
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 121

artykuł recenzowany/revised paper IAPGOS, 4/2024, 121–129

http://doi.org/10.35784/iapgos.6656 received: 03.10.2024 | revised: 20.11.2024 | accepted: 13.12.2024 | available online: 21.12.2024

SYNCHRONIZATION OF EVENT-DRIVEN MANAGEMENT

DURING DATA COLLECTION

Valeriy Kuzminykh
1
, Oleksandr Koval

1
, Yevhen Havrylko

1
, Beibei Xu

1
, Iryna Yepifanova

2
, Shiwei Zhu

1
,

Nataliia Bieliaieva
3
, Bakhyt Yeraliyeva

4

1National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Department of Software Engineering in Energy, Kyiv, Ukraine, 2Vinnytsia National

Technical Unіversity, Vinnytsia, Ukraine, 3Dragomanov Ukrainian State University, Kyiv, Ukraine, 4M. Kh. Dulaty Taraz Regional University, Taraz, Kazakhstan

Abstract. The article considers an approach to implementing the architecture of a microservice system for processing large volumes of data based

on the event-oriented approach to managing the sequence of using individual microservices. This becomes especially important when processing large
volumes of data from information sources with different performance levels when the task is to minimize the total time for processing data streams.

In this case, as a rule, the task is to minimize the number of requests for information sources to obtain a sufficient amount of data relevant to the request.

The efficiency of the entire software system as a whole depends on how the microservices that provide extraction and primary processing of the received
data are managed. To obtain the required amount of relevant data from diverse information sources, the software system must adapt to the request during

its operation so that the maximum number of requests are directed to sources that have the maximum probability of finding the data necessary

for the request in them. An approach is proposed that allows adaptively managing the choice of microservices during data collection and by emerging
events and, thus, forming a choice of information sources based on an assessment of the efficiency of obtaining relevant information from these sources.

Events are generated as a result of data extraction and primary processing from certain sources in terms of assessing the availability of data relevant

to the request in each of the sources considered within the framework of the selected search scenario. Event-oriented microservice architecture adapts
the system operation to the current loads on individual microservices and the overall performance by analyse the relevant events. The use of an adaptive

event-oriented microservice architecture can be especially effective in the development of various information and analytical systems constructed

by real-time data collection and design scenarios of analytical activity. The article considers the features of synchronous and asynchronous options
in the implementation of event-oriented architecture, which can be used in various software systems depending on their purpose. An analysis

of the features of synchronous and asynchronous options in the implementation of event-oriented architecture, their quantitative parameters, and features

of their use depending on the type of tasks is carried out.

Keywords: Big Data, microservices, adaptation, event-driven software architecture, information technology, ontology

SYNCHRONIZACJA ZARZĄDZANIA STEROWANEGO ZDARZENIAMI

PODCZAS GROMADZENIA DANYCH

Streszczenie. W artykule rozważono podejście do implementacji architektury systemu mikrousług do przetwarzania dużych ilości danych w oparciu
o podejście zorientowane na zdarzenia do zarządzania sekwencją korzystania z poszczególnych mikrousług. Staje się to szczególnie ważne podczas

przetwarzania dużych ilości danych ze źródeł informacji o różnych poziomach wydajności, gdy zadaniem jest zminimalizowanie całkowitego czasu

przetwarzania strumieni danych. W tym przypadku, co do zasady, zadaniem jest zminimalizowanie liczby żądań do źródeł informacji w celu uzyskania
wystarczającej ilości danych istotnych dla żądania. Wydajność całego systemu oprogramowania jako całości zależy od sposobu zarządzania

mikrousługami, które zapewniają ekstrakcję i podstawowe przetwarzanie otrzymanych danych. Aby uzyskać wymaganą ilość odpowiednich danych

z różnych źródeł informacji, system oprogramowania musi dostosować się do żądania podczas jego działania, tak aby maksymalna liczba żądań
była kierowana do źródeł, które mają maksymalne prawdopodobieństwo znalezienia w nich danych niezbędnych do żądania. Zaproponowano podejście,

które pozwala adaptacyjnie zarządzać wyborem mikrousług podczas gromadzenia danych i pojawiających się zdarzeń, a tym samym kształtować wybór

źródeł informacji w oparciu o ocenę skuteczności uzyskiwania odpowiednich informacji z tych źródeł. Zdarzenia są generowane w wyniku ekstrakcji
danych i przetwarzania pierwotnego z określonych źródeł w zakresie oceny dostępności danych istotnych dla żądania w każdym ze źródeł uwzględnionych

w ramach wybranego scenariusza wyszukiwania. Architektura mikrousług zorientowana na zdarzenia dostosowuje działanie systemu do bieżących

obciążeń poszczególnych mikrousług i ogólnej wydajności poprzez analizę odpowiednich zdarzeń. Wykorzystanie adaptacyjnej architektury mikrousług
zorientowanej na zdarzenia może być szczególnie skuteczne w rozwoju różnych systemów informacyjnych i analitycznych zbudowanych w oparciu

o gromadzenie danych w czasie rzeczywistym i projektowanie scenariuszy działalności analitycznej. W artykule rozważono cechy opcji synchronicznych

i asynchronicznych w implementacji architektury zorientowanej na zdarzenia, które mogą być wykorzystywane w różnych systemach oprogramowania
w zależności od ich przeznaczenia. Przeprowadzono analizę cech opcji synchronicznych i asynchronicznych w implementacji architektury zorientowanej

na zdarzenia, ich parametrów ilościowych oraz cech ich wykorzystania w zależności od rodzaju zadań.

Słowa kluczowe: Big Data, mikrousługi, adaptacja, architektura oparta na zdarzeniach, technologia informacyjna, ontologia

Introduction

The collection of information based on certain characteristics

aimed at fulfilling a request from open information sources

of different composition and status has become one of the most

common methods for obtaining information in various spheres

of activity, including scientific, commercial, social, public,

and state. As a rule, for this, experts collect and analyze

information from mass media, public reports, official data,

materials of press conferences, public statements, professional

and academic reports, conferences, reports, and articles,

while using all available sources regardless of the degree

of completeness and relevance of data. The use of electronic

information carriers largely determines and stimulates

the development of approaches and methods of directed search

and increases the efficiency of both individual search procedures

and methods of organizing software tools focused on collecting

and processing the necessary information.

A feature of collecting information from open sources

is the uncertainty and instability of the information content

of these sources, the lack of substantiated and more or less reliable

a priori information about their content, its relevance, and a large

volume of data [7]. In advance, the low accuracy

and effectiveness of expert assessments of the correspondence

of data from these sources to the topics of inquiries

is characteristic, which does not allow for a more or less

reasonable choice of certain sources for extracting and obtaining

the necessary information upon request [11]. Therefore, to extract

the required data from open sources of information, it is necessary

to select the essential information from various possible

and available sources and further effectively consolidate data from

many sources using specialized software tools that should ensure:

 automatic selection of the most relevant, according

to the request, sources of information during the collection

of information;

 the possibility of accumulating and analyzing information

about the state of the sources during the execution

of the request for further correction of information collection

procedures;

 formation of typical scenarios for the collection and primary

processing of information by request and taking into account

122 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

the possibility of changing the state of the sources upon

repeated request [16, 25];

 analysis of both the most promising sources from the point

of view of relevance, completeness, and relevance,

and less relevant sources;

 construction of a certain assessment of promising sources

from the point of view of relevance for their arrangement.

The solution of such a set of problems requires

the development of software systems complex in terms

of architecture, that can effectively solve the tasks of searching

and analyzing such large amounts of data [17, 27]. Such software

systems must perform a large volume of data extraction from

a significant number of sources, their initial processing,

and the determination of the relevance of the received data with

an assessment of the prospective use of sources [7, 24].

The use of a monolithic architecture of a software system

to solve problems of this type cannot be efficient enough,

both from the point of view of developing and testing such

a system and from the point of view of implementing parallel

processes of collection and processing. They can be cumbersome

to work with when you need to add new features, make changes,

or even remove some unnecessary features.

In addition, the following important features and properties

of monolithic architecture can be noted:

 A monolithic application is faster and easier to implement

when it comes to creating a single application that contains

almost all the necessary elements from the ground up.

 Through close interaction, the entire application is deployed

or updated on the server or in the cloud for any change.

 The entire application must be scaled, even if only

one capability or characteristic needs to be scaled.

 You have to redeploy the entire program if something needs

to be changed.

 It is difficult to test the system because it is necessary to test

the entire software system at once.

 It is difficult to make changes to the program because changes

in one place can have undefined consequences in other parts.

Microservices architecture is quite a good option for cases

where complex multi-functional large-scale applications

are developed and periodic updating of processing methods

is required, when different teams work independently on different

parts of the software and when there are different domains

to be processed and to combine separate results [8, 15].

Microservice architecture has quite a lot of properties that

distinguish the results of its use from monolithic [13, 23]:

 Developments are slower than monolithic ones because each

service is developed as a separate software module.

 Each service has its data store and, is responsible for a specific

domain, and can be developed, modified, or deployed

independently.

 Services have a smaller size, which makes them easily

adaptable to new changes, improvements, and fixes.

 It is easy to scale individual services without compromising

others.

 There is no need to stop the entire program if you need

to make changes to a separate service.

 Individual services are much easier to test.

 Individual services can be quite simply updated and replaced

according to current tasks.

All this makes the development of a primary information

collection and processing system based on the use of microservice

architecture more efficient, rational, and attractive for solving

the problems of collecting and processing information from

disparate sources.

The use of microservice architecture for the construction

of information collection and primary processing systems provides

significant additional opportunities and significantly expands

the conditions of their use, regardless of the complexity

of the request and the number of necessary sources used to extract

information relevant to the request.

When building information-analytical systems and infor-

mation collection and primary processing systems based

on the use of microservices, it is possible to use query execution

scenarios that can adapt to current results and the state

of the process of interaction with data sources.

Management of microservices can be quite complicated

in connection with a significant number of microservices

in the system, different in terms of functions and implementation

features, and the need to define clear interactions and the sequence

of their use. Each microservice must have the necessary

computing capabilities, data storage and some additional specific

resources for microservices. All microservices in a software

system must be suitable for the ability to control them during

the use of the software system 2

The most common ways of managing microservices today

are containerization and virtualization, which can be implemented

by quite a variety of methods.

Docker's containerization management and deployment

automation system have contributed significantly to the fact that

containers have become particularly popular [9]. This approach

in the interaction of microservices allows you to isolate

applications from each other, thus providing them with significant

independence in performing their functions and the possibility

of parallelizing computing processes. Containers typically

use the server's current operating system. This makes it possible

to ensure the distribution of resources between containers. Using

containers provides a low implementation cost and short start-up

time with low resource requirements.

Containers greatly simplify the work of both programmers

and program development managers. Containers make it possible

to pack both the program and all its necessary components into

a single image. These can be both library system utilities

and necessary configuration files. This greatly simplifies

the deployment and migration of the application.

Containers make application deployment easier. In the usual

version, to install some programs, you need to perform standard

actions, such as executing a scenario, configuring files, and other

necessary elements. Containers make it possible to completely

automate this process, as they include the entire sequence

and the composition of the execution of actions.

Containers also simplify, if necessary, deployment on multiple

servers. Normally, to deploy the same application to multiple

machines on the network, you would need to repeat the same

steps. Containers eliminate this unnecessary routine work

and allow you to automate the entire deployment.

Sharing an operating system with containers can lead to some

complications and significant risks (danger). This can be very

important in specialized information collection and processing

systems that have certain restrictions on access to information.

The use of containers requires that all applications included

in the system can run in a virtual machine of the operating system

of the server on which they are deployed.

One of the main concerns with this is security, as containers

share access to the host machine's operating system. If the server

uses containers with only one company's services, this is unlikely

to create a problem, but modern approaches to the joint rental

of cloud resources require paying more attention to the placement

of containers when implementing a software system.

Deploying microservices on virtual machines does not have

most of the problems and disadvantages of containers, although

their use is more complex and requires much more time

to implement. This can be quite critical for solving the problems

of gathering and primary processing of information. As a rule,

virtual machines provide complete isolation with a standalone

operating system at the expense of hardware specific to each

instance.

Although hosting microservices on virtual machines provides

higher security than using containers, it requires much more

implementation overhead. Each virtual machine to be used to host

microservices has a higher cost compared to containers,

a significantly longer start up time, and higher system resource

requirements for operation.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 123

To date, there are already many developments that allow

increasing the efficiency of the use of virtual machines, reducing

the time and cost of implementing the microservice architecture

of software applications on their platform.

In cases where the need to implement security requirements

is in the first place, then placing microservices on virtual

machines can have significant advantages when choosing a way

to implement a software system. Therefore, according

to the development and improvement of these technologies,

virtual machines can become a more competitive alternative

to containers in supporting microservices architecture.

As a rule, the tasks of managing containers and virtual

machines are solved with the help of specialized programs

of different structures and complexity, which are constantly

being developed by different companies, both for their needs

and for the needs of the market [12, 14].

Container management software systems manage both

container deployment and resource allocation and integration

with computing resources. Microservices must be able to scale

up and down based on workloads and performance requirements.

Container management software systems must support vertical

scaling, in which the load on computing and network resources

such as CPU, memory disk, network, and external communication

channels can increase or decrease on each microservice instance.

Horizontal scaling should also be supported with the addition

or removal of new instances depending on the need to adapt

the management scenario of the microservice system according

to the request it performs [5, 6].

One of the most relevant and functional types of software

architecture that can be used to solve the problems of gathering

information from open information sources of different

composition and status is event-driven architecture (Event-driven

architecture, EDA) [10, 22].

Event-driven architecture from the point of view of imple-

mentation can be built both on the use of virtual machines

and on containerization, depending on the specific capabilities

and wishes of customers and developers. To solve the problems

of collecting information according to certain characteristics

from information sources of different composition and status,

the software architecture built based on container management can

be more effective and appropriate to the specifics of the tasks.

Event-driven architecture is one of the types of software

architecture that takes into account the events that occur

and are analyze during the operation of the software system,

and the reaction of the software system's operation scenario

to them. At the same time, the event is interpreted as some action

that initiates a message or a necessary change in the application.

At the same time, the event can cause significant changes

in the state of the software system.

In practice, event-driven architecture is also often seen

as a logical development of an adaptive superstructure over micro-

service architecture. In an event-driven architecture, the focus

shifts to events and how they affect the scenario execution

processes in the system. The logic of the event-oriented

architecture is built according to two types of topologies – Broker

and Mediator, named after the intermediary programs

that combine the generator and consumer of events.

The main advantages of event-driven architecture

are the ability to obtain results in real time; shorter delays

in data storage and transmission; greater bandwidth; simple

scalability; and high resistance to failures [3, 28].

Modern event-driven micro-service architectural approaches

to the management of microservices according to the performance

indicator still do not have universal solutions, and the develop-

ment of this direction has a significant perspective and interest.

Architectural solutions, which are based on event-driven

micro-service software architecture, provide an opportunity

to significantly expand the analytical, managerial, and control

capabilities of information and analytical systems. This, in turn,

provides a qualitatively new level of construction, maximally

adapted to the structure and processes of search, analysis,

and formation of results in the information environment.

An actual problem remains the task of developing ideologies

and approaches for the most effective use of micro-service

architecture in solving complex information and analytical

problems, which reflects the constant increase in the amount

of information that must be processed to solve user requests.

The architecture of a microservice software system, driven

by events generated during the operation of the software system,

is a popular approach to creating a distributed architecture used

to create complex scalable applications [2]. This approach

is flexibly adaptable to changes in the conditions of use

of the software system and can be used both for small programs

and for large, complex software systems. The event-driven

architecture consists of significantly separated, purpose-built

event-processing components that occur during the operation

of the software system and that receive information about

emerging events and process this information in accordance

with current and previous events [26].

1. Problem statement

A certain group of open sources of information is considered,

which presumably have the necessary data and can be used

for extraction, initial processing, and further consolidation

of the necessary data corresponding to the request [21].

Such a group of sources is considered for each specific task

and is the basis for determining the search scenario by the user's

request for the data retrieval system.

 DS = {D1, D2, D3, …, Dn}

It is assumed that each of the sources has its own distinctive

features and technical characteristics regarding the form

and structure of their storage, which in turn leads to the need

to use separate specific approaches to data extraction.

Such a variety of forms and structural characteristics

of information storage in sources leads to the urgent need to

use separate specific software modules for each of the n sources.

Requests for the search of the necessary data from a group

of specified information sources contain data characteristics, based

on which it is possible to determine compliance with a specific

request. For example, to search for bibliographic data, such

characteristics as surnames and first names of authors, years

of publication, country of author, countries of co-authors,

language of publication, keywords, and others can be used. Such

characteristics are determined by the request and can be specified,

if necessary, by the user of the software system. The number

(quantity) and composition are limited only by the capabilities

of software applications that retrieve the data of the corresponding

request. The request may include the number of relevant data

units to be extracted, limitations on the number of requests

to information sources, and the total time for obtaining data

relevant to the request.

The number (quantity) of queries, query volumes,

and the number of repeated query sessions are determined

by the results of previous sessions. At the same time, a request

session means a certain number of requests to each of the sources,

after which the data extraction results are evaluated according

to the request characteristics. Very often, the total session size

is defined as the total number of requests to all sources

in one iteration of the search method implemented in the software

system.

The assessment of quality or effectiveness for each

of the sources in the session is carried out as an assessment

of the relevance of the received data by the characteristics

of the request. The specific form of evaluation of the relevant

received data depends on the specific characteristics of the request

and may be determined by the specifics of the implementation

of data extraction algorithms and their primary processing.

The general task is to obtain a sufficient amount

of data corresponding to the request in the minimum time

or for the minimum number of requests to information sources.

124 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

2. Description of the algorithm

The development of systems for collecting and processing

large flows of data from disparate sources in most cases requires

the determination of specific implementation features by the tasks

that reflect both the features of the selected sources for data

extraction and the features of the requirements for the quality,

relevance, and reliability of the information collected from

the relevant sources.

The presented structure of the event-oriented micro-service

software system (Fig.1) has some features that are related

to the use of a separate service, which manages the actions

of the system as a whole from the point of view of both

the analysis of the performance of tasks following the initial

request of the system user and the processes of selecting the most

relevant sources of information by activating the corresponding

microservices that are mutually unambiguously associated with

specific sources [4, 18].

Fig. 1. Algorithm of stochastic adaptive event-driven system

The specificity of the task under consideration requires,

as a rule, the development of specific software applications

for collecting information from each of the sources considered

as potential repositories of the necessary information.

At the same time, the list of such sources can be determined

by the corresponding typical scenario, which must be matched

to the type and other specific features of the request for data

collection and processing in the information and analytical system.

To initiate the operation of the system, it is necessary

to formulate an appropriate data collection task, which is the basis

for choosing the appropriate scenario. One of the standard

scenarios can be used as such a scenario or a new scenario defined

by an analyst who is a user of this system [19, 20].

The task, with such consideration, for example, within

the framework of the information-analytical system of the analysis

of scientific activity, may include such parameters of data

selection, i.e., assessment of their relevance, as key data, i.e.

authors' surnames, topics, keywords, periods time, dates, names

of countries, scientific areas, etc. Based on this task, a form

of request to data sources is formed, which is the basis

for determining the correspondence of data in the source

to the task of information search.

In addition, the task may include weighting

factors corresponding to each of the parameters of the task.

For the operation of the system, a repository of typical scenarios

is created, which stores pre-prepared scenarios and such

scenarios that were refined and obtained after the use of previous

typical scenarios, as a result of the software system's work on its

previous use for the current task or other tasks similar in structure.

Initial scenarios can be built and entered by the system user

and saved for future use.

The process of building typical scenarios requires the creation

of a scenario model (a model of data collection scenarios

or a functional model), a model of production rules,

and an executive model of the software system [19, 24].

These models are built based on a previously built ontology

of the subject area of the software system, which specifies

the description of the main entities (concepts and relations)

of the subject area in the form of classes of objects, instances

of classes, their properties and relations between classes

and properties, including a description of the information sources

necessary for data collection tasks (Fig. 2).

Fig. 2. A fragment of the class hierarchy of the domain ontology

Using the Protege-5.5.0 ontology editor, an ontology

of the subject area of the search for relevant information

on the analysis of the scientific activity of the organization was

built (Fig. 3), which was checked for completeness and semantic

compatibility [7] and used to build typical scenarios.

The scenario model reflects the order and content

of information management at the functional level:

 𝑆𝑐𝑀 = ⋃ {𝑇𝑆𝑐𝑖 , 𝐴𝑆𝑐𝑖 , 𝐸𝑥𝑖 , 𝐺𝑖|𝑖 = 1, 𝑁}𝑖
where TSci – a typical scenario of the i-th task of data collection;

ASci – an extended (secondary) scenario for the i-th task

of data collection; Gi – the goal of the i-th task execution scenario

data collection, which has such characteristics as criteria, time,

and resources.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 125

Fig. 3. A fragment of the visual representation of the domain ontology in the Protégé

5 editor

The model of production rules describes the rules of logical

inference in terms of classes and relations for performing

operations on instances of ontology classes of the subject area

of the software system.

The executive model of the software system consists

of individual microservices designed for the implementation

of typical scenarios and the output of new knowledge, based

on which new typical scenarios are built. The scenario model

links the algorithms of software implementation of microservices

with the model of production rules [1, 23].

Scenarios in the general case, which are considered

in the framework of the implementation of an adaptive

event-oriented system, may include:

 a list of possible sources corresponding to the request form;

 the number and volume of sessions of requests to sources;

 limitations on the number of requests and search time;

 the initial values of the relative probability of assessing

the possibility of having relevant information units

on the selection of sources during the information collection.

The BizAgi Process Modeler business process management

software platform was used as an instrumental environment

for building scenarios and their serialization. A fragment

of the graphic semantic model of one of the typical scenarios

is presented in Figure 4.

Fig. 4. A fragment of a graphical semantic model of one of the typical scenarios built

using the BizAgi Process Modele software platform

In this case, a unit of information means one separate

information file with text content that is considered

for its relevance (relevance) to the request. In the absence

of additional information, scenario models determine

the probability of selecting relevant units of information from

all sources considered within this scenario model, which

determines the same number of calls to each source for extracting

data corresponding to the data retrieval task.

 P = {p1, p2, p3, …, pi, …, pn-1, pn}

 ∑ 𝑝𝑖
𝑛
𝑖=1 = 1

 pi = 1/n, I = 1, ..., n

Next, according to the session size set in the scenario,

a specific number of data extractions from each source

is determined during one session.

 QS = ∑ 𝑞𝑖𝑗
𝑛
𝑖=1 , j = 1, ..., Jmax

where: QS – the total size of the session, i.e., the total number

of requests to all sources in one iteration of the method,

qij – session size for the i-th source at the j-th iteration,

Jmax – the maximum number of iterations in the scenario.

This generates the number of data extractions in each

of the sources within the current data collection session. The total

size of the session itself is determined by the scenario and can

be changed during the execution of the search by the analyst,

during the data collection, but, as a rule, it has a constant value.

Such a need may arise when, during the collection of information

from sources, the number of relevant data units is insufficient

and it is necessary to increase the total sample size to achieve

certain results.

In the next step, queries are made to the sources

of information defined in the scenario. The source group used

in this review is defined by the scenario description.

The number and list of sources of information used within

the scenario are generally unchanged during the collection

of information according to the current request. But, if necessary,

to speed up the process of data collection from the sources

most relevant to the request, the analyst can reduce the number

of sources that are not efficient enough, or identify new additional

sources, which will make it possible to increase the efficiency

of data collection.

The formation of a group of sources according to the scenario

is performed by defining specific microservices that are respon-

sible for extracting information from the relevant sources. Each

of the microservices is responsible for sampling information

from one specific source. The operation of the microservice,

within the framework of this process, is determined

by the extraction of a certain amount of data that corresponds

to a specific request within the framework of which

this microservice performs the extracted information.

The process of interaction of a microservice with

an information source consists of the following main steps:

 a request to the source of information;

 extracting a unit of information;

 assessment of the relevance of the extracted unit

of information;

 preservation of a relevant unit of information;

 ending the cycle of calls to the source when the number

of calls to the source, which is defined within the current

session, is reached.

Each of the microservices is focused on extracting information

from a specific source. This approach is a consequence of the fact

that each of the sources has its specific features:

 structures and forms of preservation of information arrays;

 permissions and restrictions on access to information stored

in a certain source;

 the availability of the extraction of this information following

the request.

The input data for each selected microservice is:

 number of links to source;

 parameters for the mechanism for assessing the relevance

of the received data;

 the degree of compliance.

Under the parameters for the mechanism for evaluating

the relevance of the received data, a set of keywords with their

weight values can be used as a minimum for this consideration.

Then the relevance score Ml for each l-th unit of data can look

like this:

 Ml = ∑ 𝐻𝑘
𝐾
𝑘=1 Wk

K – number of search parameters, Wk – the weight of the k-th

search parameter according to the search task, Hk – indicator

of the presence of the k-th search parameter in the document,

which has a value of 1 if it is present, or 0 if the k-th search

parameter is not present in the document.

Then the overall estimate of the availability of relevant data

units for each i-th source of information in the current j-th session

can be defined as

 Ri
j = ∑ 𝑀𝑙

𝐿
𝑙=1

 L = qij

126 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

After the session, the results of data collection and assessment

of the presence of relevant data in each of the sources

are transferred to each of the data collection microservices

for their subsequent consolidation and assessment of the results

of extracting the necessary data for each of the sources

in the current session. Consolidation of received data, within

the framework of the system under consideration, means their

initial verification by request and bringing them to a single form

for the possibility of further processing.

The obtained results are transferred to the database that

collects the results of withdrawals. In the future, these data

collection results will be used to prepare a report on the task.

Further, depending on the chosen direction of implementation

of the algorithm of event-driven control of the microservice

architecture, a synchronous or asynchronous approach can be

chosen in the management of data collection microservices.

Depending on this choice, the moment of event creation is formed,

which means the further process of forming the session size

for each of the sources in the next step.

With the synchronous algorithm in the management

of microservices, the event that determines the need to recalculate

the session sizes for each of the sources is formed only after

the end of data collection from all sources, regardless

of the session sizes for each of them. Thus, the time of occurrence

of the event that initiates the process of recalculating the number

of requests for each of the sources within the session is determined

by the microservice that last finished extracting data from

the source corresponding to it. Then, calculations of session sizes

for each source are formed based on data received from all sources

within the framework of one session after completion of data

collection by all microservices, regardless of the time of data

collection by each of them.

With an asynchronous algorithm in the management

of microservices, the event that determines the moment of recal-

culating the session sizes for each of the sources is generated

at the end of the session by the microservice that first fulfilled

the requests within its session first. At the same time,

the execution of their sessions by other microservices is not taken

into account. Calculations will be made based on the current

results of extracting relevant data from all sources. At the same

time, it is not taken into account that the selection of data from

other sources has not yet been completed. Thus, in this case,

for other sources, performance evaluations for the current session

are carried out on unfinished sessions. On the one hand,

this approach can significantly speed up the process of obtaining

relevant data, and on the other hand, it can significantly

slow down the adaptation process of determining the most

relevant sources in terms of the number of relevant records

in sources.

Although this approach takes into account only partial

information regarding the assessment of the relevance

of all sources, it speeds up the process of adapting the data

collection system to the state of the data sources in terms

of the availability of records relevant to the request due

to the more frequent formation of an event that initiates

the recalculation process [11, 21].

Next, the process of the system's operation proceeds

to the assessment of the degree of sufficiency of the amount

of received data for the possibility of a reasonable assessment

of the states of the sources from the point of view

of the availability of relevant data. If such data is not enough,

it is possible to repeat the previous session to obtain more relevant

data, which will be used to recalculation the P vector. When such

repeated execution of the session does not improve the results,

a situation is possible when it is necessary to change the collection

scenario by using a different set of sources for a certain request.

In some cases, the following simplified scheme can be used

to quantify the quality of the data collection process from the point

of view of obtaining relevant data from relevant sources.

A model is used that allows a partial correspondence between

the request and the source of information. This correspondence

evaluates to a value in the range [0,1]. The value that evaluates

the correspondence between the request and the source

of information is formed based on determining the match

between the parameters of the request and the characteristics

of the information units included in a certain source of information

under consideration.

Quantitative evaluation of the correspondence of the l-th

document (for l = 1, …, V) from the i-th information source

to the j-th query parameter during one sample to assess

the relevance of the source is calculated as:

rijl =0 – when the j-th parameter is not present in the l-th

document of the i-th source of information,

rijl =1 – when the j-th parameter is present in the l-th document

of the i-th source of information.

So this value, after sampling and evaluation of several units

of information from a certain source of information, is averaged

in accordance with the number of selected units (documents).

Quantitative assessment of compliance of the i-th information

source with the j-th request parameter determines its partial

compliance, it corresponds to the range [0,1] and can be

defined as

𝑘𝑖𝑗 =
1

𝑉
∑ 𝑟𝑖𝑗𝑙

𝑉

𝑙=1

rijl – is a quantitative assessment of the correspondence of the l-th

document (for l = 1, …, V) from the i-th information source

to the j-th query parameter during one sample to assess

the relevance of the source, V – the volume of one single sample

from one source of documents must comply with the following

limitations:

 V << Si for i = 1, …, n

Si – is the number of information units (documents) in each

of the n sources of information considered for this request.

Then the assessment of the relevance of the i-th source

of information will be determined as

𝑅𝑖 =
1

𝑚
∑ 𝑘𝑖𝑗

𝑚

𝑗=1

 𝑣𝑗

where 0 < vj < 1, vj – weight coefficient of the j-th parameter

of the requested topic, determined by expert evaluations

or based on priorities, which can be independently determined

by the customer of the information request.

If sufficient relevant data is received to evaluate the data

sources, it is checked whether enough data is received according

to the request to further prepare the report. When this is the case,

a report is prepared according to the request by processing the data

extracted by the microservices from the relevant sources

and stored in the database of results.

If the amount of received data is sufficient for the possibility

of a reasonable assessment of the state of the sources in terms

of the availability of relevant data, but when their quantity does

not yet meet the needs of the request, the results of requests

to the sources for each data source are processed.

Based on these data, an event is formed as a vector

of the influence of Gk on the corresponding values

of the components of the probability of having relevant units

of information from all sources considered within the framework

of this scenario model.

 Pk+1= Gk Pk =

 ={g1kp1k, g2kp2k, g3kp3k, …, gikpik, …, gn-1kpn-1k, gnk pnk}

In the general case, the value of the influence coefficients can

be determined as

 gik = F(pik - pik-1)

The choice of one or another type of function F can

be the result of a separate study.

The effectiveness of the synchronous and asynchronous

algorithms largely depends on the quality of the definition

of the probability vector of relevant units of information

for all sources for the next session of the algorithm. Regardless

of the type of methods described above, in the simplest case,

it is possible to determine that the vector calculation

of the probability of the presence of relevant units of information

for all sources can be based on the use of both the previous values

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 127

of the probability estimates for several previous sessions

of the search process and the degree of consideration

of these values for next session [11].

The basis for these estimates is the assessment of the change

in the amount of relevant data by session from the previous

session to the next.

DS
i = (RS

i - RS-1
i)/ RS-1

i – the relative change in the amount

of relevant data between sessions S and S-1

The estimate of the amount of relevant data in the next S+1

session can be defined as

 Ř S+1
i =RS

i + Ds

An estimate of the value of the number of data extractions

for the i-th data source for the next session can be calculated

as follows:

 KS+1
i =F (Ř S+1

i)

where F – the evaluation function, which determines

the implementation of the event of a change in the value

of the amount of relevant data between consecutive sessions

for each of the sources.

It is possible to evaluate the effectiveness of retrieving

relevant data for the current and previous sessions for all

sources as

1

1

1

S
S i

Si

i

R

K
E

 ,

S
S i

Si

i

R

K
E

where i=1, …, N.

With

0 0, 0i i

Q
K const R

N

Based on the obtained evaluations of the extraction of relevant

data for the current and previous sessions for each of the sources,

it is possible to evaluate the change in efficiency as a factor

that can influence the determination of the decrease or increase

in the values of the total amount of data KS+1
i received from

the i-th source for the S-th session. Then you can determine what.

1S S S

i i iD E E

At the same time, the change in efficiency for each session

should be affected in a certain way with a certain coefficient

of value, which should reduce its value for earlier sessions.

This can be defined as the effect of partially reducing

the influence of previous sessions on subsequent ones.

The total effect on KS+1
i can be defined as

1 1

1

S
S j j S

i i

j

Z D v

where v – is the coefficient of influence of the results of previous

sessions.

At the same time, not the entire previous history of sessions

can be analyzed to determine the impact, but only the value

of the effectiveness of several previous sessions, then

1 1
S

S j j S

i i

j h

Z D v

where h – determines the number of previous sessions taken into

account when taking into account the influence of previous

sessions.

In this consideration, the total amount of data received

from the i-th source for the S+1-th session in a simpler fit can

be defined as

 KS+1
i = KS

i (1+ZS+1
i)

After that, the obtained results are normalized according

to the calculated sum of KS+1
i grades throughout the session.

To study the possibilities and effectiveness of the described

synchronous and asynchronous algorithms for the implementation

of event-driven management of the selection of sources during

the execution of a request for the collection of relevant data, there

is a study of the effectiveness of the process depending on such

parameters as:

 first, the number of previous sessions, the results of which

are taken into account when taking into account the influence

of previous sessions h;

 secondly, the coefficient of influence of the results of previous

sessions v.

Analysis of the effectiveness of synchronous and asyn-

chronous algorithms for the implementation of event-driven

management of source selection shows a significant dependence

of their effectiveness on the values of these parameters and their

combinations.

3. Comparative testing

To analyse and compare synchronous and asynchronous

control methods, the described algorithm was tested

on the generated test models of data sources [25]. For each test,

10 test data source models of 10,000 records each with

a percentage of relevant records between 1% and 10% were

generated and used.

Without reducing the degree of generality, an even distribution

of records relevant to the respective queries in each of the source

models was used to fill the test source models. Thus, the number

of records relevant to the query in the source models was variable

from 100 to 1000, corresponding to a percentage of relevant

records from 1% to 10%. At the same time, each of the test

models was implemented as a separate file of 1000 records, which

made it possible to use these source model multiple times

to analyze the influence of the number of previous sessions

and the coefficient of influence of the results of previous sessions

on the probability of obtaining relevant data from each

of the source models.

For ease of implementation of testing of synchronous

and asynchronous algorithms, relevance was defined

as a complete match of the symbols included in the request

with the symbols of records in the source model. This makes

it possible, with little time for data processing when testing

algorithms with various parameters, to determine the features

and capabilities of synchronous and asynchronous algorithms

in managing data collection quite fully and comprehensively.

During testing, various combinations of h and v values were

considered. Below are those combinations of values that gave

the most characteristic results.

Fig. 5. Synchronous model. Analysis of the influence of v at h = 5

Figure 5 shows the obtained test results, showing

the dependence of the percentage of relevant results obtained

on the influence coefficient of the results of previous sessions v.

At the same time, the value of the number of previous sessions,

the results of which are taken into account when taking into

account the influence of previous sessions h was unchanged

and equal to 5. The best results were achieved when the value

of the coefficient was equal to 2.5. Further refinements showed

that this value is closer to 2.7.

Figure 6 shows the obtained results of the study, showing

the dependence of the percentage of relevant results obtained

on the number of previous sessions, the results of which are taken

into account when taking into account the influence of previous

sessions h. The best results were obtained when the value

of the number of previous sessions taken into account was h = 5.

As the value was further increased (h = 6, 7, …) the improvement

in results was practically negligible to account for its

improvement. At the same time, the coefficient of influence

of previous sessions v was unchanged and equal to 2.5, according

to the best results.

128 IAPGOŚ 4/2024 p-ISSN 2083-0157, e-ISSN 2391-6761

Fig. 6. Synchronous model. Analysis of the influence of h at v = 2.5

Similar results for the values of h = 5 and v = 2.5 were

obtained for the asynchronous algorithm, which is shown

in Figures 7 and 8. Such values were obtained as the most

qualitatively relevant to the testing task for the vast majority

of conducted studies of the method.

However, it should be noted that the results of the synchro-

nous and asynchronous microservice management algorithms in

the event-oriented microservice system, which is described, have

significant differences from the point of view of the process

of manifestation of the adaptive properties of the system.

Fig. 7. Asynchronous model. Analysis of the influence of v at h = 5

Fig. 8. Asynchronous model. Analysis of the influence of h at v = 2.5

Fig. 9. Comparative analysis of synchronous and asynchronous algorithms

of an adaptive event-driven microservice system

The results of the analysis shown in Figure 9 show that,

depending on the size of the data sample, the methods behave

differently.

An event-driven algorithm built based on an asynchronous

algorithm proves to be much more effective with a smaller number

of attempts to search for relevant data due to a higher speed

of adaptation. This may be a manifestation of the more frequent

occurrence of events that correct the adaptation procedures

in connection with the end of the session based on the results

of the first of the microservices, which finished the selection

without waiting for the end of the selection of data from other

sources.

But with an increase in the number of processed data selected

from sources, the adaptive event-driven algorithm built based

on the synchronous method becomes no less effective and even

more stable from the point of view of the constant increase

in the percentage of selected relevant data units. This, in turn,

can be considered as a manifestation of a more complete

assessment of information regarding the availability of relevant

data from all sources. Practically, with a large number

of processed results, the difference between the percentages

of relevant results for synchronous and asynchronous algorithms

becomes approximately the same.

4. Conclusions

The developed event-driven architecture of the system

for processing large data flows makes it possible to collect

information from various forms of storage and composition

of sources depending on the tasks defined by the user.

The composition of information sources in this system can

be expanded without interfering with other components

of the system. Each microservice configured for one specific

source or several homogeneous sources of information can

provide only partial data, which is supplemented by other sources.

In the course of its work, the system in real time adjusts

to the user's request for information in such a way that the data

is taken mainly from those sources that meet the requirements

of the request and can satisfy them. At the same time, source

selection procedures based on a linear stochastic automaton [26]

can be used, which generates requests to sources that contain

the maximum amount of data relevant to the request.

The described architecture of the software system makes

it possible to manage parallel data processing with significant

independence of the system programs from the scale

of the system.

An important advantage of the event-driven architecture

in the system for processing large data flows is also the possibility

of adapting the data collection scenario due to the selection

of sources by the quantitative assessment of the relevance

of information obtained during the execution of user requests.

The considered synchronous and asynchronous methods

in the implementation of event-oriented architecture can be used

in different software systems depending on their purpose.

An asynchronous approach can have significant advantages

in implementing operational real-time search and data collection

systems. A synchronous approach may be more attractive when

developing information and analytical systems that cyclically

or continuously process data flows from disparate sources,

the volume of which is constantly increasing.

References

[1] Akhtanov S., Turlykozhayeva D., Ussipov N., Ibraimov M., Zhanabaev Z.:

Centre including eccentricity algorithm for complex networks. Electronics

Letters 58(7), 2022, 283–285.

[2] Al-Masri E.: Enhancing the Microservices Architecture for the Internet

of Things. IEEE International Conference on Big Data (Big Data). USA, WA,

Seattle, 2018, 5119–5125.

[3] Azarov O. et al.: Means of analyzing parameters of speech signal transmission

and reproduction. Informatyka, Automatyka, Pomiary w Gospodarce

i Ochronie Środowiska 14(2), 2024, 11–16.

[4] Azarova A. O. et al.: Information technologies for assessing the quality

of IT-specialties graduates' training of university by means of fuzzy

https://www.scopus.com/authid/detail.uri?authorId=35758353700

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2024 129

logic and neural networks. International Journal of Electronics

and Telecommunications 66(3), 2020, 411–416.

[5] Belnar A.: Building Event-Driven Microservices: Leveraging Organizational

Data at Scale. O'Reilly Media, USA 2020.

[6] Bisikalo O. et al.: Parameterization of the Stochastic Model for Evaluating

Variable Small Data in the Shannon Entropy Basis. Entropy 25(2), 2023, 184.

[7] Buyya R.: Big Data. Principles and Paradigms. Elsevier, 2016.

[8] Chris R.: Microservices. Development and refactoring patterns. Peter,

2019, 544.

[9] Davis A.: Bootstrapping Microservices with Docker, Kubernetes,

and Terraform: A project-based guide. Manning, Shelter Island 2021.

[10] Dinesh R.: Hands-On Microservices – Monitoring and Testing. Hands-On

Microservices – Monitoring and Testing: A performance engineer's guide to the

continuous testing and monitoring of microservices. Packt Publishing. 2018.

[11] Erl T.: Big Data Fundamentals. Concepts, Drivers & Techniques. Prentice Hall,

2016.

[12] Ford N., Parsons R., Kua P.: Building Evolutionary Architectures: Support

Constant Change. O'Reilly Media, 2017.

[13] Ghiya P.: Typescript Microservices: Build, deploy, and secure microservices

using TypeScript combined with Node.js. Packt, Birmingham 2018.

[14] Gorelik A.: The Enterprise Big Data Lake: Delivering the Promise of Big Data

and Data Science. O'Reilly, 2019.

[15] Koval O. V. et al.: Evaluating the Quality of Modeling the Scenario

of Information Analysis on a Branched Network. Modern information

protection. DUT 3(39), 2019, 70–76.

[16] Koval O. V. et al.: Improving the Efficiency of Typical Scenarios of Analytical

Activities. CEUR Workshop Proceedings 3241, 2021, 123–132.

[17] Koval O. V. et al.: Refining the typical scenarios by additional factors.

Mathematical and computer modeling. Series: Technical sciences 1(20), 2019,

68–78.

[18] Kuzminykh V. О. et al.: Data collection for analytical activities using adaptive

micro-service architecture. Registration, storage and processing of data 23(1),

2021, 7–79.

[19] Kuzminykh V., Xu B.: The influence of current results in an event-oriented

data collection system. Zviazok 3(169), 2024, 18–22.

[20] Mamyrbayev O., Toleu A., Tolegen G., Mekebayev N.: Neural architectures

for gender detection and speaker identification. Cogent Engineering 7, 2020,

1727168, 1–13.

[21] Newman S.: Building Microservices: Designing Fine-Grained Systems. O'Reilly

Media, 2015.

[22] Rocha H. F. O.: Practical Event-Driven Microservices Architecture: Building

Sustainable and Highly Scalable Event-Driven Microservices. Apress, 2021.

[23] Shuiskov A.: Building Microservices with Go: Develop seamless, efficient,

and robust microservices with Go. Packt Publishing, 2022.

[24] Simon P.: Too Big to Ignore: The Business Case for Big Data. Wiley, 2019.

[25] Turlykozhayeva, D. et al.: Routing Algorithm for Software Defined Network

Based on Boxcovering Algorithm. 10th International Conference on Wireless

Networks and Mobile Communications (WINCOM), 2023, 1–5.

[26] Wolff E.: Microservices, Flexible Software Architecture. Addison-Wesley,

Boston 2016.

[27] Zgurovsky M. Z., Zaychenko Y. P.: Big Data: Conceptual Analysis

and Applications. Springer, 2020.

[28] Zhang H., Li S., Jia Z, Zhong C., Zhang C.: Microservice Architecture

in Reality: An Industrial Inquiry. IEEE International Conference on Software

Architecture (ICSA), Germany, Hamburg, 2019, 51–60.

Ph.D. Valeriy Kuzminykh

e-mail: vakuz0202@gmail.com

Ph.D. of Engineering Sciences, associate professor,

Department of Software Engineering in Energy,

National Technical University of Ukraine "Igor

Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Author of more than 70 scientific publications,

of which 18 are in scient metric databases Scopus.

https://orcid.org/0000-0002-8258-0816

Prof. Oleksandr Koval

e-mail: avkoval@gmail.com

Doctor of Engineering Sciences, professor,

Department of Software Engineering in Energy,

National Technical University of Ukraine "Igor

Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Author of more than 100 publications, including

3 textbooks, and more than 50 scientific articles

in professional journals, of which 20 are in scient

metric databases Scopus and Web of Science.

https://orcid.org/0000-0003-0991-6405

Prof. Yevhen Havrylko

e-mail: gev.1964@ukr.net

Doctor of Engineering Sciences, professor,

Department of Software Engineering in Energy,

National Technical University of Ukraine "Igor

Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Author of more than 50 publications, including 3

textbooks, 3 patents for inventions, and more than 35

scientific articles in professional journals, of which 17

are in scient metric databases Scopus and Web

of Science.

https://orcid.org/0000-0001-9437-3964

M.Sc. Beibei Xu

e-mail: xubeibei1987@163.com

Ph.D. student, Department of Software Engineering

in Energy, National Technical University of Ukraine

"Igor Sikorsky Kyiv Polytechnic Institute", Kyiv,

Ukraine.

Author of 7 scientific publications which are in scient

metric databases Scopus.

https://orcid.org/0000-0003-1430-5334

Prof. Iryna Yepifanova

e-mail: yepifanova@vntu.edu.ua

Doctor of Economic Sciences, professor, Vice-rector

by science work, Faculty of Management

and Information Security of Vinnytsia National

Technical Unіversity, academician of the Academy

of Economic Sciences of Ukraine

Scientific interests: financial support of innovative

activities of domestic enterprises, enterprise potential,

competitiveness, personnel management, digital

economy, energy saving

https://orcid.org/0000-0002-0391-9026

M.Sc. Shiwei Zhu

e-mail: zhusw@sdas.org

Master of computer science, Ph.D. student,

Department of Software Engineering in Energy,

National Technical University of Ukraine "Igor

Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Author of 16 scientific publications.

https://orcid.org/0000-0002-6651-8449

Ph.D. Nataliia Bieliaieva

e-mail: i-natali-@ukr.net

Doctor of Philosophy, assistant, Faculty of Techno-

logy and Design, Dragomanov Ukrainian State

University, Ukraine, Kyiv.

Scientific interests: pedagogical technologies,

financial support of innovative activities of domestic

enterprises, enterprise potential, competitiveness,

personnel management,

https://orcid.org/0009-0003-2987-8423

Ph.D. Bakhyt Yeraliyeva

e-mail: yeraliyevabakhyt81@gmail.com

Senior lecturer of the Information Systems

Department, Faculty of Information Technology,

M. Kh. Dulaty Taraz Regional University, Taraz,

Kazakhstan.

Research interests: fiber optic technologies,

information systems, Internet of Things

and blockchain technologies.

https://orcid.org/0000-0002-8680-7694

https://orcid.org/0000-0002-0391-9026
mailto:i-natali-@ukr.net

