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IMPROVING -PARAMETERIZED DIFFERENTIAL TRANSFORM METHOD 

WITH DANDELION OPTIMIZER FOR SOLVING ORDINARY 

DIFFERENTIAL EQUATIONS 
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University of Mosul, Mathematics Department, Mosul, Iraq 

Abstract. In this manuscript, we aim to address Ordinary Differential Equations (ODEs) by α-Parameterized Differential Transform Method (α-PDTM). 

Additionally, we seek to enhance the effectiveness of α-PDTM by incorporating the Dandelion Optimizer (DO). The DO plays a crucial role in optimizing 

the parameter α, ensuring its adjustment and modification to secure the most favorable value. This refinement results in a more accurate approximation 
compared to conventional methods. The proposed approach, referred to as (αDO-PDTM), demonstrates a solution distinguished by its reliability 

and efficiency, as determined through the computation of Maximum Absolute Error (MAE) and the Mean Square Errors (MSE). 
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UDOSKONALENIE -PARAMETERYZOWANEJ METODY PRZEKSZTAŁCENIA 

RÓŻNICZKOWEGO Z OPTYMALIZATOREM DANDELION DO ROZWIĄZYWANIA 

RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH 

Streszczenie. Celem niniejszego manuskryptu jest rozwiązanie równań różniczkowych zwyczajnych (ODE) metodą α-parametryzowanej transformacji 

różniczkowej (α-PDTM). Ponadto staramy się zwiększyć skuteczność α-PDTM poprzez włączenie optymalizatora Dandelion (DO). DO odgrywa kluczową 

rolę w optymalizacji parametru α, zapewniając jego dostosowanie i modyfikację w celu zabezpieczenia najbardziej korzystnej wartości. To udoskonalenie 
skutkuje dokładniejszym przybliżeniem w porównaniu z metodami konwencjonalnymi. Proponowane podejście, określane jako (αDO-PDTM), demonstruje 

rozwiązanie wyróżniające się niezawodnością i wydajnością, co zostało określone poprzez obliczenie maksymalnego błędu bezwzględnego (MAE) 

i średnich błędów kwadratowych (MSE). 

Słowa kluczowe: α-parametryzowane przekształcenie różniczkowe, optymalizator Dandelion, równania różniczkowe zwyczajne, metaheurystyka

Introduction 

Recently, there has been an increase in interest in differential 

equations with their broad applications spread across diverse 

scientific fields and their representation of many phenomena. 

It is generally hard to find a universal method that provides exact 

solutions for all differential equations, as only a limited subset can 

be treated effectively by direct methods. As a result, approximate 

methods have become prevalent, leading to results that are often 

considered acceptable and manageable., such as Variational 

Iteration Method (VIM) [5], Homotopy Analysis Method (HAM) 

[6], and other methods. 

α-PDTM, an extension of the semi-analytical method 

technique known as the differential transformation method 

(DTM), was introduced by Zhou in 1986 [14]. This method, 

a numerical approach, was employed to address both initial 

and boundary value problems in differential equations, specifically 

those arising in the analysis of electrical circuits. DTM is used 

as an alternative to traditional methods for solving differential 

equations of various types. DTM is based on the idea 

of converting the differential equation into a set of algebraic 

equations using the transformation properties that will 

be mentioned and then solving them to obtain the approximate 

solution. 

The differential transformation of the function 𝑦(𝑥) with order 

𝑘 is defined as follows 

 𝑊(𝑘) =
1

𝑘!
[

𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘 |
𝑥=0

] (1) 

where 𝑌(𝑘) is Differential Transform (DT) of 𝑦(𝑥), 

and the inverse DT of the is defined as  

 𝑤(𝑥) = ∑  ∞
𝑘=0 𝑊(𝑘)(𝑥 − 𝑥0)𝑘 (2) 

The differential transformation of basic mathematical 

operations can be illustrated in Table 1 [14]. 

And the differential inverse transform is defined as 

 𝑤(𝑥) = ∑ 𝐷𝛼(𝑓; 𝑘)(𝑥 − 𝑥0)𝑘∞
𝑘=0  (3) 

This paper is organized as follows for the remaining sections: 

In Section 1, the α-PDTM method conditional on the parameter 

α is explained. Section 2 provides an in-depth explanation 

of the smart DO algorithm. The section 3 also explains Some 

important definitions that will be used in this research. All results 

obtained in this study are covered in Section 4. Finally, 

in Section 5, the most important general conclusions are drawn. 

Table 1. The fundamental operation performed by DTM 

Original functions Transformed functions 

𝑤(𝑥) = 𝑔(𝑥) ± ℎ(𝑥) 𝑊(𝑘) = 𝑌(𝑘) ± 𝐻(𝑘) 

𝑤(𝑥) = 𝑐𝑔(𝑥) 𝑊(𝑘) = 𝑐𝑌(𝑥), where c is constant 

𝑤(𝑥) = 𝑦′(𝑥) 𝑊(𝑘) = (𝑘 + 1)𝑌(𝑘 + 1) 

𝑤(𝑥) = 𝑦𝑚(𝑥) 𝑊(𝑘) = ((𝑘 + 𝑚)!/𝑘!)𝑌(𝑘 + 𝑚) 

𝑤(𝑥) = 𝛼𝑥𝑛 𝑊(𝑘) = 𝛼𝛿(𝑘 − 𝑛); where 𝛿(𝑘 − 𝑚) = {
1  if 𝑘 = 𝑛

0  if 𝑘 ≠ 𝑛
 

𝑤(𝑥) = 𝑒𝑎𝑦 𝑊(𝑘) = 𝜆𝑘/𝑘! 

1. The general framework of α-PDTM 

In this part, we will talk about the operation of the proposed 

method α-PDTM. Let −∞ < 𝑎 < 𝑏 < ∞ and 𝑓(𝑎, 𝑏) → 𝑅 

be analytic and be 𝑌𝑘(𝑓, 𝑥0) is the differential transform 

of 𝑓 of the 𝑥0 ∈ [𝑎, 𝑏] 

 𝑌𝑘(𝑓, 𝑥0) =
𝑓(𝑥0)𝑘

𝑘!
 (4) 

 𝐷(𝑓, 𝛼; 𝑘) = 𝛼𝑌𝑘(𝑓, 𝑎) + (1 − 𝛼)𝑌𝑘(𝑓, 𝑏), 𝑘 = 0,1,2, … (5) 

For 𝛼 ∈ [0,1], the sequence of 𝐷𝛼(𝑓) is can be defined as 

 𝐷𝛼(𝑓) = (𝐷(𝑓, 𝛼; 0), 𝐷(𝑓, 𝛼; 1), 𝐷(𝑓, 𝛼; 2) + ⋯ ) (6) 

In these cases 𝛼 = 0 and 𝛼 = 1 we will impose fixed 

solutions for the values 𝐷(𝑓, 𝛼; 0) = 𝐴 and 𝐷(𝑓, 𝛼; 1) = 𝐵, 

then we calculate the other values of 𝐷(𝑓, 𝛼; 0), 𝐷(𝑓, 𝛼; 1), 

𝐷(𝑓, 𝛼; 2) + ⋯ from the differential transformation 

of the differential equation after determining the number 

of iterations. The final approximate solution to the differential 

transform with parameters 𝛼 (α-PDTM) is by calculating 

the inverse differential transform 𝛼, which can be calculated using 

the following formula [12]: 

 𝑦(𝑥) = ∑ 𝐷𝛼(𝑓, α; 𝑘)(𝑥 − 𝑥𝛼)∞
𝑘=0  (7) 

where 𝑥𝛼 = 𝑎𝛼 + (1 − 𝛼)𝑏, after substituting different values 

of 𝑥 in the defined interval [𝑎, 𝑏], we will get an algebraic 

equation in terms of the variable 𝛼, and by using DO we will 

get the best α value. 
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2. Dandelion optimizer 

2.1. Basic principles 

The DO algorithm presented by the scientist Shiji Zhao [13] 

is considered one of the famous algorithms that outperform many 

other algorithms in terms of the quality of solutions and speed 

of convergence [11]. DO is classified as a Meta-Heuristic 

algorithm [2] that continuously works to find a solution based 

on Exploration and Exploitation [10], Consideration must be given 

to two crucial factors. An algorithm can become challenging 

to solve with excessive exploration, and prioritizing exploitation 

may result in the convergence of solutions. This shows 

us the great importance of exploration and exploitation 

and achieving a balance between them, which confirms 

the importance of achieving a balance between exploration 

and exploitation in smart algorithms [1]. The DO algorithm 

is among those inspired by dandelion seeds, which disperse over 

long distances with the aid of wind. The growth process 

of dandelion is segmented into three stages. Planting dandelion 

seeds is divided into several stages. The first stage involves 

an upward movement, where the wind helps the seeds spread 

to remote areas during sunny conditions with wind or drift 

in cloudy conditions with rain. Then the seeds move to the landing 

stage, where they gradually decrease after the seed reaches 

a certain height. Finally, In the next stage specifically, 

and the seeds settle some where after being affected by weather 

and wind conditions, starting a new generation of dandelion 

plants, Based on these three stages, the dandelion optimization 

algorithm updates individuals' positions. In the bull phase, 

there are instances of exploration and exploitation, influenced 

by randomly generated numbers. Furthermore, the adjuster 

of length is employed to control the fluctuation In seed positions. 

Dandelion Optimizer depends on two primary parameters,: seed 

dispersion radius η and local search Coefficient ξ. These 

parameters change over time continuously in each iteration. 

Specifically, η determines the global search step length, while ξ 

dictates the local search step length [11]. 

2.2. Initialization stage 

A population matrix of the identified seed set with N 

individuals is defined in space d. We represent any seed with 

the symbol 𝑋𝑣 = [𝑋𝑖
1, 𝑋𝑖

2, … 𝑋𝑖
𝑑] wher 𝑣 = 1,2,3, … to initialize 

the population use this function 

 𝑋𝑖 = 𝑙𝑏 + 𝑟𝑣(𝑢𝑏 − 𝑙𝑏) (8) 

Let 𝑟𝑣 denote a randomly generated number according 

to a normal distribution within the interval (0,1). Here, the highest 

value of the decision space will be represented by the symbol 𝑢𝑏, 

the lowest value of the decision space will be represented 

by the symbol 𝑙𝑏, 𝑁 indicates the number of least rows 

in the population matrix, and 𝑑 represents the columns 

of the population matrix. In subsequent sections, these parameters 

remain with the same symbols [11]. 

2.3. Upward stage 

In the bottom-up phase, we determine what we will do (global 

search or local exploitation) based on r, which is a random number 

with a normal distribution 

 If 𝑟 <  1.5 if the cut is clear, the following equation is used 

to determine the new seed location: 

 𝑋𝑡+1 = 𝑋𝑡 + 𝜂 𝑣𝑥𝑣𝑦 𝑙𝑛(𝑌) (𝑋𝑠 − 𝑋𝑡) (9) 

where 𝑋𝑠 is the initial seed position, 𝑣𝑥 and 𝑣𝑦 represents 

the two wind directions (horizontal and vertical), 𝜂 represents 

the seed dispersal radius, and 𝑙𝑛(𝑌) represents the lognormal 

distribution with mean 0 and variance 1. 

 𝑋𝑠 = 𝑟𝑎𝑛𝑑(1, 𝑑)(𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏 (10) 

 𝜂 =  𝑟𝑎𝑛𝑑( )(
1

𝑇2 𝑡2 −
2

𝑇
𝑡 + 1) (11) 

 𝑣𝑥 = 𝑟 cos(𝜃) (12) 

 𝑣𝑦 = 𝑟 sin(𝜃) (13) 

where 𝑟 =
1

𝑒𝜃
, 𝜃 ∈ [−𝜋, 𝜋], 𝑇 represents the total number 

of iterations, and 𝑡 is the current iteration. 

 If 𝑟 ≥ 1.5, it indicates rainy weather, then the next location 

of the seed is determined 

 𝑋𝑡+1 = 𝑋𝑡 𝜉 l (14) 

where the local search factor 𝜉 appears in the formula 

 𝜉 = 1 − 𝑟𝑎𝑛𝑑( ) 𝑞 (15) 

 𝑞 =
1

𝑇2−2𝑇−1
𝑡2 −

2

𝑇2−2𝑇−1
𝑡 + 1 +

1

𝑇2−2𝑇−1
 (16) 

2.4. Descending stage 

The algorithm descends when it reaches a certain level 

of height, and through Brownian motion the seeds are in their 

position determined by the following equation [11]. 

 𝑋𝑡+1 = 𝑋𝑡 − 𝜂 𝛽𝑡(𝑋𝑚𝑒𝑎𝑛𝑡 − 𝜂 𝛽𝑡𝑋𝑡) (17) 

 𝑋𝑚𝑒𝑎𝑛𝑡 =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1  (18) 

where 𝛽𝑡 is the Brownian motion, 𝑋𝑚𝑒𝑎𝑛𝑡 is the stability 

parameter. 

2.5. Land stage 

In the landing stage, the position of the seeds is as shown 

in the following formula 

 𝑋𝑡+1 = 𝑋𝑒𝑙𝑖𝑡𝑒 + 𝑙𝑒𝑣𝑒(λ) 𝜂 (𝑋𝑒𝑙𝑖𝑡𝑒 − 𝑋𝑡  
2𝑡

𝑇
) (19) 

 𝑙𝑒𝑣𝑒(λ) = 𝑠 (𝑤 ×  𝜎)/|𝑡|1/𝛽 (20)  

 𝜎 = (𝛤( 1 + 𝛽) 𝑠𝑖𝑛 (
𝜋𝛽

2
)) (𝛤 ( 

1+𝛽

2
) 𝛽 2

(
𝛽−1

2
)
 ) (21)  

where 𝑠 = 0.01, 𝛽 = 1.5, Where the gamma function is defined 

by the symbol 𝛤, and 𝑤, 𝑡 are numbers in the interval [0, 1] [11]. 

3. General concepts 

We will discuss some important definitions that we will use 

in this research. 

 Definition )1( 

The maximum absolute errors (MAE) is defined by  

‖𝑊𝐸𝑥𝑎𝑐𝑡(𝑦) − 𝑇𝑖(𝑦)‖∞ = 𝑚𝑎𝑥𝑎≤𝑥≤𝑏{|𝑊𝐸𝑥𝑎𝑐𝑡(𝑦) − 𝑇𝑖(𝑦)|} (22) 

where 𝑇𝑖(𝑦) is the approximate solution [8].  

 Definition (2) 

The mean square errors (MSE) is defined by  

 𝑀𝑆𝐸 =
1

𝑛
 (𝑊𝐸𝑥𝑎𝑐𝑡(𝑦) − 𝑇𝑖(𝑦))2  (23) 

where 𝑇𝑖(𝑦) is the approximate solution [9]. 

4. The proposed method α
DO

-PDTM 

The proposed method calculates the best value of parameter α 

in α-PDTM through the process of coupling α-PDTM and DO. 

We will solve some examples of ODEs by αDO-PDTM 

and compare the results with Exact Solution.  

4.1. Example 1 

Consider the following of homogeneous ODE [4]: 

 𝑦′′(𝑥) + 2𝑦(𝑥) = 0, 𝑥 ∈ [−1,0] (24) 

with the boundary conditions 

 𝑦(−1) = 0 and 𝑦′(0) = 1 (25) 

and the exact solution when 

 𝑦(𝑥) =
1

2
(√2  sin(√2𝑥) + √2 cos(√2𝑥) tan(√2)) (26) 
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If α-PDTM is applied to both sides of (24) we obtain 

 𝐷(𝑦′′ + 2𝑦, 𝛼; 𝑘) = 

 = (𝑘 + 1)(𝑘 + 2)𝐷(𝑦, 𝛼; 𝑘 + 2) + 2𝐷(𝑦, 𝛼; 𝑘) = 0 (27) 

from the close form of α-PDTM 

 𝑦𝛼(𝑥) = ∑  n
𝑘=0 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘 (28) 

where 𝑛 is the number of iterations, 𝑥𝛼 = 𝑎𝛼 + (1 − 𝑏)𝛼 

for the boundary conditions 𝑦(−1) = 0 and 𝑦′(0) = 1 we have 

 𝑦𝛼(−1) = ∑  𝑛
𝑘=0 𝐷(𝑦, 𝛼; 𝑘)(𝛼 − 1)𝑘 = 0  

 𝑦𝛼
′ (0) = ∑  𝑛

𝑘=0 𝑘𝐷(𝑦, 𝛼; 𝑘)(𝛼 − 1)𝑘−1 = 1  

Denote that 𝐷(𝑦, 𝛼; 0) = 𝐴 and 𝐷(𝑦, 𝛼; 1) = 𝐵, then find 

the other values of 𝐷(𝑦, 𝛼; 𝑘) from (27)  

𝐷(𝑦, 𝛼; 2) = −𝐴, 𝐷(𝑦, 𝛼; 3) =
−𝐵

3
, 𝐷(𝑦, 𝛼; 4) =

𝐴

6
 

 𝐷(𝑦, 𝛼; 5) =
𝐵

30
, 𝐷(𝑦, 𝛼; 6) =

−𝐴

90
, ….  

Substitute the previous values of 𝐷(𝑦, 𝛼; 𝑘) into (28) 

to get the approximate solution 

 𝑦(𝑥, 𝛼) = ∑  6
𝑘=0 𝐷(𝑦, 𝛼; 𝑘)(𝑥 + 𝛼)𝑘 = 

= 𝐴 + (𝑥 + 𝛼)𝐵 − (𝑥 + 𝛼)2𝐴 − (𝑥 + 𝛼)3
𝐵

3
+ 

 +(𝑥 + 𝛼)4 𝐴

6
+ (𝑥 + 𝛼)5 𝐵

30
− (𝑥 + 𝛼)6 𝐴

90
 (29) 

where 𝑥𝛼 = −𝛼. When we substitute the boundary conditions into 

(29), we get: 

 𝑦(−1, 𝛼) = 𝐴 + (𝛼 − 1)𝐵 − (𝛼 − 1)2𝐴 − (𝛼 − 1)3 𝐵

3
+ 

 +(𝛼 − 1)4 𝐴

6
+ (𝛼 − 1)5 𝐵

30
− (𝛼 − 1)6 𝐴

90
= 0 (30) 

 𝑦′(0, 𝛼) = 𝐵 − 2𝐴𝛼 − 𝐵𝛼2 −
2𝐴

3
𝛼3 +

𝐵

6
𝛼4 −

𝐴

15
𝛼5 = 1 (31) 

When solving the previous (30) and (31), we will obtain 

the values of A and B 

 𝐴 = −
90(−21+5𝛼+20𝛼2−5𝛼4+𝛼5)

420+30𝛼2−120𝛼3+220𝛼4−216𝛼5+105𝛼6+40𝛼7−30𝛼8+𝛼10
  

 𝐵 = −
30(−14−126𝛼+15𝛼2+40𝛼3−6𝛼5+𝛼6)

420+30𝛼2−120𝛼3+220𝛼4−216𝛼5+105𝛼6+40𝛼7−30𝛼8+𝛼10  

Substitute the values of A and B into (29), to get: 

𝑦(𝑥, 𝛼) =

−
90(20𝛼2−21−5𝛼4+𝛼5+5𝛼)

−120𝛼3−216𝛼5+420+30𝛼2+220𝛼4+105𝛼6+40𝛼7+𝛼10−30𝛼8 −

30(𝑥+𝛼)(𝛼6−6𝛼5+40𝛼3+15𝛼2−126𝛼−14)

−120𝛼3−216𝛼5+420+30𝛼2+220𝛼4+105𝛼6+40𝛼7+𝛼10−30𝛼8 +

90(𝑥+𝛼)2(20𝛼2−21−5𝛼4+𝛼5+5𝛼)

−120𝛼3−216𝛼5+420+30𝛼2+220𝛼4+105𝛼6+40𝛼7+𝛼10−30𝛼8 +

10(𝑥+𝛼)3(𝛼6−6𝛼5+40𝛼3+15𝛼2−126𝛼−14)

−120𝛼3−216𝛼5+420+30𝛼2+220𝛼4+105𝛼6+40𝛼7+𝛼10−30𝛼8 −

15(𝑥+𝛼)4(20𝛼2−21−5𝛼4+𝛼5+5𝛼)

−120𝛼3−216𝛼5+420+30𝛼2+220𝛼4+105𝛼6+40𝛼7+𝛼10−30𝛼8 −

(𝑥+𝛼)5(𝛼6−6𝛼5+40𝛼3+15𝛼2−126𝛼−14)

−120𝛼3−216𝛼5+420+30𝛼2+220𝛼4+105𝛼6+40𝛼7+𝛼10−30𝛼8 +

(𝑥+𝛼)6(20𝛼2−21−5𝛼4+𝛼5+5𝛼)

−120𝛼3−216𝛼5+420+30𝛼2+220𝛼4+105𝛼6+40𝛼7+𝛼10−30𝛼8 (32) 

 

Substitute any value of 𝛼 into the interval [0,1], we obtain 

the approximate solution of the α-PDTM, Let 𝛼 = 1. Now that 

the DO algorithm has been used to optimize the parameter 𝛼, 

better results are obtained by substituting the value 

of 𝛼𝐷𝑂 = 0.22132 which will be substituted into (32) to produce 

the approximate solution of αDO-PDTM, as shown in Table 2 

and Figure 1. 

Table 2. Comparison of MAE and MSE for α-PDTM and αDO-PDTM  

Error Criteria α-PDTM αDO-PDTM 

MSE 3.7430 × 10−2  2.2298 × 10−5 

MAE  2.7889 × 10−1  6.4054 × 10−3  

 

 

Fig. 1. Illustrates the matching process between α-PDTM, αDO-PDTM, and Exact 

Solution 

4.2. Example 2 

Let us consider the following homogeneous differential 

equation [7]: 

 𝑦′′′′(𝑥) + 5𝑦′′(𝑥) + 4𝑦(𝑥) = 0, 𝑥 ∈ [−1,0] (33) 

with the initial conditions 

 𝑦(0) = 1, 𝑦′(0) = 0, 𝑦′′(0) = 0, 𝑦′′′(0) = 1  (34) 

and 

 𝑦exact (𝑥) =
4

3
𝑐𝑜𝑠(𝑥) +

1

3
𝑠𝑖𝑛(𝑥) −

 1

 3
𝑐𝑜𝑠(2𝑥) −

1

6
𝑠𝑖𝑛(2𝑥)(35) 

If α-PDTM is applied to both sides of (33) we obtain 

 𝐷(𝑦′′′′(𝑥) + 5𝑦′′(𝑥) + 4𝑦(𝑥), 𝛼; 𝑘) = 

= (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)𝐷(𝑦, 𝛼; 𝑘 + 4) + 

 +5(𝑘 + 1)(𝑘 + 2)𝐷(𝑦, 𝛼; 𝑘 + 2) + 4𝐷(𝑦, 𝛼; 𝑘) = 0 (36) 

from the definition of α-PDTM 

 𝑦𝛼(𝑥) = ∑  n
𝑘=0 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘 (37) 

where 𝑛 is the number of iterations, 𝑥𝛼 = 𝑎𝛼 + (1 − 𝑏)𝛼. We will 

denote that 𝐷(𝑦, 𝛼; 0) = 𝐴, 𝐷(𝑦, 𝛼; 1) = 𝐵, 𝐷(𝑦, 𝛼; 2) = 𝐶, 

𝐷(𝑦, 𝛼; 3) = 𝐷, then we find the other values of 𝐷(𝑦, 𝛼; 𝑘) from 

(36)  

𝐷(𝑦, 𝛼; 4) = −
5𝐶

12
−

𝐴

6
, 𝐷(𝑦, 𝛼; 5) = 

−
D

4
−

𝐵

30
, 𝐷(𝑦, 𝛼; 6) =

7𝐶

120
+

𝐴

36
, 𝐷(𝑦, 𝛼; 7) = 

=
𝐷

40
+

𝐵

252
, 𝐷(𝑦, 𝛼; 8) = −

17𝐶

4032
−

𝐴

480
, … 

Then we substitute the all values of 𝐷(𝑦, 𝛼; 𝑘) into (37) to get 

the approximate solution 

 𝑦(𝑥, 𝛼) = ∑  6
𝑘=0 𝐷(𝑦, 𝛼; 𝑘)(𝑥𝛼)𝑘 = 

= 𝐴 + (𝑥 + 𝛼)𝐵 − (𝑥 + 𝛼)2𝐴 − (𝑥 + 𝛼)3
𝐵

3
+ (𝑥 + 𝛼)4

𝐴

6
+ 

 +(𝑥 + 𝛼)5 𝐵

30
− (𝑥 + 𝛼)6 𝐴

90
 (38) 

where 𝑥𝛼 = −𝛼 and. When we substitute the initial conditions 

into (38), we get: 

 𝑦(0, 𝛼) = 𝐴 + 𝐵𝛼 + 𝐶𝛼2 + D𝛼3 + (−
5𝐶

12
−

𝐴

6
) 𝛼4 + 

 + (−
D

4
−

𝐵

30
) 𝛼5 + (

7𝐶

120
+

𝐴

36
) 𝛼6 + (

D

40
+

𝐵

252
) 𝛼7 + 

 + (−
17𝐶

4032
−

𝐴

480
) 𝛼8 = 1 (39) 

 𝑦′(0, 𝛼) = 𝐴 + 𝐵𝛼 + 𝐶𝛼2 + D𝛼3 + (−
5𝐶

12
−

𝐴

6
) 𝛼4 + 

+ (−
D

4
−

𝐵

30
) 𝛼5 + (

7𝐶

120
+

𝐴

36
) 𝛼6 + (

D

40
+

𝐵

252
) 𝛼7 + 

 + (−
17𝐶

4032
−

𝐴

480
) 𝛼8 = 0 (40) 
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𝑦′′(0, 𝛼) = 2𝐶 + 6D𝛼 + 12 (−
5𝐶

12
−

𝐴

6
) 𝛼2 + 

+20 (−
D

4
−

𝐵

30
) 𝛼3 + 30 (

7𝐶

120
+

𝐴

36
) 𝛼4 + 42 (

D

40
+

𝐵

252
) 𝛼5 + 

 +56 (−
17𝐶

4032
−

𝐴

480
) 𝛼6 = 0 (41) 

𝑦′′′(0, 𝛼) = 6D + 24 (−
5𝐶

12
−

𝐴

6
) 𝛼 + 60 (−

D

4
−

𝐵

30
) 𝛼2 + 

 +120 (
7𝐶

120
+

𝐴

36
) 𝛼3 + 210 (

D

40
+

𝐵

252
) 𝛼4 + 

 +336 (−
17𝐶

4032
−

𝐴

480
) 𝛼5 = 1 (42) 

When solving the (39), (40), (41) and (42), we will obtain 

the values of A, B, C and D 

𝐴 = −15(9639000𝛼9 − 222264000𝛼6 + 510𝛼17 +
6350400𝛼7 − 40148𝛼15 + 6646080𝛼12 − 142800𝛼14 +
795375𝛼13 + 254016000𝛼3 − 5255460𝛼11 +
180457200𝛼8 − 58350600𝛼10 −

63504000𝛼5+254016000𝛼4 − 1524096000)/(4(−100𝛼18 +

4𝛼20 − 664807500𝛼8 + 674730000𝛼6 + 47250𝛼14 +

1080𝛼16 + 2685375𝛼12 + 5715360000 + 75836250𝛼10))  

𝐵 = −105(2𝛼16 − 390𝛼14 − 672𝛼13 + 14955𝛼12 +
86400𝛼11 − 161100𝛼10 − 1711440𝛼9 + 680040𝛼8 +
7956000𝛼7 − 1377000𝛼6 − 1814400𝛼5 − 3175200𝛼4 +
18144000𝛼3 + 22680000𝛼2 − 72576000𝛼 − 54432000)𝛼2/

(2(−100𝛼18 + 4𝛼20 − 664807500𝛼8 + 674730000𝛼6 +

47250𝛼14 + 1080𝛼16 + 2685375𝛼12 + 5715360000 +

75836250𝛼10))  

𝐶 = (105(18𝛼16 − 1420𝛼14 − 5040𝛼13 + 28185𝛼12 +
235200𝛼11 − 186300𝛼10 − 2068920𝛼9 + 340200𝛼8 +
6426000𝛼7 − 6350400𝛼5 − 9525600𝛼4 + 45360000𝛼3 +
45360000𝛼2 − 108864000𝛼 − 54432000)𝛼)/(2(−100𝛼18 +
4𝛼20 − 664807500𝛼8 + 674730000𝛼6 + 47250𝛼14 +
1080𝛼16 + 2685375𝛼12 + 5715360000 + 75836250𝛼10))  

𝐷 = 5(10𝛼18 − 1998𝛼16 − 3360𝛼15 + 77175𝛼14 +

443520𝛼13 − 832860𝛼12 − 8845200𝛼11 + 3515400𝛼10 +
41277600𝛼9 − 8334900𝛼8 − 67473000𝛼6 + 400075200𝛼5 +
500094000𝛼4 − 1905120000𝛼3−1428840000𝛼2 +

2286144000𝛼 + 571536000)/(3(−100𝛼18 + 4𝛼20 −

664807500𝛼8 + 674730000𝛼6 + 47250𝛼14 + 1080𝛼16 +

2685375𝛼12 + 5715360000 + 75836250𝛼10))  

When we substitute the values of A, B, C and D into (38). 

When we substitute any value of 𝛼 into the interval [0,1], 
we obtain the approximate solution of the α-PDTM, Let 𝛼 = 1. 
Now that the DO algorithm has been used to optimize 

the parameter 𝛼, better results are obtained by substituting 

the value of 𝛼𝐷𝑂 = 0.71536 which will be substituted into (38) 

to produce the approximate solution of αDO-PDTM, as shown 

in Table 3 and Figure 2. 

 

 
Fig. 2. Illustrates the matching process between α-PDTM, αDO-PDTM, and Exact 

Solution 

Table 3. Comparison of MAE and MSE for α-PDTM and αDO-PDTM 

Error Criteria α-PDTM αDO-PDTM 

MSE 7.4254 × 10−3  2.3236 × 10−5 

MAE 2.0443 × 10−2 3.5810 × 10−3  

4.3. Example 3 

Let us consider the following differential equation [3]: 

 𝑦(6)(𝑥) − 𝑦(𝑥) = −6𝑒𝑥, 𝑥 ∈ [0,1] (43) 

with the conditions 

 
𝑦(0) = 1,  𝑦′(0) = 0, 𝑦′′(0) = −1

𝑦(1) = 0, 𝑦′(1) = −𝑒, 𝑢′′(1) = −2𝑒
 (44) 

and the exact solution when 

 𝑦(𝑥) = (1 − 𝑥)𝑒𝑥 (45) 

If α-PDTM is applied to both sides of (43) we obtain 

𝐷(𝑦(6)(𝑥) − 𝑦(𝑥) + 6𝑒𝑥, 𝛼; 𝑘) = 

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)(𝑘 + 5)(𝑘 + 6)𝐷(𝑦, 𝛼; 𝑘 + 6) + 

 −𝐷(𝑦, 𝛼; 𝑘) + (
1𝑘

𝑘!
) = 0 (46) 

from the definition of α-PDTM 

 𝑦𝛼(𝑥) = ∑  n
𝑘=0 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘 (47) 

where 𝑛 is the number of iterations, 𝑥𝛼 = 𝑎𝛼 + (1 − 𝑏)𝛼. We will 

denote that 𝐷(𝑦, 𝛼; 0) = 𝐴, 𝐷(𝑦, 𝛼; 1) = 𝐵, 𝐷(𝑦, 𝛼; 2) = 𝐶, 

𝐷(𝑦, 𝛼; 3) = 𝑊, 𝐷(𝑦, 𝛼; 4) = 𝐸 and 𝐷(𝑦, 𝛼; 5) = 𝑓, then we find 

the other values of 𝐷(𝑦, 𝛼; 𝑘) from (46) 𝐷(𝑦, 𝛼; 2) = −𝐴, 

𝐷(𝑦, 𝛼; 3) =
−𝐵

3
, 𝐷(𝑦, 𝛼; 4) =

𝐴

6
, 𝐷(𝑦, 𝛼; 5) =

𝐵

30
, 𝐷(𝑦, 𝛼; 6) =

−𝐴

90
, … 

Then we substitute the previous values of 𝐷(𝑦, 𝛼; 𝑘) into (46) 

to get the approximate solution 

 𝑦(𝑥, 𝛼) = ∑  6
𝑘=0 𝐷(𝑦, 𝛼; 𝑘)(𝑥 + 𝛼)𝑘 = 

 = 𝐴 + (𝑥 + 𝛼)𝐵 − (𝑥 + 𝛼)2𝐴 − (𝑥 + 𝛼)3 𝐵

3
+ (𝑥 + 𝛼)4 𝐴

6
+ 

 +(𝑥 + 𝛼)5 𝐵

30
− (𝑥 + 𝛼)6 𝐴

90
 (48) 

where 𝑥𝛼 = 1 − 𝛼, substitute the conditions of (44) into (48) 

to get: 

 𝑦(0, 𝛼) = 𝐴 + (
𝐵

2
− 3) (−1 + 𝛼)7 + (

𝐶

3
− 1) (−1 + 𝛼)8 + 

+ (
W

4
−

1

4
) (−1 + 𝛼)9 + (

𝐸

5
−

1

20
) (−1 + 𝛼)10 + 

 + (
𝐹

6
−

1

120
) (−1 + 𝛼)11 + (

𝐴

7
−

103

120
) (−1 + 𝛼)12 = 1 (49) 

𝑦′(0, 𝛼) = 𝐵 + 2𝐶(−1 + 𝛼) + 3W(−1 + 𝛼)2 + 4𝐸(−1 + 𝛼)3 + 

+5𝐹(−1 + 𝛼)4 + 6(𝐴 − 6)(−1 + 𝛼)5 + 7 (
𝐵

2
− 3) (−1 + 𝛼)6 + 

+8 (
𝐶

3
− 1) (−1 + 𝛼)7 + 9 (

W

4
−

1

4
) (−1 + 𝛼)8 + 

+10 (
𝐸

5
−

1

20
) (−1 + 𝛼)9 + 11 (

𝐹

6
−

1

120
) (−1 + 𝛼)10 + 

 +12 (
𝐴

7
−

103

120
) (−1 + 𝛼)11 = 0 (50) 

𝑦′′(0, 𝛼) = 2𝐶 + 6W(−1 + 𝛼) + 12𝐸(−1 + 𝛼)2 + 

+20𝐹(−1 + 𝛼)3 + 30(𝐴 − 6)(−1 + 𝛼)4 + 

+42 (
𝐵

2
− 3) (−1 + 𝛼)5 + 56 (

𝐶

3
− 1) (−1 + 𝛼)6 + 

+72 (
W

4
−

1

4
) (−1 + 𝛼)7 + 90 (

𝐸

5
−

1

20
) (−1 + 𝛼)8 + 

+110 (
𝐹

6
−

1

120
) (−1 + 𝛼)9 + 132 (

𝐴

7
−

103

120
) (−1 + 𝛼)10 = −1(51) 

𝑦(1, 𝛼) = 𝐴 + 𝐵𝛼 + 𝐶𝛼2 + W𝛼3 + 𝐸𝛼4 + 𝐹𝛼5 + (𝐴 − 6)𝛼6 + 

+ (
𝐵

2
− 3) 𝛼7 + (

𝐶

3
− 1) 𝛼8 + (

W

4
−

1

4
) 𝛼9 + (

𝐸

5
−

1

20
) 𝛼10 + 

 + (
𝐹

6
−

1

120
) 𝛼11 + (

𝐴

7
−

103

120
) 𝛼12 = 0 (52) 
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𝑦′(1,𝛼) = 𝐵 + 2𝐶𝛼 + 3W𝛼2 + 4𝐸𝛼3 + 5𝐹𝛼4 + 6(𝐴 − 6)𝛼5 + 

+7 (
𝐵

2
− 3) 𝛼6 + 8 (

𝐶

3
− 1) 𝛼7 + 9 (

W

4
−

1

4
) 𝛼8 + 

+10 (
𝐸

5
−

1

20
) 𝛼9 + 11 (

𝐹

6
−

1

120
) 𝛼10 + 

 +12 (
𝐴

7
−

103

120
) 𝛼11 = −e (53) 

𝑦(1, 𝛼) = 2𝐶 + 6W𝛼 + 12𝐸𝛼2 + 20𝐹𝛼3 + 30(𝐴 − 6)𝛼4 + 

+42 (
𝐵

2
− 3) 𝛼5 + 56 (

𝐶

3
− 1) 𝛼6 + 72 (

W

4
−

1

4
) 𝛼7 + 

+90 (
𝐸

5
−

1

20
) 𝛼8 + 110 (

𝐹

6
−

1

120
) 𝛼9 + 

 +132 (
𝐴

7
−

103

120
) 𝛼10 = −2e (54) 

When solving (49)–(54), we obtain the values of A, B, C, W, 

E, and F, which we will substitute in (46) to obtain 

the final approximate solution of the α-PDTM. 

𝑦(𝑥, 𝛼) = 𝐴 + 𝐵(𝑥 − 1 + 𝛼) + 𝐶(𝑥 − 1 + 𝛼)2 + 

+W(𝑥 − 1 + 𝛼)3 + 𝐸(𝑥 − 1 + 𝛼)4 + 𝐹(𝑥 − 1 + 𝛼)5 + 

+(𝐴 − 6)(𝑥 − 1 + 𝛼)6 + (
𝐵

2
− 3) (𝑥 − 1 + 𝛼)7 + 

+ (
𝐶

3
− 1) (𝑥 − 1 + 𝛼)8 + (

W

4
−

1

4
) (𝑥 − 1 + 𝛼)9 + 

+ (
𝐸

5
−

1

20
) (𝑥 − 1 + 𝛼)10 + (

𝐹

6
−

1

120
) (𝑥 − 1 + 𝛼)11 + 

 + (
𝐴

7
−

103

120
) (𝑥 − 1 + 𝛼)12 (55) 

When we substitute any value of 𝛼 between 0 and 1, we obtain 

the approximate solution of the α-PDTM, let 𝛼 = 0.5. Now that 

the DO algorithm has been used to optimize the parameter 𝛼, 

better results are obtained by substituting the value of αDO=1 

which will be substituted into (55) to produce the approximate 

solution of αDO-PDTM, as shown in Table 4 and Figure 3. 

 

 

Fig. 3. Illustrates the matching process between α-PDTM, αDO-PDTM, and Exact 

Solution 

Table 4. Comparison of MAE and MSE for α-PDTM and αDO-PDTM  

Error Criteria α-PDTM αDO-PDTM 

MSE 2.9794 × 10−3 9.6221 × 10−4 

MAE 9.7371 × 10−2 6.1858 × 10−2 

5. Conclusion 

In this paper, a hybrid method between α-PDTM and DO 

algorithm is applied. A series of approximate solutions were 

applied in α-PDTM as a fitness function in the DO algorithm 

to find the best value for the parameter α. The results of the α-

PDTM (which contains a random value for the parameter α) were 

compared with αDO-PDTM (which contains the parameter α 

chosen by the DO algorithm) through three examples shown 

in Tables 2–4 and Figures 1–3, where αDO-PDTM shows superior 

results on α-PDTM by calculating MSE and MAE. 
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