quadrature currents by using vector control with speed 

regulation and cascaded current control; thus, making significant 

step closer towards self-controlled adaptive motor. The RL agent 

decides which actions including modulation voltage or changing 

some of the controlling parameter depending on the information 

received, it then chooses those actions having higher values 

of rewards. The model was developed for optimization purposes 

when transferring into an RL agent so that real-time optimization 

can improve motor performance, by adapting the control to load 

variations. The RL agent learns the behavior of our control system 

and provides corrective signals for the system after the learning 

phase.  

3.2. Insertion of RL 

We replaced the PI corrector of the internal loop 

of the quadrature and direct currents with the RL block (Fig. 5), 

which includes other components (observations, rewards, 

and the RL agent). 

 RL Agent: to be trained, 

 Reward: the function for calculating rewards for the RL agent, 

 Observations: the states of the environment observed 

by the RL agent, 

 Action: the output provided by the RL agent. 
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Fig. 5. Control loop using the RL 

3.3. State observations 

This block represents data gathered from the environment 

by an agent, which gives information on the behaviour 

of the system usually in form of data or variables that are relevant 

to the agents decision-making process. For this step, we will 

use our Simulink diagram to create our own state observer. 

In our case, IM speed will be included as well as integration 

of 𝐼𝑑 and 𝐼𝑞 current errors in order to have our state observer. 

3.4. Reward function 

In this step, our function assigns a numerical value to each 

action taken by an agent. It guides the agent towards desired 

behaviors by favoring beneficial actions and penalizing 

undesirable actions. The reward function utilized is as follows: 

𝑟𝑡 = −(5𝑖𝑑 𝑒𝑟𝑟𝑜𝑟
2 + 5𝑖𝑞 𝑒𝑟𝑟𝑜𝑟

2 + 0.1∑ ( 𝑢𝑡−1
𝑗
)𝑖

2
 ) − 100𝑑 (15) 

with the parameters: 

( 𝑢𝑡−1
𝑗
) – previous step actions, 

𝑑 – an indicator that equals 1 if the simulation is finished 

so early. 

We observe that the reward is determined based 

on the quadratic reward penalty, which penalizes the deviation 

from the optimal control. The block diagram in Simulink 

for the reward block is presented in Fig. 6. 

 

Fig. 6. Block diagram of the reward function 

3.5. Creation of RL Agent 

Before the training of the agent, it is necessary to configure 

the parameters of our algorithm utilizing deep neural networks, 

commonly referred to as deep reinforcement learning (DRL). 

We choose hyperparameters for Twin Delayed Deep 

Deterministic Policy Gradient (TD3) agent such as learning rate, 

degradation factor, exploration parameters. These parameters have 

much effect on how the agent learns and explores its environment 

with aim to perfecting its action policy. Fig. 7 represents the block 

diagram of the agent, as the Fig. 8 shows different options used 

for its configuration. 

 

Fig. 7. RL Agent block diagram 

 

Fig. 8. TD3 Agent Options 

The first step is to define the observations that can be made 

by an agent from its environment and also the actions it can do. 

This configuration shows how far the agent can go in interacting 

with its environment. We construct two neural networks that will 

be used as the actor (decision making) as well as critic (evaluating 

actions) for this interaction. The critic network has two entry 

points (for observations and actions) and outputs estimation 

of Q function. The actor network takes input from observations 

and produces output on what action to take. The learning rate 

for actors is 1e-3, gradient threshold equals 1 while L2 

regularization factor is 1e-3 for critics. 
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4. Results 

Agent learning step involves training it using TD3 algorithm 

in RL framework. The agent learns to make decisions based 

on an actor-critic model through maximizing accumulated rewards 

while refining its action policy. Here are the training parameters: 

Each training session is a set of 1000 episodes, each consisting 

of 5000 steps, and the mini-batch size is 512. To encourage long 

term gains we use a discount factor of 0.995. Our training will stop 

when the evaluation average cumulative reward surpasses -75. 

This means that the agent can follow reference speeds. 

The learning graph is presented in Fig. 9. 

 

Fig. 9. RL training progression 

In Fig. 10, we tested our model before it finishes learning. 

The performance for our IM control model is shown which 

demonstrates its current state as not fully optimized. However, 

these results provide insights about the capabilities and behaviour 

of this model. The performance of the RL based IM control during 

training, the agent learned to follow the reference but still did not 

capture all dynamics, especially when the speed is inverted. 

 

Fig. 10. Speed response while RL training 

The performance of the RL based IM control is shown 

in Fig. 11. the agent learned to follow the reference even when 

we inverted the speed, meaning the agent learns the system 

dynamics with time. At 3-seconds mark, a load was introduced 

thus activating RL algorithm to adapt its motor control strategies 

to meet higher demands in terms of power supply needed by loads 

put on it hence requiring more power inputs to keep track with 

load changes. By the 6-second mark, the model increase speed 

reacting to the demand. Furthermore, at the 9-second mark, 

the algorithm followed the reference when we inverted the motor 

speed, indicative of its robustness in handling complex control 

scenarios. The tracking error remains zero in the 3 applied 

disturbances. The motor delay time in the start is 0.6 second, 

1 second when the extra load being added. When increasing 

and then decreasing speed of the motor, the settling time 

is 0.5 second and 1 second respectively. It should be noted that 

overshoot percentage is 5% for motor initiation, 13% during load 

application, for speed increase 4%, while speed reversal 5%. When 

it comes to the disturbance resilience, our model consistently 

returns back to the reference state after disturbances, proving 

our model robustness. This evaluation highlights the effectiveness 

of RL in optimizing IM control, offering potential benefits 

in various industrial and automation applications. 

In Fig. 12, we present the direct and quadrature currents 𝐼𝑑 

and 𝐼𝑞, which are essential parameters for assessing performance 

of our IM control system. These currents help us understand how 

well our motor operates as well as its efficiency. By monitoring 

these quantities, we can evaluate how effectively the system 

manages torque and flux of a motor ensuring an optimal operating 

condition. Visualizing the 𝐼𝑑 and 𝐼𝑞, provide important information 

regarding whether our control strategy is effective and whether 

the motor works stably and efficiently or not. Our model track 

both currents when a load is added and speed increased, but there 

is a brief disturbance of the direct current during reversal of speed. 

 

Fig. 11. Speed and torque response 

 

Fig. 12. Courants I_d and I_q responses 
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Figure 13 compares voltage 𝑉𝑎 against its homologue obtained 

through SVM at the 3-second, 6-second, and 9-second marks. 

This enables us to have a clear view on how effective 

this particular modulation technique controls the motor. Through 

comparing 𝑉𝑎 which is reference voltage with actual voltage 

generated via SVM, this can provide us with insights regarding 

accuracy for modulation and closeness of system in tracking 

the required voltage waveform. Assessment of the interconnection 

between these two signals helps in evaluating SVM algorithm 

efficacy as well as assessing its impact on motor efficiency 

and dynamic response.  

 

 

 

Fig. 13. Comparison of 𝑉𝑎 (in red) and its homologue in space vector modulation 

(in green) 

5. Disscussion 

RL has several advantages as opposed to traditional control 

methods. One major advantage is its adaptability to the dynamic 

and uncertain environment without requiring a precise model 

of the system dynamics. RL’s ability to learn from experience 

enables it to keep improving continuously over time, thus 

making it highly relevant in changing environments or tasks. 

However, when compared with conventional control approaches, 

RL algorithms require a large amount of data and exploration 

for learning effective policies. In some cases, this can be 

inefficient especially in systems where data collection is expensive 

or time-consuming as opposed to classical control approaches 

that might involve mathematical models or heuristics. The RL 

can be computationally demanding, requiring considerable 

computational resources and training time particularly 

in high-dimensional or continuous action spaces. Moreover, 

these RL models are sensitive to uncertainties in their environment 

and may fail at generalizing over unseen scenarios or noisy data. 

They also need to balance between exploration (trying new actions 

in order to find better policies) and exploitation (doing what 

we already know is best). In safety-critical applications, RL 

algorithms might exhibit unstable or unsafe behavior during 

learning, which is problematic. 

A range of factors must be taken into account when 

implementing RL such as reward design, hyperparameter tuning, 

environment setup and training infrastructure. Nonetheless, RL 

holds considerable promise in domains with complex dynamics 

but its limitations must be addressed. Therefore, addressing these 

limitations and developing more robust RL algorithms are still 

active research areas. The full potential of RL in optimizing IM 

control in industrial and automation applications can be realized 

if scalable RL algorithms and methodologies tailored to electrical 

machines are developed by researchers involved in this area. 

6. Conclusions 

This paper aims to investigate controlling of an IM through 

a space vector modulated inverter using RL. This AI technique 

can adapt well to changing environments and optimize over time, 

which suggest that the model has potential advantages in terms 

of adaptation and performance optimization for more complex 

dynamic systems compared to vector control with PI controller. 

This study highlights the effectiveness of RL in optimizing 

IM control, offering potential benefits in various industrial 

and automation applications. Finally, the selection between these 

methods will have to be based on specific application requirements 

and objectives. Our paper detailed the implementation of RL 

in motor control thus enabling future work in regard 

to sophisticated applications for controlling IM. 
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