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Abstract. This article presents circuit realization of the pulse chaotic generator that can be used in digital modern telecommunication systems for masking 

and decrypt of the information. This generator based a classical Chua’s circuit. The results of computer simulation of a nonlinear element that realizes 
the chaotic behavior of the classical Chua's circuit are presented. For modelling was used a modern software MultiSim. Also, such basic results as chaotic 

attractor and time distributions of signals were obtained. 
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IMPULSOWY GENERATOR CHAOTYCZNY OPARTY NA KLASYCZNYM OBWODZIE CHUY 

Streszczenie. W artykule przedstawiono realizację obwodu impulsowego generatora chaotycznego, który może być stosowany w nowoczesnych cyfrowych 
systemach telekomunikacyjnych do maskowania i deszyfrowania informacji. Generator ten bazuje na klasycznym obwodzie Chuy. Przedstawiono wyniki 

symulacji komputerowej nieliniowego elementu realizującego chaotyczne zachowanie klasycznego obwodu Chuy. Do modelowania wykorzystano 

nowoczesne oprogramowanie MultiSim. Uzyskano również takie podstawowe wyniki jak atraktor chaotyczny i rozkłady czasowe sygnałów. 

Słowa kluczowe: chaos, impuls, MultiSim, obwód Chuy 

Introduction 

Chaotic oscillations are some complicated, unpredictable 

phenomena in systems capable of oscillatory motion. 

Consequently, such oscillations occur in physics and engineering 

[5, 12, 18, 20, 29, 30]. The mark of chaotic oscillation 

is the sensitivity of the initial conditions that even small changes 

can result in extremely different outcomes [21, 24, 28]. 

Some of the principal characteristics of chaotic oscillations 

are as follows: 

1. Nonlinearity: Many chaotic systems possess nonlinearity, 

which means their equation of motion is not linear and does 

not obey the superposition principle. 

2. Bifurcations: Chaotic systems also can make bifurcations, 

in other words, variation of parameters of the system, a small 

variation of the value of the parameter induce an abrupt 

qualitative change of behaviour. 

3. Strange Attractors: Chaotic systems have attractors in phase 

space that can be fractals; strange attractors represent 

the long-run behaviour of the system. 

4. Applications: These oscillations appear in different systems, 

such as weather conditions, population dynamics, electrical 

circuits, and many others. 

Most of the time, explanation of chaotic oscillations needs 

mathematical preciseness by high-order theories such as chaos 

theory, dynamical systems, and nonlinear dynamics. 

In particular, such systems are a good tool for testing 

the performance of parametric identification systems. Of particular 

interest are systems that allow simple circuit implementation 

[6–8, 14, 16, 23], since they allow both to study the adequacy 

of the corresponding mathematical models without significant 

costs and to synthesize the identification criterion based 

on physical principles. For example, Chua’s nonlinear dynamic 

system contains only one nonlinear element – the "Chua diode" 

[1–4, 10, 22, 25]. However, the circuit implementation 

of this element requires the presence of several operational 

amplifiers, not counting many passive elements. This complicates 

both the creation and debugging of the device and the verification 

of the adequacy of the mathematical model. Therefore, the task 

of creating chaotic generators containing a minimum number 

of active elements and allowing their behaviour to be described 

by simple mathematical models is relevant [11, 13]. Also, chaotic 

signals used in cryptography [9, 15, 17, 19, 26, 27]. 

This paper describes a pulse conversion of an analog nonlinear 

signal. A classical Chua chaos generator was used as the main 

component to generate the nonlinear signal. The electronic circuit 

and nominal components are shown. The MultiSim software was 

selected to analyse and demonstrate the computer modelling 

results. 

1. Electronic circuit for pulse transformation 

Analog signals are continuous in time; they are defined 

at all moments in time. 

Discrete signals are signals represented by a sequence 

of readings, i.e. signal values at discrete moments in time. 

Digital signals are discrete in time (or space) and quantized 

by level. Computational procedures in a computer are performed 

in digital signals. 

In order for a computer to process a signal, it is necessary 

to convert the signal from analog to digital form. 

Analog-to-digital converter (ADC) is a device that converts 

an input analog signal into a discrete code (digital signal), which 

quantitatively characterizes the amplitude of the input signal. 

 

Main parameters of ADC: 

1. Input signal range (measurement range). 

2. Conversion frequency [Hz] – frequency of analog-to-digital 

conversions. In DSP terminology, the ADC conversion 

frequency is called the sampling frequency of the signal 

in its digital representation. 

3. Conversion period [s] = [1/Hz] – a value inverse 

to the conversion frequency. In DSP terminology, 

the ADC conversion period is the period of signal conversion 

in its digital representation. For asynchronous ADCs, 

the conversion time is standardized. 

4. ADC bandwidth [Hz]…[Hz]. This is the range of signal 

frequencies that the converter passes at a signal level of -3 dB. 

5. ADC bit depth – the number N of binary digits 

of the converter, while the number of signal quantization 

levels in the digital representation of the ADC is 2N. 

6. Signal-to-noise ratio of the ADC conversion channel [dB]. 

7. ADC technology. Typical representatives: successive 

approximation ADC, sigma-delta ADC. 

8. Interchannel pass-through [dB]. 
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The ADC must generate a binary position code corresponding 

to the value of the input analog signal. Such a conversion 

is performed in three stages: 

At the first stage, the continuous analog signal is replaced 

by a set of samples taken at discrete moments in time. This stage 

is called "Discriptization of an analog signal in time". The time 

interval between two adjacent samples is called the sampling 

period and is designated: According to Kotelnikov’s theorem, 

in order to preserve the properties of the signal, the frequency 

of taking a sample of the signal must be greater than or at least 

equal to where Fmax is the maximum frequency in the spectrum 

of the original analog signal. 

At the second stage, "Quantization of samples by level" 

The values of the samples are compared with the level of the disk 

scale and rounded to one of the values of this discrete scale. 

Let us round to the nearest lower value of the level. During 

the operation of the circuit, the voltage conversion remains 

unchanged. 

The third stage forms a binary position code corresponding 

to the value of the quantized value. 

The electronic circuit to pulse transformation with 

components: one operational amplifier TL082, one transistor 

2N2222A, resistors R1, R2, R4 = 1 kΩ, R3 = 5,6 kΩ, 

R5 = 2.2 kΩ, voltages + 5 V and ± 9 V is displayed in Fig. 1. 

 

Fig. 1. The electronic circuit to pulse transformation 

The simplest electronic circuit that demonstrating chaotic 

behaviour was invented by Leon Chua in 1983 (Fig. 2). 

 

Fig. 2. Chua circuit 

This circuit consists of one nonlinear element with 

characteristic f(v) called a Chua diode, inductor L, two capacitors 

(C1, C2), and passive resistors (R, r). This is described 

by the following equations 
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The function f(v) – the volt-ampere characteristics of Chua’s 

diode; iL – current through inductor L; v1 & v2 – voltages across 

capacitors C1 and C2, respectively. 

2. Modelling and analysis of nonlinear element 

A nonlinear element is a system or a circuit that possesses 

a nonlinear characteristic, i.e., the output is not directly 

proportional to the input. In linear elements, such as resistors 

or capacitors, this relationship between voltage and current can 

be expressed by a simple linear equation, as shown explicitly 

for the case of a resistor by Ohm's law. For a nonlinear element, 

however, this relationship becomes more involved, depending 

on a number of factors. 

Examples of nonlinear elements are as follows: 

1. Diode: One of the most straightforward nonlinear element 

examples, it conducts current in only one direction when 

a threshold voltage is crossed and does not depend linearly 

on the input voltage. 

2. Transistor: Also nonlinear since its collector current depends 

nonlinearly on the base voltage or base current. That permits 

transistors to be used for signal amplification, control, 

and switching. 

3. Thyristor: semiconductor element whose current passes when 

voltage oversteps some critical value and when is 'on' it stays 

in conducting status as long as current is passing through it. 

Nonlinear behavior of it allows use thyristor for power 

electrical circuit's control. 

4. Non-linear magnetic elements: For instance ferrite where 

nonlinear dependence between magnetic flux and magnetic 

field strength would be observed – magnetohysteresis. 

 

Main properties of nonlinear elements: 

1. Nonlinear dependence: Complicated interaction of input 

and output signals, not according to a linear law. For example, 

the volt-ampere characteristic can be exponential or quadratic. 

2. Saturation: Most nonlinear elements have a saturation effect 

whereby, after a certain level of input signal is attained, 

the output does not change anymore. This is typical 

for magnetic and semiconductor devices. 

3. Hysteresis: This is an effect where the state of the system 

depends on anything other than just the present value 

of the input signal; it depends also on previous values. 

As an example, magnetic materials exhibit hysteresis 

because there is a lag between a change in magnetic field 

and the resulting change in magnetisation. 

4. Complex harmonic signal response: The nonlinear element 

may generate harmonics, i.e., output frequencies being integer 

multiples of the input frequency or even chaotic behaviour 

in the system. 

5. Application of nonlinear elements: In signal processing 

nonlinear elements serve in a wide array of signal conversion 

circuits, such as microwave detectors, frequency mixers, 

amplitude modulators, etc. 

6. Amplifiers and Generators: Non-linear gain of amplifiers with 

the help of nonlinearities of transistors or tubes; signal 

generators can be built. 

7. Overload Protection: Electrical circuits are protected against 

short circuits and over-voltages by nonlinear elements, 

such as thyristors. 

 

Non-linear elements play a fundamental role in many 

electronic circuits; their rich behaviour extends the range 

of functions compared to the linear systems. 

The circuit realization to modelling and analysis of the non-

linear element with components is displayed in Fig. 3. 

Fig. 4 shows the result of the modelling of the nonlinear 

element. The nonlinear characteristic was modelled 

by the following parameters: 𝐸 = 6.5 V, 𝑓 = 2 kHz, 𝑅 = 3 kΩ, 

𝑈1 = 2 V/div, 𝑈2 = 2 V/div. 
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Fig. 3. Circuit realization to modeling and analysis of the nonlinear element 

 

Fig. 4. V/I characteristic of the nonlinear element 

3. Modelling and analysis of the classical chaotic 

Chua’s generator 

Fig. 5 shows scheme of the classical chaotic Chua’s generator. 

Fig. 6 shows the result of computer circuit simulation. 

Coordinate X on the circuit corresponding voltage 𝑈𝐶2, 

coordinate Y – voltage 𝑈𝐶1. The simulation parameters: 

𝑈1 = 500 mV/div, 𝑈2 = 1 V/div. 

In Fig. 7 the time series of both x- and y-signals appear. 

Shows time series of the coordinates X (top) and Y (bottom) 

respectively (the channels’ settings were for channel A, 1V/div 

and for channel B, 5V/div. 

 

Fig. 5. The classical chaotic Chua’s generator 

 

Fig. 6. Chaotic attractor 

 

Fig. 7. The x-signal (upper) and the y-signal (lower) time series 

4. Computer modelling of the process of the pulse 

transformation 

The electronic circuit with component values is displayed 

in Fig. 8. 

Time series and pulse transformation for chaotic coordinate X 

are shown in Fig. 9. The simulation parameters: U1 = 5 V/div, 

U2 = 5 V/div, time scale 2 ms/div. 

 

Fig. 8. Circuit realization of the process of pulse transformation 
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Fig. 9. Time series and pulse transformation 

5. Conclusion 

There are many circuits that realize generators that exhibit 

nonlinear operation. A circuit realization to pulse transformation 

of analog nonlinear oscillation is shown. Computer modelling 

results and component values are shown. 

Using the MultiSim software, a scheme technical analysis 

circuit of a nonlinear device consisting of one operational 

amplifier with two diodes and a generator realizing chaotic 

behaviour was performed. It was submitted by means of a chaotic 

attractor and a time series of two chaotic coordinates. 

A classical chaotic Chua’s generator was used as the main part 

generating the nonlinear signal to demonstrate of this process. 

The circuit that generates the chaotic oscillations can be used 

for masking and decoding information carriers. The process 

of pulse transformation of analog nonlinear oscillations can be 

used in modern digital communication systems. 
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