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Abstract. In the process of operation, the simplest elements (hereinafter elastic bodies) of machines and mechanisms under the influence of external 
and internal factors carry out complex oscillations ‒ a combination of longitudinal, bending and torsion combinations in various combinations. In general, 

mathematical models of the process of such complex phenomena in elastic bodies, even for one-dimensional calculation models, are boundary value 

problems for systems of partial differential equations. A two-dimensional mathematical model of oscillatory processes in a nonlinear elastic body 
is considered. A method of constructing an analytical solution of the corresponding boundary-value problems for nonlinear partial differential equations 

is proposed, which is based on the use of Ateba functions, the van der Pol method, ideas of asymptotic integration, and the principle of single-frequency 

oscillations. For "undisturbed" analogues of the model equations, single-frequency solutions were obtained in an explicit form, and for "perturbed" ‒ 
analytical dependences of the basic parameters of the oscillation process on a small perturbation. The dependence of the main frequency of oscillations 

on the amplitude and non-linearity parameter of elastic properties in the case of single-frequency oscillations of "unperturbed motion" is established. 

An asymptotic approximation of the solution of the autonomous "perturbed" problem is constructed. Graphs of changes in amplitude and frequency 
of oscillations depending on the values of the system parameters are given. 
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OKRESOWE FUNKCJE ATEB I METODA VAN DER POLA DO KONSTRUOWANIA ROZWIĄZAŃ 

DWUWYMIAROWYCH NIELINIOWYCH MODELI OSCYLACJI CIAŁ SPRĘŻYSTYCH 

Streszczenie. W procesie eksploatacji, najprostsze elementy (zwane dalej ciałami sprężystymi) maszyn i mechanizmów pod wpływem czynników 

zewnętrznych i wewnętrznych wykonują złożone oscylacje – wzdłużne, zginające i skręcające w różnych kombinacjach. Ogólnie rzecz biorąc, modele 

matematyczne procesu takich złożonych zjawisk w ciałach sprężystych, nawet dla jednowymiarowych modeli obliczeniowych, są problemami wartości 
brzegowych dla układów równań różniczkowych cząstkowych. Rozważany jest dwuwymiarowy model matematyczny procesów oscylacyjnych 

w nieliniowym ciele sprężystym. Zaproponowano metodę konstruowania analitycznego rozwiązania odpowiednich problemów wartości brzegowych 

dla nieliniowych równań różniczkowych cząstkowych, która opiera się na wykorzystaniu funkcji Ateba, metody van der Pola, idei całkowania 
asymptotycznego oraz zasady oscylacji jednoczęstotliwościowych. Dla „niezaburzonych” analogów równań modelu uzyskano rozwiązania 

jednoczęstotliwościowe w postaci jawnej, a dla „zaburzonych” – analityczne zależności podstawowych parametrów procesu oscylacji od niewielkiej 

perturbacji. Ustalono zależność głównej częstotliwości oscylacji od amplitudy i parametru nieliniowości właściwości sprężystych w przypadku 
jednoczęstotliwościowych oscylacji „ruchu niezaburzonego”. Skonstruowano asymptotyczne przybliżenie rozwiązania autonomicznego problemu 

„zaburzonego”. Podano wykresy zmian amplitudy i częstotliwości oscylacji w zależności od wartości parametrów układu.  

Słowa kluczowe: oscylacje, nieliniowe ciała sprężyste, dwuwymiarowy model matematyczny 

Introduction 

Analytical methods for the study of dynamic processes 

in elastic and flexible bodies (longitudinal, bending, torsional 

oscillations) are thoroughly developed on the basis of one-

dimensional mathematical models for the case of linear, 

quasi-linear and, in some cases, nonlinear elastic properties 

of the material under various types of external actions: periodic 

or impulse. To describe the nonlinear processes of such 

systems and small motion disturbances, it is effective to use 

the combination of the principle of single-frequency oscillations 

with the basic ideas of asymptotic integration of boundary value 

problems for quasi-linear differential equations with partial 

derivatives or periodic Ateb functions. This applies to the case 

when the elastic properties of the material can be described 

by a nonlinear relationship  1
,E f


    


  , where , ,E  , 

respectively, the stress, "modulus of elasticity", the relative 

deformation of the material is an analytical function  ,f    

that describes a small deviation of the elastic properties 

of the material from the power law (this is indicated by a small 

parameter ), 
2 1

1 , , 0,1, 2, ....
2 1

m
m n

n



  


Oscillatory processes 

in such elastic bodies differ not only quantitatively, but also 

qualitatively, even in the case of quasi-linear ( 0  ) elastic 

properties of an elastic body: the period of the dynamic process 

depends on the amplitude, and therefore a number of features 

of the actions of external periodic disturbances on these elastic 

bodies. However, with the use of one-dimensional mathematical 

models, it is not always possible to estimate with a sufficient 

degree of accuracy the influence of the geometric dimensions 

of an elastic body on the dynamics of the process in it. 

We are talking, first of all, about the influence of the ratio between 

length and width on the main parameters of oscillations. Such 

problems require consideration of more complex mathematical 

models of the dynamics of elastic bodies. This problem is partially 

solved in the work for a two-dimensional model of an elastic 

body, provided that its elastic properties are described by the 

above ratio.  

The purpose of the paper: to develop a method of analytical 

construction of the solution of nonlinear problems of two-

dimensional models of elastic bodies and to study their oscillatory 

processes for the case of homogeneous boundary conditions. 

1. Analysis of recent research and publications 

Analytical methods of studying the oscillatory processes 

of nonlinear systems with concentrated masses and distributed 

parameters under the continuous [6‒8, 10, 15] or impulse action 

[2, 11, 12, 18, 22] of external factors have found a relatively wide 

development for one-dimensional models of elastic bodies. They 

are especially effective for practical application in cases where 

the dynamics for undisturbed analogues of the corresponding 

systems and the oscillatory process can be described using Fourier 

series or special Ateb functions [16, 17, 19]. The application 

of the main ideas of the asymptotic integration of boundary value 

problems for differential equations with partial derivatives or the 

van der Pol method [15, 23, 25] in combination with the principle 

of single-frequency oscillations in nonlinear systems for disturbed 

motion made it possible to establish, in particular, a number 

of features of the passage of resonance for systems with 

homogeneous boundary values conditions or systems 

characterized by a constant speed of longitudinal movement [1‒5, 

13, 21]. For the latter, on the basis of the basic ideas of the wave 

theory of motion, it was possible to establish the influence 
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of the speed of longitudinal motion on the main parameters 

of the specified type of systems. With regard to the research 

of processes in nonlinear systems under the influence of periodic 

instantaneous disturbances, we note that such problems 

were considered mainly for systems with concentrated masses, 

and, in some cases, for the simplest models of systems with 

distributed parameters [22, 24, 26]. They substantiated 

the application of the averaging method for systems disturbed 

by instantaneous impulses, and it was proposed to represent 

the instantaneous action of external forces in mathematical models 

of oscillations of elastic bodies using delta functions [9, 27]. 

The main properties of the latter and the system of eigenfunctions, 

which describe the forms of undisturbed motion oscillations, make 

it possible to get rid of irregularities in the right-hand parts 

of mathematical models based on linear variables. Regarding 

the more complex two-dimensional mathematical models 

of the dynamics of elastic bodies, it should be noted that such 

problems were considered in partially two-dimensional models 

of elastic bodies for their linear or quasi-linear elastic properties 

[20]. Therefore, the development of a method of analytical 

research of oscillatory processes of two-dimensional models of 

elastic bodies, even under regular disturbances, is an urgent task. 

2. Solving method 

It is known [11] that the mathematical model of longitudinal 

oscillations of a one-dimensional elastic or flexible body, 

the material of which under certain boundary conditions satisfies 

the nonlinear relationship indicated above, is a differential 

equation 

    2

1 , , ,1u u u F u u u utt x xx t x xx


    (1) 

in which  ,u x t  the longitudinal movement of the body with 

the coordinate x at an arbitrary moment in time t, 

 , , ,1F u u u ut x xx  a function expressed through the dependence 

of the deviation of the elastic properties of the body material from 

the power law, 
2

1
 ‒ became known. 

Its analogue for a two-dimensional model of an elastic body 

is the equation 

 
   

 

2 2

1 , , , , ,

u u u u utt x xx y yy

F u u u u u ut x xx y yy


 



  



 (2) 

,0t ,0 lx  ,0 by  in which bl,,,,   ‒ constants,

 , , , , ,1F u u u u u ut x xx y yy  ‒ a known analytic function. 

The task is to construct a solution to equation (2) 

in the domain D: ,0t ,0 lx  .0 by   
It should be noted that the issue of the existence of periodic 

solutions in unperturbed equations of the form (1) was considered 

in the paper [14], where only their period was established for both 

independent variables. 

To construct a solution to the problem formulated above, 

we will use the general ideas of constructing solutions 

of equations with a small "disturbance". According to them, 

it is first necessary to construct the solution of the corresponding 

unperturbed ( 0 ) equation. 

Single-frequency oscillations of undisturbed motion.  

It is easy to make sure that the method of separation 

of variables can be used at 0  to construct the solution 

of equation (2). According to it, we will look for the function

 yxtu ,,  in the form 

      , , ,u t x y T t V x y , (3) 

where  T t  and  ,V x y  ‒ unknown periodic functions on t , yx, , 

respectively. 

To find them, according to the method of separation 

of variables, we obtain nonlinear differential equations 

     
1

0T t T t





   (4) 

 
    

      

2

2

, ,

, , , 0

x xx

y yy

V x y V x y

V x y V x y V x y







 



  

 (5) 

where λ is an unknown parameter, the conditions for which will be 

considered below. 

It is easy to verify that the linearly independent solutions 

of equation (5) are expressed in terms of periodic Ateb-functions 

in the form 

  
 

 
0

1
1, , , ,

1
,

1
1, , , ,

1

sa x y

V x y

ca x y

 


 


  
  

  
   

  
    

 (6) 

where 0  is constant, and the appearance of the function  ,V x y , 

its arguments  , ,x y   or  , ,x y   depends on the values 

of the function at the boundary of the area of change 

of independent linear variables. In particular, when a whole 

number of half-waves is "placed" in the specified area, 

the function and parameter take the corresponding values 
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
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
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










  


 
              
           

         
 

         
  
   

   
  

1

2

m n
x y

l b

 

 


 
 
 
 
 
 
 
 
 
 

  
  
  
   
       
   
    

 (7) 

 

2 2

2 2 02

2

m n

l b

  

  


 
 

 


    
    

     

, , 1, 2, ...m n   (8) 
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In the above expressions, the half-period of 

the Ateb-functions is used for the third argument, i.e.

 1
1 1 1 1

1,
1 2 2 2

 


  


 

      
  

      
      
      

. The results 

obtained above allow us to simultaneously construct the solution 

of equation (4):  

  

1

2

0

0
1

2

0

2
1,1,

2

2
1,1,

2

ca T t

T t T

sa T t






 


 

  
            

  
  

         
   

 

or taking into account (8), we have 

 

 

  

  

, ,

1
1,1, 1, ,

1

1
1,1, 1, ,

1

u t x y

m n
ca a t sa x y

l b
a

m n
sa a t ca x y

l b

  


  




 
  




 
  



   
       

   
 

             

 (9) 

    
2 2

22 2 2
m n

a a
l b

 


  

 
    

      
     

 (10) 

where 0 0a X T  is amplitude of a single-frequency process 

of undisturbed motion,  a ‒ frequency,   ‒ its initial phase. 

Fig. 1 shows the dependence of the main frequency 

of oscillations on the amplitude and the nonlinearity parameter 

for the following characteristics of the system 
2 20  , 

2 20.36  , 1l  , 0.1b l  ‒ а), b); 
2 20  , 

2 20.36 

, 1l  , 0.2b l ‒ c), d). 

It follows from the given graphic dependences that for the 

case when the elastic properties of the material of an elastic body 

are described by a nonlinear relationship 
1

E


 


 depend 

on the amplitude). Under condition 0 , a larger value 

of the oscillation amplitude corresponds to a larger value 

of the natural frequency, and vice versa, with a larger value 

of the oscillation amplitude, the value of the natural frequency 

is smaller (in this case, the natural frequency does not depend 

on the amplitude). 

The latter properties are especially relevant when studying 

the impact of periodic disturbance on the object under study. 

Such a task can be the subject of separate studies. 

 

  
a) b) 

  

  
c) d) 

Fig. 1. The dependence of the natural frequency of oscillations of a two-dimensional body on the amplitude and the parameter that characterizes its elastic properties 

for different geometric dimensions. 

3. Construction of the asymptotic approximation 

of the autonomous perturbed problem 

As already emphasized above, the maximum value of the 

right-hand side of equation (2) is a small value in comparison with 

the maximum values of the terms of its left-hand side. Therefore, 

to construct an analytical solution to the problem (determining 

the influence of its right-hand side on an oscillating single-

frequency process), you can use the general ideas of perturbation 

methods, more precisely, the asymptotic method of the KBM 

(Krylov-Bogolyubov-Mytropolskyi) or adapt the main ideas 

of the van der Pol method for it. Below we will present the main 

results that follow from the van der Pol method, which is simpler 

in terms of mathematical calculations and much more convenient 

for engineering calculations. According to his main idea, small 

forces cause for short systems a slow change in time only

in the amplitude and frequency of oscillations [15]. Thus, we will 

look for the solution of equation (2) in the form of (10) 

with the only difference that in it α and θ are slowly varying 

functions of time. Below, for undisturbed motion, we will take 

the first of these ratios. Thus, for disturbed motion, the solution 

of the basic problem must be sought in the form 

        
1

, , 1,1, 1, , ,
1

u t x y a t ca sa x y 


  


 
 
 

 (11) 

where       , ,
x y

a t t t x y
b c

        
 
 
 

. 

The problem is to determine such functions of time  a t  

and  t , for which relation (11) satisfies equation (2). Therefore, 

after differentiating relation (11) with respect to time, we obtain 
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 
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
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 
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    
     

  

  
    

                
  

 (12) 
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 (13) 
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    
       



      
                 

 (14) 

 

It should be noted that in the expression for the second time 

derivative of the function in accordance with the general idea of 

the van der Pol method, adapted to systems with distributed 

parameters, the relation 
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 (15) 

If we substitute the above dependencies into the basic equation 

(2), we get 
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 (16) 

where  , , ,F a x y   ‒ corresponds to the value of the function 

 , , , , ,1F u u u u u ut x xx y yy  under the conditions  , ,u t x y  defined 

in it according to dependence (9) and 
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Dependencies (15), (16) determine the main parameters 

of oscillations of the studied system by ordinary differential 

equations 
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(17) 

If we take into account that during one period of oscillations, 

small-scale motion disturbances in non-linear systems of the 

autonomous type cause a small-scale change in the amplitude and 

period of oscillations, then after averaging the system of equations 

(17) by phase, we will obtain equations in the standard form for 

describing the main parameters of system oscillations 
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(18) 

where 2  ‒ the period by ψ functions  1, 1,sa   and 

 1,1,ca    i.e.

 

1 1 112
2 2 2


 

         
    

. 

Below, in Fig. 2, in accordance with dependence (18), 

for the case   2 1, , , , ,1 1
sF u u u u u u k ut x xx y yy t
  changes 

in the amplitude and frequency of oscillations over time 

are shown. 

The given graphical dependencies show that the main 

parameters of the system, which characterize nonlinear forces 

and the force of resistance, do not affect the qualitative picture 

of changes in the amplitude of oscillations over time. 

As for the frequency of oscillations, it can increase over time 

at 01    and decrease at parameter 0 . At the same time, 

the rate of increase (decrease) of the frequency depends not only 

on the parameters that characterize the resistance force, but also 

on the parameter  ‒ characteristics of the nonlinear elastic 

properties of the material: for larger values of the specified 

parameter, the rate of decrease (increase) of the natural frequency 

is greater. 
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Fig. 2. Changes in time of amplitude a), c) and frequency b), d) of a single-frequency process for the following values of system parameters: 

а), b): 
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 c), d:) 
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2 4 6 8
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4. Conclusions 

In this work, a technique for constructing approximate 

analytical solutions of nonlinear differential equations with partial 

derivatives was developed, which describe the vibration processes 

of two-dimensional "short" elastic bodies. The technique is based 

on the use of periodic Ateba functions to construct "unperturbed" 

analogues of the equations and to extend the general ideas 

of the van der Pol method to their perturbed analogues, provided 

that the latter are autonomous. For undisturbed analogues 

of the equations, single-frequency solutions are described 

in an explicit form, for perturbed ones, analytical dependences 

of the basic parameters of the process on a small perturbation 

are obtained. A feature of the single-frequency solutions of the 

corresponding equations is their dependence on the amplitude 

(initial conditions). It is shown that in the case of the progressive 

law of nonlinearity ( 0 ), a larger value of the oscillation 

amplitude corresponds to a larger value of the natural frequency, 

and vice versa for the regressive law ( 01   ): a larger value 

of the oscillation amplitude means a smaller value of the natural 

frequency (in the case of a linear law, the natural frequency does 

not depend on the amplitude). 

It is also characteristic: 

a) larger values of the geometric parameters of the elastic body 

(length and width) with all other constant parameters 

correspond to smaller values of the natural frequency; 

b) the influence of the resistance force on the regularity 

of changes in time of the main parameters of the oscillations 

of the corresponding systems is manifested in the fact that 

the frequency increases over time for the regressive 

law of elastic properties and decreases for the progressive law 

of elastic properties. 

The reliability of the obtained results is confirmed 

by obtaining in the limiting case ( 0 ) known from literary 

sources. 

References 

[1] Andrukhiv A., Huzyk N., Sokil B., Sokil M.: Methodology of investigation 

the dynamics of longitudinally moving systems under the action of impulse 

perturbations. IOP Conf. Ser.: Mater. Sci. Eng., 2023, 012005 

[https://doi.org/10.1088/1757-899X/1277/1/012005]. 

[2] Andrukhiv A. et al.: Methodology for increasing the efficiency 

of dynamic process calculations in elastic elements of complex engineering 

constructions. Electronics (Switzerland) 10(1), 2021, 1–20 

[https://doi.org/10.3390/electronics10010040]. 

[3] Andrukhiv V. et al.: Influence of Impulse Disturbances on Oscillations 

of Nonlinearly. Elastic Bodies. Mathematics 9(8), 2021, 1–13 

[https://doi.org/10.3390/math9080819]. 

[4] Chen L.-Q.: Analysis and control of transverse vibrations of axially 

moving strings. Appl. Mech. Rev. 58(2), 2005, 91–116 

[https://doi.org/10.1115/1.1849169]. 

[5] Chen L.-Q., Wang B., Ding H.: Nonlinear parametric vibration of axially 

moving beams: asymptotic analysis and differential quadrature verification. 

Journal of Physics: Conference, Series 181, 2009, 1–8 

[https://doi.org/10.1088/1742-6596/181/1/012008]. 

https://www.mdpi.com/2227-7390/9/8/819?utm_source=releaseissue&utm_medium=email&utm_campaign=releaseissue_mathematics&utm_term=titlelink95&recipient=sokil_b_i@ukr.net&subject=Mathematics,%20Volume%209,%20Issue%208%20(April-2%202021)%20Table%20of%20Contents&campaign=ReleaseIssue
https://www.mdpi.com/2227-7390/9/8/819?utm_source=releaseissue&utm_medium=email&utm_campaign=releaseissue_mathematics&utm_term=titlelink95&recipient=sokil_b_i@ukr.net&subject=Mathematics,%20Volume%209,%20Issue%208%20(April-2%202021)%20Table%20of%20Contents&campaign=ReleaseIssue
https://www.mdpi.com/2227-7390/9/8/819?utm_source=releaseissue&utm_medium=email&utm_campaign=releaseissue_mathematics&utm_term=doilink95&recipient=sokil_b_i@ukr.net&subject=Mathematics,%20Volume%209,%20Issue%208%20(April-2%202021)%20Table%20of%20Contents&campaign=ReleaseIssue


20      IAPGOŚ 3/2024      p-ISSN 2083-0157, e-ISSN 2391-6761 

[6] Cveticanin L:. Period of vibration of axially vibrating truly nonlinear rod. 

Journal of Sound and Vibration 74, 2016, 199–210. 

[7] Cveticanin L.: Strong Nonlinear Oscillator – Analytical Solutions. Mathematical 

Engineering. Springer, 2018. 

[8] Cveticanin L., Pogany T.: Oscillator with a sum of non-integer orders non-

linearity. Journal of Applied Mathematics, 2012, 649050. 

[9] Delta Function. Mathematics. [Electronic resource]. Available 

online: https://mathworld.wolfram.com/DeltaFunction.html (accessed on 12 

June 2023). 

[10] Gendelman O., Vakakis A.: FTransitions from localization to nonlocalization 

in strongly nonlinear damped oscillators. Chaos, Solitons and Fractals 11(10), 

2000, 1535–1542. 

[11] Huzyk N. et al.: On the external and internal resonance phenomena of the elastic 

bodies with the complex oscillations. Mathematical modeling and computing 

9(1), 2022, 152–158 [https://doi.org/10.23939/mmc2022.01.152]. 

[12] Kapustyan O. V., Perestyuk M. O., Stenzhytskyi O. M.: Extreme problems: 

theory, examples and methods of solving. Kyiv University Publishing and 

Printing Center, 2019. 

[13] Kharchenko E. V., Sokil M. B.: Oscillations of moving nonlinearly elastic media 

and the asymptotic method in their study. Scientific bulletin of the National 

Forestry University of Ukraine 16(1), 2006, 134–138. 

[14] Myshkis A. D., Filimonov A. M.: Periodic oscillations in nonlinear one-

dimensional continuous media. Proceedings of the IX International Conference 

on nonlinear oscillations, 1984, 274–276. 

[15] Mytropolskyi Yu. O.: On construction of asymptotic solution of the perturbed 

Klein-Gordon equation. Ukrainian Mathematical Journal 47(9), 1995, 

1378–1386. 

[16] Nazarkevych M.: Study of dependencies of Beta- and Ateb-functions. Bulletin 

of the Lviv Polytechnic National University 732, 2012, 207–216. 

[17] Olshansky V. P., Olshansky S. V., Tyshchenko L. M.: Dynamics of dissipative 

oscillators. City print, Kharkiv 2016. 

[18] Perestyuk M. O., Chernikova O. S.: Some modern aspects of the asymptotic 

of the differential equations theory with impulse action. Ukrainian Mathematical 

Journal 60(1), 2008, 81–90. 

[19] Polishchuk L., Mamyrbayev O., Gromaszek K.: Mechatronic Systems II. 

Applications in Material Handling Processes and Robotics. Taylor & Francis 

Group – CRC Press, Boca Raton, London, New York, Leiden, 2021. 

[20] Polishchuk L., Bilyy O., Kharchenko Y.: Prediction of the propagation of crack-

like defects in profile elements of the boom of stack discharge conveyor 

Eastern-European Journal of Enterprise Technologies 6(1), 2016, 44–52. 

[21] Shatokhin V. et al.: Vibration diagnostic of wear for cylinder-piston couples 

of pumps of a radial piston hydromachine, Mechatronic Systems I. Applications 

in Transport, Logistics, Diagnostics and Control, Taylor & Francis Group, CRC 

Press, Balkema book London, New York, 2021, 39–52. 

[22] Senyk P. M.: Inverse of the incomplete Beta function. Ukrainian Mathematical 

Journal 21(3), 1969, 325–333. 

[23] Sokil B. І.: On asymptotic expansions of a boundary value problem 

for a nonlinear partial differential equation]. Ukrainian Mathematical Journal 

34(6), 1982, 803–805. 

[24] Sokil B. І.: About one method of constructing single-frequency solutions 

for a nonlinear wave equation. Ukrainian Mathematical Journal 46(6), 1994, 

782–785. 

[25] Sokil B. І. et al.: Asymptotic method and wave theory of motion in studying 

the effect of periodic impulse forces on systems characterized by longitudinal 

motion velocity. Mathematical modeling and computing 9(4), 2022, 909–920. 

[26] Wójcik W, Pavlov S., Kalimoldayev M.: Mechatronic Systems I. Applications 

in Transport, Logistics, Diagnostics and Control. Taylor & Francis Group – 

CRC Press, London, New York, 2021.  

[27] Zinkovskii A. et al.: Finite element model for analys of characteristics 

of shrouded rotor blade vibrations, Informatyka, Automatyka, Pomiary 

w Gospodarce i Ochronie Srodowiska – IAPGOS 12(4), 2022, 11–16. 

 

Ph.D. Yaroslav P. Romanchuk 

e-mail: romanchuky@ukr.net 

 

Candidate of Physical and Mathematical Sciences, 

Senior Research Fellow, Associate Professor 

of the Engineering Mechanics Department, Hetman 

Petro Sahaidachny National Army Academy, Lviv, 

Ukraine. 

He is author/co-author of over 110 publications, 

including 1 monograph, more than 50 scientific 

articles in professional publications (17 in Scopus 

and Web of Sciences scientometric databases). 

Scientific research includes issues related to 

mathematical modeling of technological processes and 

the stress-strain state optimization of welded 

structures. 

https://orcid.org/0000-0003-3993-0128 

 

Ph.D. Mariia B. Sokil 

e-mail: mariia.b.sokil@lpnu.ua 

 

Ph.D., associate professor Social Communications 

and Information Activities Department of the Institute 

of Humanities and Social Sciences, Lviv Polytechnic 

National University, Lviv, Ukraine. 

She is the author/co-author of more than 100 scientific 

articles and conference abstracts, 5 training manuals 

and 1 textbook . The direction of scientific research: 

information technologies, social communications, 

modeling of processes in transport. 

https://orcid.org/0000-0003-3352-2131 
 

D.Sc. Leonid K. Polishchuk 

e-mail: leo.polishchuk@vntu.edu.ua 

 

D.Sc., professor, Vinnytsia National Technical 

University, Vinnytsia. 

Scientific direction: dynamics of drive systems with 

devices and control systems with variable operating 

modes and diagnostics of metal structures of hoisting-

and-transport and technological machines. 

 

 

 

http://orcid.org/0000-0002-5916-2413  

 
 
 

In memory of B. I. Sokil as a scientist, teacher, friend and father 

 
 

https://mathworld.wolfram.com/DeltaFunction.html
mailto:romanchuky@ukr.net
https://orcid.org/0000-0003-3993-0128
mailto:mariia.b.sokil@lpnu.ua
https://orcid.org/0000-0003-3352-2131
mailto:leo.polishchuk@vntu.edu.ua

