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Abstract. The inverse problem concerning the identification of rigid surfaces of scattering objects formulated in the frequency domain is presented in this 

paper. Differences in the identification of concave objects, such as kite-shaped, and convex objects (circle) are indicated. The reader’s attention is focused 

on the conventional boundary element method with small number of boundary elements and the small number of sensors, which is significant for inverse 
problems. 
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IDENTYFIKACJA SZTYWNEJ PRZESZKODY O DOWOLNYM KSZTAŁCIE OŚWIETLONEJ 

PŁASKĄ FALĄ AKUSTYCZNĄ PRZY UŻYCIU DANYCH Z BLISKIEGO POLA 

Streszczenie. Zagadnienie odwrotne dotyczące identyfikacji sztywnych powierzchni obiektów rozpraszających sformułowanych w dziedzinie częstotliwości 
została przedstawiona w tej pracy. Wskazano na różnice w identyfikacji obiektów wklęsłych jak na przykład typu kite i wypukłych (okrąg). Skoncentrowano 

uwagę czytelnika na konwencjonalnej metodzie elementów brzegowych z oszczędną dyskretyzacją oraz ilością czujników pomiarowych co ma istotne 

znaczenia dla zagadnień odwrotnych. 

Słowa kluczowe: zagadnienie rozpraszania fal akustycznych przez obiekty o dowolnym kształcie, symulacja zewnętrznych zagadnień akustycznych Metodą Elementów 

Brzegowych (MEB), zagadnienie odwrotne 

Introduction 

Dealing with the acoustic scattering the frequency range 

is a critical issue. 

Figure 1 shows how we understand the low, medium, and high 

frequency by means of the ratio between the acoustic wavelength 

𝝀 and the characteristic geometrical dimension 𝐿 of the arbitrary 

shaped scatterer (in Fig. 1 concave one). 

 

Fig. 1. Understanding of low medium, and high frequency range in terms 

of dimensionless wave number kL 

The low frequency problem is when the acoustic wavelength.  

𝜆 is significantly larger than the characteristic dimension 

𝜆 ≫ 𝐿 (see Fig. 1). The medium frequency range when 𝜆 is almost 

equal to L but high frequency range when wavelength 𝜆 is much 

smaller than the characteristic dimension 𝜆 ≪ 𝐿. 

Because in the title of the paper we have used an especially 

important term namely: "Near Field Data", a few words how 

we understand this term.  

In general, in acoustic scattering problems, the distinction 

between the near field and the far field is crucial. Particularly 

especially when dealing with a rigid and concave scatterer 

as it will be shown in the subsequent subchapter. 

The boundary between these two zones is conventional [5, 6] 

and depends on many factors, such as the dimensionless 

wavelength (kL where k is a wave number see for example Eq. 3) 

or the shape of the scatterer. In the near field, the shape 

of the scatterer has a significant impact on the acoustic field. 

There is a strong interaction between the sound waves 

and the scatterer’s surface. This interaction can cause multiple 

reflections and diffractions which as we will see could cause some 

difficulties in the identification of the surface. 

The near field is typically within a few wavelengths from 

the scatterer. 

For the far field zone the acoustic field becomes more regular 

and predictable. The effects of the scatterer’s shape diminish. 

Typically, the far field subregion is located at a greater distance 

from the scatterer, about several wavelengths away. 

For a rigid and concave scatterer like the kite shaped one [8], 

the near field will exhibit due to the concavity more turbulent 

pattern. And this is the main problem of difficulties in scatterers 

shape reconstruction, what will be presented during the numerical 

experiments later.  

1. The exterior forward problem of acoustic 

scattering 

The problem is outlined by beginning with the time-harmonic 

reduction of the wave equation for the exterior forward problem 

to the Helmholtz equation [9, 10]: 

 𝛻2𝜓(𝒓, 𝑡) =
1

𝑐2

𝜕2

𝜕𝑡2 𝜓(𝒓, 𝑡) (1) 

where: 𝜓(𝒓, 𝑡), [m2/s] is the scalar time-dependent velocity 

potential related to the time-dependent particle velocity by relation 

𝐯(𝒓, 𝑡) = 𝛻𝜓(𝒓, 𝑡) [m/s] (position vector 𝒓, and 𝑡 are the spatial 

and time variables in meters and seconds respectively) and c [m/s] 

is the propagation velocity.  

Transferring from the time domain to the frequency domain 

the velocity potential 𝜓 can be expressed as follows: 

 𝜓(𝒓, 𝑡) = Re{𝜑(𝒓)e−iωt} (2) 

where: 𝜔 = 2𝜋𝑓 [1/s] is the angular frequency, 𝜑(𝒓) is the 

velocity potential amplitude and 𝑖 = √−1 is the imaginary unit. 

The substitution of the above expression into the wave equation 

(1) reduces it to the Helmholtz equation of the form [4, 7]: 

 𝛻2𝜑(𝒓) + 𝑘2𝜑(𝒓) = 𝑄 (3) 

where: 𝑘2 =
𝜔2

𝑐2  and is the wavenumber and the wavelength 

is equal to λ = 𝑐/𝑓, but the right-hand side 𝑄 stands 

for the acoustic source. The complex-valued function 𝜑(𝒓) 

possess the magnitude and phase shift. The particle velocity 

has the similar form to the velocity potential see equation (2):  

 𝐯(𝒓, 𝑡) =  Re{𝛻𝜑(𝒓)𝑒−iωt} (4) 

Often the normal component of the velocity on the boundary 

𝐯𝑛(𝒓) is imposed as a Neumann boundary condition: 

 𝐯𝑛(𝒓) = 𝛻𝜑(𝒓) ∙ 𝐧𝑝 =
𝜕𝜑(𝒓)

𝜕𝑛𝑝
 (5) 

where 𝐧p is the unit outward normal to the boundary at point 

𝒓 [m] (see for example Fig. 2). 
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Fig. 2. External region under consideration illuminated by plane, time harmonic 

incident wave 

The sound pressure 𝑝 [1, 3] at the point 𝒓 in the acoustic 

domain is one of the most useful acoustic properties, 

and it is related to the velocity potential 𝜑(𝒓) by relation:  

 𝑝(𝒓) = i𝜔𝜌𝜑(𝐫) [
1

s

kg

m3

m2

s
=

kg

ms2
=

N

m2
= Pa] (6) 

In theoretical acoustics [10], it is often desirable to work 

with the Helmholtz equation (3) of the velocity potential 𝜑 instead 

of pressure 𝑝 and/or vector of the particle velocity 𝐯. 

Considering above and making use of Green’s second identity 

the Helmholtz equation (3) can be expressed in an equivalent 

form of a Boundary Integral Equation (BIE) [2, 13], i.e.:  

 𝑐(𝒓)𝜑(𝒓) + ∫
𝜕𝐺(|𝒓−𝒓′|)

𝜕𝑛𝜞
𝜑(𝒓′)𝑑𝜞 = 

 = ∫ 𝐺(|𝒓 − 𝒓′|)
𝜕𝜑(𝒓′)

𝜕𝑛𝜞
𝑑𝜞 + 𝜑𝑖𝑛𝑐(𝒓), 𝒓 ∈ 𝜞 (7) 

where 𝜑𝑖𝑛𝑐 is the incident wave and the vector 𝐧 is the unit 

normal vector outward pointing from the considered domain 

(see Fig. 2).  

The coefficient 𝑐(𝒓) of Eq. (7) is equal to [9]: 

𝑐(𝒓) = {

0 if 𝒓 ∈ Ωint,
angle

2𝜋
(in 2D) subtended by exterior at 𝒓 if 𝒓 ∈ 𝜞,

1 if 𝒓 ∈ Ωext.

 (8) 

As our interest is in the exterior problem, than 𝑐(𝒓) = 1. 
The sound-hard scatterer is imposed through a homogeneous 

Neumann boundary condition (
𝜕𝜑(𝒓′)

𝜕𝑛
= 0) on the boundary 𝜞 

(see Fig. 2). Making use of Green’s second identity the Helmholtz 

equation can be expressed in an equivalent form of a Boundary 

Integral Equation (BIE) [7], i.e. 

 𝜑(𝒓) = − ∫
𝜕𝐺(|𝒓−𝒓′|)

𝜕𝑛𝜞
𝜑(𝒓′)𝑑𝜞 + 𝜑𝑖𝑛𝑐(𝒓), 𝒓 ∈ Ωext (9) 

Due to the homogeneous Neumann boundary conditions 

the third term of Eq. (7) vanish. Now the boundary integral 

equation (9) for constant boundary elements can be written 

in terms of local coordinate ξ as follows [4]: 

 𝜑(𝒓) = − ∑ 𝜑𝑗(𝒓′)𝑀
𝑗=1 ∫

𝜕𝐺(|𝒓−𝒓′|)

𝜕𝑛

+1

−1
𝐽(𝜉)𝑑𝜉 + 𝜑𝑖𝑛𝑐(𝒓) (10) 

where M – is the total number of constant elements, 

and 𝐽(𝜉) – is the Jacobian of transformation and is equal to, 

𝐽(𝜉) =
𝑑𝜞

𝑑𝜉
= √(

𝑑𝑥(𝜉)

𝑑𝜉
)

2

+ (
𝑑𝑦(𝜉)

𝑑𝜉
)

2

=
𝐿

2
 , where 𝐿 is the length 

of the constant boundary element [14]. 

If the plane wave is travelling along the unit vector 

𝐝0 = (cos 𝜃0, sin 𝜃0) (see Fig. 3) then 𝜑𝑖𝑛𝑐(𝒓)  = 𝑒𝑖𝑘(𝒓∙𝐝0), where 

the position vector 𝒓 = |𝒓|𝑒−𝑖𝜃 and 𝑖 = √−1 is the imaginary 

unit.  

 

Fig. 3. Circular scatterer of radius R=1 and d0 direction vector of incoming wave. 

The yellow colour indicates illuminated part of boundary, but black colour shows 

the shaded side of the scatterer 

So, the dot product 𝒓 ∙ 𝐝0 is, according to some mathematics, 

equal to 𝑟𝑥cos𝜃0 + 𝑟𝑦sin𝜃0 = 𝑟 cos 𝜃 cos 𝜃0 + 𝑟 sin𝜃 sin𝜃0 

(see Fig. 3). 

𝜑𝑖𝑛𝑐(𝒓) = 𝑒𝑖𝑘(𝒓∙𝐝0) = 𝑒𝑖𝑘(𝑟 cos 𝜃 cos 𝜃0+𝑟sin𝜃 sin 𝜃0) = 

= 𝑒𝑖𝑘(𝑥 cos 𝜃0+𝑦 sin 𝜃0) = cos(𝑘(𝑥 cos 𝜃0 + 𝑦 sin 𝜃0)) + 

 +𝑖 sin(𝑘(𝑥 cos 𝜃0 + 𝑦 sin 𝜃0)) (11) 

where: x and y are coordinates for which the velocity potential 

is calculated. 

The Boundary Element solution (Fig. 4) will be compared 

with the analytical solution [12].  

  
a) b) 

Fig. 4. Magnitude of the incoming and scattered wave on the perimetry 

of the circular scatterer a) for 32 boundary elements b) for 64 boundary elements 

Based on analytical solution, easily achievable for circle only 

[12], the relative error would be calculated (see Fig. 5).  

a) 

 

b) 

 

Fig. 5. Relative error [%] versus boundary element distribution along the circular 

scatterer boundary a) for 32 boundary elements b) for 64 boundary elements 
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Looking at the Fig. 4 we can conclude that the boundary 

element solution is almost identical with the analytical one. 

For thirty-two boundary elements the maximal relative error 

is 2.1% but for sixty-four boundary elements drop to 0.5%.  

Our main interest is the Inverse Scattering Problem, 

so we are interested in as effective discretization as possible 

of the scatterer boundary. Considering all the restrictions 

mentioned by the Author in [9, 10], which were retained, 

for thirty-two boundary elements the maximum relative error was 

only 2,1% (Fig. 5) (on the shaded side of the scatterer). 

For the inverse problem, this should not be a problem. As we can 

observe in Fig. 5 on the most part of the boundary the relative 

error drop below 1%. 

The scatterer is illuminated by the flat wave propagated 

with angle 𝜃0=0°. So, the wave is travelling from the left side 

to the right side of Fig. 6. In this case, as we are dealing with 

a convex figure having the analytical solution. Such a situation 

makes the comparison between numerical and analytical 

(see Fig. 6), but in contrary to the boundary solutions (Fig. 4 

and Fig. 5), but not as easy.  

In the subsequent figure (Fig. 6) we can observe 

the quantitative comparison between 3D visualization 

of the acoustic field around the scatterer achieved by the BEM 

solution and by the analytical one [12]. 
  

  
a) b) 

Fig. 6. Qualitative comparison of the relief plot for the scattering problem: a) BEM 

solution b) analytical solution 

The circular scatterer is an excellent benchmark problem 

because it is easy to construct the analytical solution and, on this 

basis, it is possible to calculate the relative error for the boundary 

element solution. On this basis we have proved that software 

works correctly and, if we follow the acoustic advises [9, 10], 

it will be able to give correct results. 

2. Concave scatterer 

So far, we have considered only convex scatterers like circles. 

Now, it is time to deal with an arbitrary shaped scatterer. There 

are several types of such scatterers defined by a quite simple 

parametric equations [6, 15]:  
𝑥 = 𝑎𝑣cos(𝜃) + 𝑏𝑣cos(2 ∗ 𝜃) + 𝑚𝑣𝑥 

  𝑦 = 𝑐𝑣sin(𝜃) + 𝑚𝑣𝑦, (12) 

where: 𝑎𝑣, 𝑏𝑣, 𝑐𝑣 and 𝑚𝑣𝑥, 𝑚𝑣𝑦 are the coefficients responsible 

for the shape and position of the scatterer. 

Some details about the parameters: 

𝑎𝑣 is responsible for the size of the scatterer in 𝑥 direction as well 

as the depth of concavity (inversely proportional); limits 0.1 – 1.0, 

𝑏𝑣= 0.1 – 1.0. This coefficient is also responsible for the depth 

of the concavity. The higher coefficient the deeper concavity. 

𝑐𝑣= 0.1 – 1.0 represent the height in 𝑦 axis direction. 

For differently shaped scatterers there are different 

parametric functions describing the shapes of the scatterers. 

Let us concentrate our attention on the kite like scatterer defined 

by Eq. (12). 

Using one simple parametric functions Eq. (12) we can 

generate different shapes of the region. Such a description might 

be particularly useful in the tomography problems solved 

by BEM. 

In the Figure 7 are presented different angles of the incoming 

flat wave for the kite scatterer. Also, we can observe how 

the concave scatterer’s boundary is illuminated. 

 

  
a) 𝜃0 = 0° b) 𝜃0 = −45° 

Fig. 7. Single kite scattering object: a) incoming flat wave from left to right side with 

illuminated (yellow) and shadowed side (black) of the boundary, b) incoming wave 

from upper left corner to lower right corner of the kite scatterer with illuminated and 

shadowed boundaries marked by yellow and black colour respectively  

Using the boundary element technique, it is quite easy 

to calculate the shadow or the illuminated boundary zones. The 

zone consists of collection of boundary elements and could 

be calculated in the following way: 

𝒏𝒋 ∙ 𝐝 > 𝟎 

where the plane wave is travelling along the unit vector 

𝐝 = (cos 𝜃0, sin 𝜃0) and 𝒏𝑗 is the unit normal vector of jth 

boundary element, directed outside the investigated region. 

So, the dot product 𝒏𝑗 ∙ 𝐝 after some mathematics the dot product 

is equal to 𝑛𝑗𝑥 cos 𝜃 + 𝑛𝑗𝑦 sin 𝜃 = cos 𝜃𝑗  cos 𝜃0  + sin 𝜃𝑗 sin 𝜃 

(see Fig. 3). The angle of 𝜃𝑗  is the angle of the position vector 

of boundary element which in this case (circle) means that it is 

an angle of the normal outside vector of the boundary element. 

3. Numerical experiments with the concave 

scatterer 

The numerical experiment was reduced to an optimisation 

task [11] where, at each iterative step, sensor measurements 

were compared with the measurement results for the so-called 

real object. Since the forward problem was formulated 

in the frequency domain, the objective function must be defined 

as the product of the difference of the measurement signals 

(complex numbers) by their complex conjugate value [14], 

thus obtaining a scalar quantity. 

The measurement data is taken at 8 or 16, for higher 

frequency range, uniformly distributed points on the boundary 𝜞 

(see Fig. 8 and Fig. 9), whose values are obtained by solving 

the corresponding forward scattering problem Eq. (10), using 

the standard boundary integral equation method with only 32 grid 

points on the boundary ∂𝜞.  

White noise is added to the data as 𝑢𝛿(𝑅𝜞, 𝜃𝑗) = 

= 𝑢𝛿(𝑅𝜞, 𝜃𝑗)(1 + 𝛿𝑁𝑗), where 𝑁𝑗 are values sampled from 

the standard normal distribution of physical units, namely velocity 

potential [m2/sec] at each boundary element. Let the noise level 

𝛿 = 10% be fixed for all numerical experiments. 

In this section we would like to present some numerical 

examples to show some results of this approach and the depen-

dence of the results on various parameters. The experiment 

is carried out for two different frequency ranges: the low range 

and the high range which is quite close to the medium range. 

The measurement data are taken at the boundary 𝜞 in points where 

the acoustic sensors have been fixed (see Fig. 8). 
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Looking at the results from Fig. 8, we see that not all 

the illumination angles provide satisfactory results, even 

for the angles of incidence of the plane wave, which should 

be straightforward, e.g., -π/2 and 0. The optimisation finds 

a local minimum, from which it is difficult to escape (see Fig. 8c 

and Fig. 8f). 

We conducted a similar experiment for high frequency. 

This time, with only eight sensors, it was not possible to obtain 

any satisfactory results. Doubling the number of sensors resulted 

in a radical improvement. However, compared to the previous 

experiment, the results were far from satisfactory in some cases 

(for example Fig. 9a-c). 

The Fig. 10 shows the image of the total field in the near field 

and its equipotential lines. 

To illustrate how difficult is the shape identification 

for a concave scatterer, we conducted a numerical experiment 

for a circle (Fig. 11a) and for a kite-shaped scatterer (Fig. 11b), 

maintaining identical conditions except, of course, for the shape 

of the scatterers. This experiment was conducted for the high 

frequency range. Even though the circuit produced the correct 

results for the 10% noise kite like scatterer failed. 

 

The results speak for themselves. 

 

 

kL≈2.50.5=1.25<<2𝜋 low frequency range (L – characteristic 

dimension of the scatterer). 
a) 𝜃0 = 0° b) 𝜃0 = −45° 

 
 

c) 𝜃0 = +90° d) 𝜃0 = +45° 

  
e) 𝜃0 = −90° f) 𝜃0 = 180° 

 
 

Fig. 8. Low frequency range results of the optimisation: the yellow object means 

the starting point of the optimisation, the blue solid line represents the real scatterer 

but the dashed black line is the final results of the optimisation 

 

kL≈51.7=8.5≫2𝜋 high frequency range but with a tendency 

to the mid-range. 
a) 𝜃0 = 0° b) 𝜃0 = −45° 

  

c) 𝜃0 = +90° d) 𝜃0 = +45° 

 
 

e) 𝜃0 = −90° f) 𝜃0 = 180° 

  

Fig. 9. Results of optimisation:the yellow object is the starting point of optimisation, 

the blue solid line represents the real scatterer but the dashed black line is the final 

result of optimisation 

 

  
a) 𝜃0 = 0° b) 𝜃0 = 0° 

Fig. 10. Results of the optimisation for the absolute complex velocity potential and its 

equipotential lines  

 

kL≈ 150.5=7.5≫2𝜋 
a) b) 

  

Fig. 11. Convex versus concave optimisation 
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4. Conclusions 

Concluding the results of numerical experiments, we can 

say that the deterministic optimisation method for identification 

of the shape of the rigid surface of the scatterer is working 

well when for the concave scatterer not really. We can see that 

for different angles of illumination of the scatterers by the flat 

wave the results are quite different. This is a numerical modelling, 

so we must deal with many local minima, and keeping in mind 

that the sensitivity analysis is made by the numerical approach, 

and it is difficult to achieve a fully satisfactory result.  

The authors suggest two ways of solving these difficulties. 

First it is worth to try an optimisation procedure which could 

give a chance to find out the global minima. And the natural 

choice is a Genetic Algorithm [15]. But also, we can change 

a little a definition of the problem itself. Here it would be helpful 

to use, for example, the idea of Electrical Impedance or Diffuse 

Optical Tomography [14]. 

According to this concept, the scatterer can be sequentially 

illuminated from different angles, which are called projection 

angles. And for such a model, a deterministic optimisation method 

might give much better results. 
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