
146 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 4/2024, 146–153

http://doi.org/10.35784/iapgos.6393 received: 13.07.2024 | revised: 30.10.2024 | accepted: 14.11.2024 | available online: 21.12.2024

DEFECT SEVERITY CODE PREDICTION BASED

ON ENSEMBLE LEARNING

Ghada M.T. Aldabagh, Safwan O. Hasoon
University of Mosul, Department Computer Sciences and Mathematics, Mosul, Iraq

Abstract. In machine learning, learning algorithms that learn from other algorithms are called meta-learning. New algorithms called Ensemble algorithms

have surfaced as a viable method to improve defect prediction models' accuracy and dependability. In software development defect prediction of software

engineering is still a big challenge, and leads to the failure of systems, increases the cost of maintenance, and makes the development process more
difficult. Consequently, defect prediction systems have become more popular as a way to foresee possible flaws early on in the development process. Defect

prediction is the process that specifies the possible defects in the code written newly or the existing modified code without the use of code testing.

This paper introduces ensemble learning ideas, reviews the traditional defect prediction models, and investigates ensemble learning techniques for defect
classification and prediction such as bagging, boosting, stacking, and random forests, Case studies and actual experiments illustrate the important role

of ensemble algorithms in classifying five severity types of defects and predicting the severity code of defects to improve the software development process

by reducing the time and effort needed to determine the type of defect.

Keywords: defect prediction, ensemble algorithm, software development, software engineering

PRZEWIDYWANIE WAGI DEFEKTU KODU NA PODSTAWIE UCZENIA ZESPOŁOWEGO

Streszczenie. W uczeniu maszynowym algorytmy uczenia się, które uczą się na podstawie innych algorytmów, nazywane są metauczeniem. Pojawiły

się nowe algorytmy zwane algorytmami Ensemble jako realna metoda poprawy dokładności i niezawodności modeli przewidywania defektów. W rozwoju

oprogramowania przewidywanie defektów w inżynierii oprogramowania jest nadal dużym wyzwaniem i prowadzi do awarii systemów, zwiększa koszty
utrzymania i utrudnia proces tworzenia oprogramowania. W rezultacie systemy przewidywania defektów stały się coraz bardziej popularne jako sposób

przewidywania możliwych wad na wczesnym etapie procesu rozwoju. Przewidywanie defektów to proces, który określa możliwe defekty w nowo napisanym

kodzie lub istniejącym zmodyfikowanym kodzie bez użycia testowania kodu. W artykule przedstawiono koncepcje uczenia się zespołowego, dokonano
przeglądu tradycyjnych modeli przewidywania defektów i zbadano techniki uczenia się zespołowego do klasyfikacji i przewidywania defektów, takie

jak pakowanie, wzmacnianie, układanie w stosy i lasy losowe. Studia przypadków i rzeczywiste eksperymenty ilustrują ważną rolę algorytmów zespołowych

w klasyfikacji pięć typów ważności defektów i przewidywanie kodu ważności defektów w celu usprawnienia procesu tworzenia oprogramowania poprzez
skrócenie czasu i wysiłku potrzebnego do określenia rodzaju defektu.

Słowa kluczowe: przewidywanie defektów, algorytm zespołowy, tworzenie oprogramowania, inżynieria oprogramowania

Introduction

Significant obstacles to the maintainability, dependability,

and quality of software systems are presented by software

faults [1]. Defects must be found and fixed early in the software

development lifecycle to guarantee the production of high-quality

software [1].

In light of this, methods of defect prediction have become

essential resources for quality assurance and software developers.

These methods proactively detect any flaws in software code

by utilizing machine learning models and historical data [3].

Recently, using ensemble algorithms in defect prediction

become very effective and very important.

The ensemble learning algorithm combines multiple models

to increase the accuracy of prediction and robustness and plays

an important role in a range of fields such as natural language

processing, image classification, quality assurance, etc. [4].

Researchers and practitioners have focused on investigating

how ensemble approaches might be used to overcome

the difficulties associated with defect identification, realizing

that ensemble learning has the potential to improve defect

prediction [5].

This paper delves into the convergence of defect prediction

and ensemble learning, to understand how ensemble algorithms

can be used in defect prediction in software engineering.

The benefits of ensemble learning algorithms like stacking,

bagging, random forest, decision tree, and boosting are explained

in how can make the prediction process more accurate, facilitate,

and make the work of the development team more faster than

using traditional methods [6].

The proposed hybrid system solve the problem of prediction

and classification the degree of severity in the code to help

the developer team to find the more accurate solution

of the severity code, make the development process faster

and make the corrected software more efficient.

This proposed study aims to classify five types of severity

codes of the defect and predict the type of severity of defects

for any code by using the ensemble algorithm this makes

the development process more effective, accurate, and faster.

The quality of the resulting software be more efficient, as well as

the decision of the quality assurance team will be more accurate.

Early predicting the severity code of the software and using

ensemble learning help the development team to reduce the total

cost of maintenance, and enhance the software development

process.

1. Related work

Defect prediction very important field in software

development and ensemble learning algorithms have an important

role in recent works. In recent years, extensive research has

been conducted on applying ensemble learning techniques

and individual machine learning models for software defect

prediction. In [14] Mohammed A., Kora R. completeness

performance measures are used to assess ensemble methods'

prediction accuracy. The results indicate that compared

to the individual fault prediction strategies under discussion,

the ensemble methods that have been described produce

predictions with higher accuracy. Additionally, for every dataset

that was used, the results were consistent. In [3] Muhammad

Azam, Muhammad Nouman, Ahsan Rehman Gill "Comparative

Analysis of Machine Learning techniques to Improve Software

Defect Prediction" Finding flaws utilizing the five NASA data sets

JM1, CM1, KC1, KC2, and PC1 is the main problem. Among

the rest, it has been demonstrated that Logistic Regression

produces the greatest results (93%).

In [21] Haonan Tong, Bin Liu, and Shihai Wang "Software

defect prediction using stacked denoising autoencoders and two-

stage ensemble learning", present a novel SDP strategy, called

SDAEsTSE, that leverages ensemble learning and SDAEs,

specifically the suggested two-stage ensemble (TSE). In [11] Ran

Li, Lijuan Zhou, Shudong Zhang, Hui Liu, Xiangyang Huang,

Zhong Sun "Software Defect Prediction Based on Ensemble

Learning", proves that the random forest is the best algorithm

in defect prediction by using the comparison of experimental

results, and uses the SMOTE over-sampling and Resample

methods to improve the dataset’s quality and improve

the performance of defect classification effectively". In [2]

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 147

Abdullah Alsaeedi, Mohammad Zubair Khan, "Software Defect

Prediction Using Supervised Machine Learning and Ensemble

Techniques: A Comparative Study", examines and contrasts

the ensemble classifiers and supervised machine learning

techniques using ten NASA datasets. Based on the experimental

data, found that RF outperformed the other classifiers in most

of the scenarios. In [16] Sushant Kumar Pandey, Ravi Bhushan

Mishra, Anil Kumar Tripathi, "BPDET: An effective software bug

prediction model using deep representation and ensemble learning

techniques", demonstrate the effective outcome of using machine

learning and feature selection techniques to distinguish between

problematic software modules and those that are not. For SBP,

suggest a basic classification-based framework called Bug

Prediction that makes use of Deep representation and Ensemble

learning (BPDET) approaches. In [18] Santosh S. Rathore,

Sandeep Kumar (2020),” An empirical study of ensemble

techniques for software fault prediction” investigated ensemble

approaches for SFP are. Seven ensemble strategies are evaluated

empirically: Dagging, decorating, Grading, MultiBoostAB,

RealAdaBoost, Rotation Forest, and Ensemble Selection.

In [10] Hemant Kumar, Vipin Saxena "Software Defect

Prediction Using Hybrid Machine Learning Techniques:

A Comparative Study" the suggested method combines ensemble

models like Support Vector Machine (SVM), Random Forest

(RF), and XGBoost with an advanced deep neural network

architecture. The PROMISE Software Engineering Repository's

datasets, together with those from several software projects

such as CM1, JM1, KC1, and PC1, are used in the study's

evaluation of performance. By giving a comparative viewpoint

on early defect identification and mitigation tactics, the study

that is being presented provides insightful information about

the efficacy of hybrid methodologies for cross-project defect

prediction.

2. Software defects

2.1. Defect types

Bugs or software defects can be defined as abnormal or flaws

in software design or code and cause erroneous behavior,

malfunctions in the system, or other problems. Defect prediction,

quality control, and software development all depend

on an understanding of various defects kinds. The specific

types of defects as shown in Table 1 and describe below [7].

Syntax errors

One of the simplest and most common types of errors

in software development is syntax errors. They arise from

code that deviates from the conventions and grammar

of the programming language being used. Missing semicolons,

mismatched parenthesis, and typographical errors are

a few examples [7].

Logic errors
Semantic mistakes, also referred to as logic errors, happen

when a piece of code runs correctly in terms of syntax but fails

to generate the desired effects because of faulty reasoning.

The fact that the code functions without producing error signals

makes it difficult to find these flaws. Logic problems

are frequently found using testing and debugging techniques [7].

Runtime errors

Runtime errors can result in program crashes or undesirable

outcomes when they occur during program execution. Division

by zero, null pointer exceptions, and array index out-of-bounds

errors are common instances. Effective error-handling techniques

are essential for reducing the effects of runtime errors [7].

Boundary conditions

When inputs are close to specific borders or limits, the code

may react differently. This is known as a boundary condition

flaw. Unexpected behavior can arise, for instance, while

processing a variable's maximum or lowest permissible value due

to a bug [7].

Data type errors

When one type of data is incorrectly handled as another,

an error occurs called a data type error. These flaws may result

in inaccurate computations or tampered data. Data type errors

might arise, for example, if you attempt to apply mathematical

operations on strings as opposed to numbers [7].

Resource leaks

When a program keeps using memory, files, or network

connections after they are no longer required, it is known

as a resource leak. System instability and performance

deterioration might result from frequent resource leaks [7].

Concurrency and synchronization issues

Deadlocks, Race situations, and data corruption can

result from thread management, synchronization, and flaws

in concurrent or multi-threaded software. Careful design

and testing are frequently necessary to find and address these

flaws [7].

Input validation and sanitization

Software that fails to correctly validate user inputs is said

to have input validation defects.

Security flaws like injection attacks or data breaches (cross-

site scripting or SQL injection) may arise from this [7].

Memory management issues

Buffer overflows, which occur when data exceeds

the allocated buffer size, and memory leaks, which occur when

allocated memory is not deallocated, are examples of memory-

related faults. These flaws may result in system failures, security

openings, or unpredictability [7].

Compatibility and platform-specific issues

Due to variations in operating systems, hardware,

or dependencies, software may display bugs on particular

platforms or combinations. In order to guarantee that software

operates successfully in a variety of contexts, compatibility flaws

must be fixed [7].

Documentation defects

Errors and inconsistencies in user manuals, technical

documentation, and comments found in the documentation

of software are referred to as documentation defects.

Understanding and maintaining software depends on accurate

and current documentation [7].

Table 1. Defect classes with their severity code and descriptions

Defect type Severity code Description

Syntax Errors Trivial Has little effect on the functionality of the code

Documentation Defects Normal Documentation problems or other non-essential elements that don't immediately affect functionality

Boundary Conditions Major

Serious problems that impair operation but do not result in system failures or security flaws
Data Type Errors Major

Performance and Efficiency Issues Major

Usability and User Experience Issues Major

Logic Errors Critical

Critical issues can cause data corruption, system crashes, security flaws, or a severe decline

in performance.

Runtime Errors Critical

Concurrency and Synchronization Issues Critical

Input Validation and Sanitization Critical

Memory Management Issues Critical

Security Vulnerabilities Blocking Refers to flaws that entirely stop the software from operating as intended or that obstruct important

functions or functionalities. A problem that is categorized as "blocking" is the most severe kind

of issue and needs to be addressed right away by the team of development.

Compatibility and Platform-Specific Issues Blocking

Resource Leaks Blocking

148 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

2.2. Severity codes

Severity codes in software defects refer to a system

of classification used to categorize the effect or severity

of a defect on the software system. during the development

and testing process Severity codes will help to prioritize which

defects should be addressed first. The severity code assigned

to a defect typically indicates how severely the defect affects

the functionality, performance, or usability of the software.

Severity codes offer a uniform structure for managing

and prioritizing defects at different stages of the software

development lifecycle. This helps to make sure that blocking

or critical defects are effectively addressed and managed,

while trivial defects are effectively addressed and managed within

the scheduled time of development [8].

2.3. Methods of defect prediction

The basics of early defect prediction approaches were single-

machine learning models like decision trees and logistic

regression, as well as conventional statistical techniques. These

techniques frequently built prediction models using modification

history, code metrics, and other software properties.

These methods have difficulties managing the complexity

and heterogeneity of software data, although they produce

insightful results [9].

3. Ensemble algorithms

Bagging, Gradient Boosting, AdaBoost, and Random Forest,

stacking were proven as effective methods in the process

of predicting bugs (defects). A variety of the base learners

or classifiers which is used in ensemble algorithms will increase

the robustness, and accuracy of prediction defects.

 Researchers have proved that an ensemble algorithm

can manage unbalanced or noising datasets. As a result, these

methods will enhance the process of defect detection or prediction

early and will improve the software development process.

Advantage of ensemble methods

Ensemble algorithms have many advantages that make

the process of defect prediction, more accurate and faster some

of these advantages are (more accuracy, importance features,

robustness, and interpretability of the model).

Ensemble Algorithms Challenges

Despite the positive results, there are still a lot of difficulties

and unanswered issues with employing ensemble algorithms

for defect prediction.

Interpretability

While numerous ensemble approaches make models

interpretable, some, like ad-boost, and XGBoost algorithms, might

be more complex and challenging to grasp. Further study

is needed to increase the ensemble models' comprehensibility

and transparency.

Data imbalanced

It's still difficult to handle unbalanced datasets in defect

prediction. Research is still being done to make sure the ensemble

model accurately predicts uncommon flaws while minimizing

the rate of high false positives. Scalability: when ensemble

methods were applied to big projects this made scalability very

difficult [12].

4. Methodology

Defect prediction is important and defect severity prediction

is most important to make the process of software development

faster and more accurate all previous work was operated to detect

whether there are defects or not or to classify the software

as a defect or not, the main problem which solved by this wok was

how to predict five types of severity code. The proposed novel

work predicts five types of severity code of the defect by using

ensemble learning algorithms bagging, random forest stacking,

and XGBoost, can be applied these algorithms on six datasets

(eclipse, free desktop, gcc, gnome, Mozilla, and winehq) results

of proposed system was very accurate. The framework

of the proposed system is shown in Figure 1 and a block diagram

is shown in Figure 2.

The proposed system has phases explained below:

Phase one: initialize dataset the proposed study applied on six

dataset datasets (eclipse, free desktop, gcc, gnome, Mozilla,

and winehq).

Phase two: preprocessing in this phase all non-values

are removed by using one of the methods which use previous data,

the mean of the data, the most frequent data, or the median value.

Phase three: severity code this phase studies the severity code

and uses ensemble learning algorithms (random forest, bagging,

XGBoost, stacking for classifying the severity).

Fig. 1. Demonstrates the proposed framework for prediction of the severity code

by using ensemble algorithms

Fig. 2. Flow chart of the proposed system

4.1. Ensemble techniques

Four ensemble techniques (random forest, bagging, XGBoost,

and stacking)are used to predict five severity codes of defects,

a brief description of these algorithms is given as follows:

 Random forest: an effective and popular ensemble learning

approach for classification, regression, and other applications

is called Random Forest. During training, it creates

a large number of decision trees, and then outputs the mean

prediction for regression or the class for classification based

on the individual trees [10].

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 149

 Bagging: bootstrap Aggregating, or Bagging, is a strategy

for ensemble learning that aims to increase the accuracy

and stability of machine learning models. It helps keep models

from overfitting and lowers variance, especially in high-

variance models like decision trees [10].

 XGBoost: with exceptional accuracy and speed, XGBoost

is a machine learning algorithm that is both strong

and adaptable. Its performance benefits and capacity

to manage big datasets effectively make it especially well-

suited for structured or tabular data, and it is frequently

utilized in a variety of predictive modeling applications [10].

 Stacking: by merging several base models via a meta-model,

stacking – a potent ensemble learning technique – improves

prediction performance. With cross-validation, it minimizes

overfitting and makes use of the advantages of many

models, making it a versatile and efficient method for both

regression and classification applications. When compared

to other ensemble approaches, it is more sophisticated

and computationally demanding [10].

4.2. Performance evaluation measures

Six performance measures precision, recall, F1-score,

average weight, accuracy, macro average are used to assess

the performance of all four ensemble algorithms these measures

are explained as follows:

 precision: it is used to find the portion of the correctly

predicted faulty modules out of all modules. It is calculated

by Equation (1).

 precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1)

where: TP = true positive, FP = false positive.

 Recall: it is used to calculate the correct faulty models are

predicted. It is calculated by Equation (2).

 recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

where: TP = true positive, FP = false positive.

 F1-score: When evaluating a classification model's efficacy,

especially in situations where datasets are unbalanced,

the F1-score offers a single metric that strikes a compromise

between precision and recall. The F1-score provides a more

complete view of a model's performance than precision

or recall alone because it takes into account both erroneous

positives and false negatives. It is calculated by Equation (3)

 F1-score =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
× 2 (3)

 macro average: A multi-class classification model's overall

performance can be assessed using the macro average

measure, which averages the performance measures

determined separately for each class. Regardless of a class's

size in the dataset, this method assigns it the same weight

and treats all classes identically.it is calculated by taking

the arithmetic mean of the precision, recall, or F1-score

for all classes as follows.

 Macro precision =
1

𝑁
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝑁
𝑖=1 (4)

 Macro recall =
1

𝑁
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖
𝑁
𝑖=1 (5)

 Macro F1-score =
1

𝑁
∑ 𝐹1_𝑠𝑐𝑜𝑟𝑒𝑖
𝑁
𝑖=1 (6)

 weighted average: it is a measure that is used to calculate

the overall performance of a multiclassification model

this measure uses the averaging of the metrics which is used to

assess the performance of each class, each class contributing

proportionally according to its size in the dataset. This metric

is used for the imbalanced in the distribution of each class

by assigning higher weight to classes which have more

instances. It is calculated by following the equation.

 Weighted precision =
1

𝑁
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝑁
𝑖=1 × 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖 (7)

 Weighted recall =
1

𝑁
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖
𝑁
𝑖=1 × 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖 (8)

 Weighted F1-score =
1

𝑁
∑ 𝐹1_𝑠𝑐𝑜𝑟𝑒𝑖
𝑁
𝑖=1 × 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖 (9)

5. Results and analysis

This section explain the results of various performance

measures used by ensemble algorithms to predict the five severity

code. Tables 2–5 and Figures 3–6 show the results of applying the

algorithms discussed on the six data sets. Also analysis of the

results is made to make clear observations about the ensemble

techniques performance are explained in table 6 and Fig. 7. At last

comparison the proposed system with other researcher are

explained in Figure 8 and Table 7.

Table 2. Experimental results of applying random forest algorithm on six dataset

ensemble algorithm dataset severity code precision recall F1-score accuracy

Random forest

Eclipse

1 1.00000 0.92 0.96

0.9991364

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Free desktop

1 1.00000 0.94 0.97

0.9995676

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

GCC-bug-report

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Gnome

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Mozila

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Winehq

1 1.00000 1.00000 1.00000

0.9968944099378

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 0.625000 0.833333 0.714286

6 0.900000 0.750000 0.818182

150 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

a) b) c)

d) e) f)

Fig. 3. Random forest experimental results on six datasets: a) Eclipse, b) Free desktop, c) GCC-bug-report, d) Gnome, e) Mozila, f) winehq datasets

Table 3. Experimental results of applying the bagging algorithm on six dataset

ensemble algorithm dataset severity code precision recall F1-score accuracy

Bagging

Eclipse

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Free desktop

1 1.000000 1.00000 1.00000

1.00000

2 1.00000 1.000000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

GCC-bug-report

1 1.000000 0.750000 0.857143

0.999961331

2 0.999961 1.000000 0.999981

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Gnome

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Mozila

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Winehq

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

a) b) c)

Fig. 4 (part 1). Bagging experimental results on six datasets: a) Eclipse, b) Free desktop, c) GCC-bug-report, d) Gnome, e) Mozila, f) winehq datasets

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 151

d) e) f)

Fig. 4 (part 2). Bagging experimental results on six datasets: a) Eclipse, b) Free desktop, c) GCC-bug-report, d) Gnome, e) Mozila, f) winehq datasets

Table 4. Experimental results of applying the XGBoost algorithm on six dataset

ensemble algorithm dataset severity code precision recall F1-score accuracy

XGBoost

Eclipse

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Free desktop

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

GCC-bug-report

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Gnome

1 1.000000 0.968750 0.984127

0.99983119513842

2 0.999826 1.000000 0.999826

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Mozila

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Winehq

1 0.979167 1.000000 0.989474

0.9992236024844

2 1.000000 0.999154 0.999577

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

a) b) c)

d) e) f)

Fig. 5. XGBoost experimental results on six datasets: a) Eclipse, b) Free desktop, c) GCC-bug-report, d) Gnome, e) Mozila, f) winehq datasets

152 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

Table 5. Experimental results of applying the XGBoost algorithm on six dataset

ensemble algorithm dataset severity code precision recall F1-score accuracy

Stacking

Eclipse

1 1.00000 1.00000 1.00000

0.9994242947610823

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 0.97 0.98

Free desktop

1 1.00000 1.00000 1.00000

0.9994242947610823

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 0.96 0.97

GCC-bug-report

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Gnome

1 1.000000 1.000000 1.000000

1.000000

2 1.000000 1.000000 1.000000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

Mozila

1 1.00000 1.00000 1.00000

1.00000

2 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

winehq

1 1.000000 1.000000 1.000000

1.000000

2 1.000000 1.000000 1.000000

4 1.00000 1.00000 1.00000

5 1.00000 1.00000 1.00000

6 1.00000 1.00000 1.00000

a) b) c)

d) e) f)

Fig. 6. Stacking experimental results on six datasets: a) Eclipse, b) Free desktop, c) GCC-bug-report, d) Gnome, e) Mozila, f) winehq datasets

Fig. 7. Comparison the accuracy of applying proposed model

on six datasets

Fig. 8. The comparison results of proposed system with other researcher

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 153

Table 6. Results of the accuracy metrics of applying the four algorithms(random forest, bagging, XGBoost, stacking) on the six datasets

data set random forest accuracy bagging accuracy XGBoost accuracy stacking accuracy accuracy average of proposed model

Eclipse 0.9991364 1.00000 1.00000 0.9994242947610823 0.999640173

Free desktop 0.9995676 1.00000 1.00000 0.9984242947610823 0.9994979736902706

GCC-bug-report 1.00000 0.999961331 1.00000 1.00000 0.99999033275

Gnome 1.00000 1.00000 0.99983119513842 1.00000 0.99995779878460

Mozila 1.00000 1.00000 1.00000 1.00000 1.00000

winehq 0.9968944099378 1.00000 0.9992236024844 1.00000 0.99902950310555

Table 7. Comparing accuracy of results of proposed model with other researcher

paper title researcher
classification

algorithm
accuracy

accuracy

of proposed

model

Severity Prediction of Software Bugs
Ahmed Fawzi Otoom, Doaa Al-Shdaifat, Maen

Hammad, Emad E. Abdallah

Random forest 0.745 0.999640173

Decision tree 0.745 0.999640173

Automated labelling and severity prediction of software bug reports
Ahmed Fawzi Otoom, Doaa Al-Shdaifat, Maen

Hammad, Emad E. Abdallah, Ashraf Aljammal

Random forest 0.853
0.999640173

0.999640173

Decision tree 0.804
0.999640173

0.999640173

Machine Learning Approaches for Predicting the Severity Level

of Software Bug Reports in Closed Source Projects

Aladdin Baarah, Ahmad Aloqaily, Zaher Salah,

Mannam Zamzeer, Mohammad Sallam

Random forest 0.8455 0.99999033275

Decision tree 0.8326 0.999640173

Bug Severity Prediction using a Hierarchical One-vs.-Remainder

Approach

Nonso Nnamoko Luis Adri´an Cabrera-Diego,

Daniel Campbell, Yannis Korkontzelos
NLP 0.95 0.99999

6. Conclusion

This paper proposed model consisting of four ensemble

algorithms to predict the five of severity code of the software.

The main objective of this research was to make the process of

prediction accurate the severity code of the defect code more and

make the process of developing software in term less time

consumeing and efforts.

The proposed model has been applied to six datasets (Eclipse,

Free desktop, GCC-bug-report, Gnome, Mozila, and winehq).

These datasets are varies based on the number of projects, number

of severity code, and severity code ratio. Each Experimental has

used the proposed model which consists of four ensemble

algorithms(Random forest, Bagging, XGBoost, and stacking)on

each one of the datasets to show the performance of the proposed

model based on the six evaluation metrics (Accuracy,

precision,Recall, F1-score, Macro average, Weighted Average).

The experimental results have shown that the proposed system

has produced the highest prediction accuracy of severity code. The

proposed model goes one better than stacking and R.F. in

prediction trivial and normal severity code, also goes better than

bagging in prediction minor severity, and is better than XGBoost

in prediction major and blocking severity code. Also, it showed

the performance of each method depends on the dataset and the

used classifier, as well as the proposed system outperformed

previous systems proposed by other researchers, as shown in

Table 7 and Figure 8. The results show that the proposed system

outperformed all previous researchers.

References

[1] Alnaish Z. A. H., Hasoon S. O.: Hybrid binary whale optimization algorithm

based on taper shaped transfer function for software defect prediction.

Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska

13(4), 2023, 85–92 [https://doi.org/10.35784/iapgos.4569].

[2] Alsaeedi A., Khan M. Z.: Software defect prediction using supervised

machine learning and ensemble techniques: a comparative study. Journal

of Software Engineering and Applications 12(5), 2019, 85–100

[http://www.scirp.org/journal/jsea].

[3] Azam M., Nouman M., Gill A. R.: Comparative Analysis of Machine

Learning techniques to Improve Software Defect Prediction. KIET Journal

of Computing & Information Sciences – KJCIS 5, 2022, 41–66

[https://doi.org/10.51153/kjcis.v5i2].

[4] Bakhur N.: What Causes Software Bugs,Types of Defects in Software Testing,

May 21, 2024, [https://neklo.com/blog/what-causes-software-bugs].

[5] Brazdil P. et al.: Metalearning: applications to automated machine learning and

data mining. Springer Nature, 2022.

[6] Brownlee J.: What are the Benefits of Ensemble Methods for Machine Learning.

2021 [https://machinelearningmastery.com/why-use-ensemble-learning].

[7] Chmielowski L., Kucharzak M., Burduk R.: Application of Explainable

Artificial Intelligence in Software Bug Classification. Informatyka,

Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 13(1), 2023, 14–17

[https://doi.org/10.35784/iapgos.3396].

[8] Dada E. G. et al.: Advances in Machine Learning & Artificial Intelligence, 2021

[http://www.opastonline.com].

[9] Haldar S., Capretz L. F.: May. Explainable Software Defect Prediction

from Cross Company Project Metrics using Machine Learning.

7th International Conference on Intelligent Computing and Control

Systems (ICICCS). India, Madurai, 2023, 150–157

[https://doi.org/10.1109/ICICCS56967.2023.10142534].

[10] Kumar H., Saxena V.: Software Defect Prediction Using Hybrid Machine

Learning Techniques: A Comparative Study. Journal of Software Engineering

and Applications 17(4), 2024, 155–171.

[11] Li R. et al.: Software defect prediction based on ensemble learning. International

conference on data science and information technology. USA, New York, NY,

2019, 1–6 [https://doi.org/10.1145/3352411.3352412].

[12] Matloob F. et al.: Software defect prediction using ensemble learning:

A systematic literature review. IEEE Access 9, 2021, 98754–98771.

[13] Mienye I. D. Sun Y.: A survey of ensemble learning: Concepts, algorithms,

applications, and prospects. IEEE Access 10, 2022, 99129–99149

[https://creativecommons.org/licenses/by/4.0/99].

[14] Mohammed A., Kora R.: A comprehensive review on ensemble deep learning:

Opportunities and challenges. Journal of King Saud University-Computer

and Information Sciences 35(2), 2023, 757–774.

[15] Olaleye, T. O. et al.: Predictive analytics and software defect severity:

A systematic review and future directions. Scientific Programming 1, 2023,

6221388 [https://doi.org/10.1155/2023/6221388].

[16] Pandey S. K., Mishra R. B., Tripathi A. K.: BPDET: An effective software

bug prediction model using deep representation and ensemble learning

techniques. Expert Systems with Applications 144, 2020, 113085

[https://doi.org/10.1016/j.eswa.2019.113085].

[17] Prabha C. L. Shivakumar N.: Software defect prediction using machine

learning techniques. 4th International Conference on Trends in Electronics

and Informatics (ICOEI) (48184). India, Tirunelveli, 2020, 728–733.

[18] Rathore S. S., Kumar S.: An empirical study of ensemble techniques

for software fault prediction. Applied Intelligence 51, 2021, 3615–3644.

[19] Rathore S. S., Kumar S.: Linear and non-linear heterogeneous ensemble

methods to predict the number of faults in software systems. Knowledge-Based

Systems 119, 2017, 232–256 [https://doi.org/10.1016/j.knosys.2016.12.017].

[20] Tang Y. et al.: Software defect prediction ensemble learning algorithm based

on adaptive variable sparrow search algorithm. International Journal

of Machine Learning and Cybernetics 14(6), 2023, 1967–1987.

[21] Tong H., Liu B., Wang S.: Software defect prediction using stacked denoising

autoencoders and two-stage ensemble learning. Information and Software

Technology 96, 2018, 94–111 [https://doi.org/10.1016/j.infsof.2017.11.008].

M.Sc. Ghada M.T. Aldabagh

e-mail: ghadaaldabagh@uomosul.edu.iq

She has a master's in Computer Science from

the University of Mosul, Currently,she works

as a lecturer in the College of Computer Science

and Mathematics, University of Mosul, Mand a Ph.D.

candidate in the Computer Science Department,

College of Computer Science and Mathematics,

University of Mosul, Mosul, Iraq.

Research interest: machine learning, metalearning

artificial intelligence, artificial neural network,

software engineering.

https://orcid.org/0000-0002-4673-2288

Prof. Safwan O. Hasoon

e-mail: Dr.safwan1971@uomosul.edu.iq

He is a doctor and full professor of artificial

intelligence. He works at the College of Computer

Science and Mathematics, University of Mosul,

Mosul, Iraq.

Research interest: machine learning, artificial

intelligence, artificial neural network

https://orcid.org/0000-0002-3653-3568

