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Abstract. The research creates a new approach to estimate essential dimensions of plasmonic nanoparticles that use the Finite-Difference Time-Domain
(FDTD) simulation program. The research team uses EfficientNetB0O alongside ResNet50 and VGG16 deep learning models to obtain quick and exact
simulations parameter predictions from simulation image data. The developed dataset consists of dielectric and magnetic field images that stem from
FDTD simulated fields through representative materials MgF:, Au, and glass. The preparation process for the dataset includes a systematic variation
of 38 structural parameters for achieving sufficient coverage of potential configurations. VGG16 proved to be the most effective model from the testing
group because it attained a training loss 0.1592, validation loss of 0.1607, and test loss 0.1625. The outstanding result shows deep learning techniques can
be effectively used to boost nanophotonic device design speeds and optimization processes. The methodology developed in this work has the potential
to reduce substantially the computational expenses together with simulation duration for nanostructure engineering processes.
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PROGNOZOWANIE PARAMETROW STRUKTURALNYCH W NANOSTRUKTURACH
PLAZMONICZNYCH SYMULOWANYCH METODA FDTD Z WYKORZYSTANIEM
UCZENIA GLEBOKIEGO

Streszczenie. W niniejszym artykule opracowano nowe podejscie do szacowania kluczowych wymiaréow nanoczgstek plazmonicznych z wykorzystaniem
programu symulacyjnego opartego na metodzie roznic skonczonych w dziedzinie czasu (FDTD). Zespot badawczy zastosowal modele glebokiego uczenia,
takie jak EfficientNetB0, ResNet50 oraz VGG16, w celu szybkiego i precyzyjnego przewidywania parametrow symulacji na podstawie obrazow uzyskanych
z symulacji. Stworzony zbior danych obejmuje obrazy pola dielektrycznego i magnetycznego uzyskane z symulacji FDTD dla reprezentatywnych
materiatow: MgFs, zlota (Au) i szkla. Proces przygotowania danych uwzglednial systematyczng zmiane 38 parametréow strukturalnych w celu uzyskania
odpowiedniego pokrycia mozliwych konfiguracji. Sposrod testowanych modeli, VGG16 okazal si¢ najskuteczniejszy, osiggajgc blad walidacyjny réwny
0,1607. Uzyskane wyniki dowodzq, ze techniki glebokiego uczenia mogq skutecznie przyspieszy¢ projektowanie oraz optymalizacji urzqdzen
nanofotonicznych. Opracowana metodologia ma potencjal znacznego ograniczenia kosztow obliczeniowych oraz czasu trwania symulacji w procesach

inZynierii nanostruktur.

Stowa kluczowe: plazmoniczne nanostruktury FDTD, prognozowanie parametréow strukturalnych na podstawie obrazu, uczenie glgbokie

Introduction

Both nanophotonics and plasmonics have developed
significantly, due to the unique ability of plasmonic structures
working on optical light at the subwavelength scale. Due
to the effect of light on the free electrons present on the surface
of metallic nanostructures, these structures have opened many
applications in high-resolution imaging, biological and chemical
detection, data storage, and even the fabrication of miniaturized
optical devices. An important aspect of their operation
is the ability to modulate light on scales less than the wavelength
which is desirable for accurate measurements of molecular
or environmental changes necessary in health monitoring
and environmental analysis.

The design and optimization of such nanophotonic devices
involve complicated simulation schemes wherein the initial
simulation was based on an FDTD approach. This numerical
method is used to solve Maxwell’s equations, modeling
the behavior of electromagnetic waves traveling through
challenging  materials and interfering  with  complex
nanostructures. However, as FDTD simulations consume
a lot of computational resources especially when simulating
structures with large geometries and a broad range of wavelengths,
any new change in the parameters of a device e.g. its material
composition, geometry or individual layer thickness requires
a new simulation to be run. In turn, this make the design
of optimized structures resource and time-intensive, not least
when trying to optimize multiple variables.

To overcome these challenges, scholars have started
investigating the application of machine learning (ML),
and in particular deep learning (DL) as a framework for predictive
modeling in scientific computing. The predictivity and capability
of learning non-linear functions from large computational data
make DL a candidate for bypassing repetitive FDTD simulations.
In nanophotonic and materials science, DNN has recently been
used to predict results by using structural parameters or material

arrangements, saving much time as a design tool. For instance,
deep learning has been used to predict electromagnetic responses
or structural properties based on large sets of FDTD simulation
data that take less time than full-scale simulation data.

The present work follows on from this line of research
by utilizing DL to estimate the extended structural profile
of a particular layered plasmonic nanostructure, made of MgF-,
gold, and glass. These materials were carefully selected based
on their good optical and mechanical characteristics where MgF2
is transparent in the infrared range, gold provides the possibility
of plasmonic resonance, and glass ensures the stability
of the overall device. For this purpose, a new data set has been
produced using the FDTD simulation which exhibits
electromagnetic  field distributions for several structural
conditions. As each material layer spans 500 nm and the variation
of 38 structural parameters up to 2000 nm is accounted for, this
dataset is a broad set of nominals that may be compared to highly
time-consuming computations when simulated recurrently.

The purpose of this work was to build an effective predictor
function using the DL that would allow calculation of these
38 structural parameters from the image data obtained with FDTD
simulations directly. In the present work, different CNN models
were used and these models comprised efficient NetB0, ResNet50,
and VGG16, each of which has its advantages in the area of model
complexity and feature extraction ability. It is therefore
the intention of this study to train these models on the generated
image data in as much as to derive an accurate
yet computationally efficient mean for parameter prediction.
The accomplishment of this goal is useful not only to resolve
the issues related to high computational costs required for FDTD
simulations but also to further develop the nanophotonic design
domain by creating a more effective predictive model. By way
of these improvements, the study established a significant
platform for enhanced routes to design nanostructures at a faster
and more affordable process that will benefit various applications
that need precisely engineered plasmonic devices.
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1. Literature review

Precedent literature research highlights colossal advancements
within the application of deep learning (DL) and machine learning
(ML) in increasing and accelerating the computationally
challenging Finite-Difference Time-Domain (FDTD) simulations
required in the design of plasmonic and nanophotonic structures.
For example, Mahadi et al. (2024) analyzed the prospects of using
Gated Recurrent Units (GRUs) to predict absorption spectra
in plasmonic devices and found that while providing an accurate
spectrum estimation, it is orders of magnitude more efficient than
the standard fully discrete time-domain Finite-Difference Time-
Domain (FDTD) approaches [9]. This approach is especially
useful for applications where timely spectrum estimation is most
crucial. He and Ye (2019) used ML to improve FDTD tasks
by modeling electric field distributions in plasmonic nanoparticles
to help SNIP inverse design more accurately and effectively,
necessary for the development of tailor-made nanostructures.

Malkiel et al. (2018) proposed the use of an artificial DNN-
based approach for characterizing nanostructures which essentially
substituted conventional FDTD simulations with DL thus bringing
down the computational burdens greatly. This innovation enabled
more frequent changes of design for an important application
in sensing and imaging [10]. Likewise, Adibnia et al. (2024)
were concerned with optical behavior predictions using DL
in plasmonic switches, demonstrating that DL can save electricity
for conventional iterative FDTD simulations in terms of modeling
switching behaviors [2]. In another novel application, Baxter et al.
(2019) used DNNs in predicting plasmonic colors which
is an efficient method of modeling FDTD output for display
devices where accurate colors are needed [3].

Persson (2024) expanded this field further by employing
CNNSs to predict anisotropic nanostructure design and minimizing
the simulation of specific geometries as well as enhancing
FDTD results [14]. Masson et al. (2023) also employed DL
in nanoplasmonics and explained how DL could successfully
predict the material property to execute the role of enhancing
the design efficiency in nanophotonic applications [12].

Likewise, in Du et al. (2021), DL was applied to estimate
the geometric parameters of nanoparticles to similarly high
accuracy, in contrast to the computationally complex FDTD
requirement, which suggests the scalability of DL in nanoparticle
design [4]. Verma (2023) implemented ANNs in FDTD
to enhance photonic properties in metallic nanoparticles
with greater computational parity by optimizing its parameters
and computational paradigms [16].

This study also extends previous findings by Li et al. (2020)
regarding DL’s efficiency and accuracy of scattering behavior
and real-time optical response predictions, respectively, making
it a favorable model for any system in need of quick optical
feedback [8]. In developing the core-shell nanoparticle property,
Vahidzadeh & Shankar (2023) were able to invoke ML to predict
properties to minimize overdependence on FDTD simulations
for efficient design for complex core-shell structures [15].

For renewable energy applications, Manzhos et al. (2021)
used DL to predict plasmonic behavior in solar cell
structures by improving FDTD simulation for better light
absorption in nanostructures [11]. Zhang et al. (2020) applied
the evolutionary algorithms with ML to simulate the graphene
metamaterials ~ obtained accurate  spectrum  estimations
and reinforced DL as the promising substitute of FDTD
for the design of new advanced metamaterials [18].
Kazemzadeh (2022) employs the DL approach for optimizing
the nanoplasmonic sensors for biomedical applications and it was
shown how DL algorithms turned the fabricated design by FDTD
for healthcare purposes [7].

Adibnia & Mansouri-Birjandi (2024) used DL for spectral
prediction in the nonlinear plasmonic ring resonator switches
and proved the efficiency of the DL approach for modeling
the optical responses in such resonators [1]. This spectrum
of research illustrates the gradual progression of adopting both DL
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and ML into nanophotonics and plasmonics, and where these
techniques largely substitute or enhance FDTD simulations,
as more efficient, accurate, and economical solutions to complex
nanostructure  developments for multifaceted applications
in the fields of display technology, sensing, energy,
and biomedical engineering. Other papers worked with Plasmonic
nanoparticle simulations and inverse design using machine
learning and also used Deep Learning to simulate the parameters
[5, 6, 17].

2. Methodology

2.1. Overview

The methods section in this study explains how the authors
designed and modeled plasmonic nanostructures and predicted
their parameters. Based on the formulation, we created a set
of images and their corresponding structural parameters
and explicitly trained deep learning models using the Finite-
Difference Time Domain (FDTD) method. This section discusses
the FDTD simulation employed, the dataset generation, the deep
learning model, and its training.

2.2. FDTD simulation setup

Fig. la illustrates the material structure of the whole design
in the FDTD software. Figs. 1b, 1c, and 1d show the different
dimensions of the structure, such as the XY view, YZ view,
and XZ view.

(a) material structure

(b) XY view of the structure

(c) YZ view of the structure

(d) XZ view of the structure

Fig. 1. Structure of the design (a—d)
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The model for observing the optical properties of the layered
plasmonic structure was simulated in the FDTD software using
MgF2, gold, and glass substrate. It needed to structure be designed
to absorb infrared radiation, which is a key component of such
uses as sensing. Ranges that were allowed to differ from
one simulation to another include the thickness of layers, pattern
density, and some dimensions of the material. Changes in any
of these parameters produced a different image, that featured
electromagnetic field distribution patterns.

2.3. Material properties

MgF. (Magnesium Fluoride): Selected for deposition
as a dielectric layer because it is transparent in the infrared range.

Gold (Au): Applied for its plasmonic properties, it increases
the field interaction at certain wavelengths.

Glass: Served as support as a base layer to the walls
of the building.

2.4. Parameter configuration

In each FDTD simulation, 38 parameters, including layer
thickness and feature spacing, were varied to produce 30 sets
of images representing structural geometries.

2.5. Dataset creation

In all, 200 images were gathered for study with a host
arrangement put in 10 groups according to structural and field
differences. For each image, the segmentation produced
38 parameter values and these skills were logged in a CSV file
for a supervised learning algorithm. The particular factors
included Image Path, Circle_x_min, Circle_x_max, Circle_radius,
Boundary_layer_min,  Boundary_layer_mix,  Source_x_min,
Source_x_max, Source_y_min, Source_y_max, Monitor_x_min,
Monitor_x_max, Monitor_y_min, Monitor_y_max, Mesh_x_min,
Mesh_x_max, Mesh_y min, Mesh_y max, Gold_x_min,
Gold_x_max, Gold_y_min, Gold_y_max, Gold_z_min,
Gold_z_max, MgF2_x_min, MgF2_x_max, MgF2_y min,
MgF2_y max, MgF2_z_min, MgF2_z_max, Source_z_min,
Source_z_max, Monitor_z_min, Monitor_z_max, Mesh_z_min,
Mesh_z_max, Monitor_point, Mesh_step, collectively offering
information on the specific aspect of the structure to control the
optical characteristics. Fig. 2 shows the dataset image samples
where the categories are electric field (e), electric field
at a specific region (el), monitored magnetic field intensity (h1),
energy flow or power density (p), integrated power through
a surface (pl), transmitted power ratio (t), transmission through
a particular structure (t1), combined electromagnetic field (e+h),
frequency or wavelength-domain result (spectrum), time domain
(time).

2.6. Deep learning models

Later, three different pre-trained CNNs, namely
EfficientNetB0O, ResNet50, and VGG16 were employed
for parameter prediction. There are many models and based
on the objective of the study these models were chosen because
they are capable of feature extraction and may have different
levels of complexity d to test them for application in high
dimensional regression.

EfficientNetB0: This efficient model applies compound
scaling to adjust network depth, width, and resolutions.

ResNet50: Resort to residual blocks that enable the network
to be out of layers that do not contribute to enhancing feature
extraction.

VGG16: A deeper neural model, all layers are of equal depth
and are good at capturing spatial features.

For each model, fully connected (dense) layers were included
for regression at the output layer, which consisted of 38 nodes
as the parameters.
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2.7. Model architecture: VGG16

The VGG16 is a CNN with simple and deep architecture
because it is made up of many convolutions followed by fully
connected layers. Being a model developed for classification
tasks at first, VGG16 demonstrates great results in image
processing because of its depth and uniformity. For this research,
we modified the VGG16 architecture so that it can operate
in a regression model since the aim was to make predictions
of 38 structural parameters that are continuous, from FDTD
simulation images. The initial complete connection layer
for categorization was substituted by regression layers, allowing
it to be used for parameter estimation.

Convolutional layers

They used twelve convolutional layers to extract features from
images in VGG16 ranging from the basic level, and edges
to higher level texture and shapes. The convolution operation
in each layer is defined by:

Zi,j,k:Zm,nXHm, j+n -Wm,n,k+bk (1)
where:
Z;  « is the activation map output for the k-th filter at spatial
position (i,j),
Xi+m, j+n represents the input from the previous layer,

W 1, n k denotes the weights of the convolution filter, b is the
bias term for the filter.

ReLU activation
Each convolutional layer’s output undergoes a ReLU
activation function, defined as:

£(x) = max(0, x) 2

This introduces non-linearity, enabling the network to learn
complex patterns and relationships in the data.

Pooling layers

Max pooling layers reduce spatial dimensionality
by downsampling, which lowers the computational load
and provides translation invariance. Pooling is defined as:

Piik = max(Xap) (3)

where Pj; is the pooled output for the k-th channel over
the region (a,b).

Fully connected layers for regression

Specifically, the network  features are extracted
at the convolutional layers, but for regression, FC layers
are used. Here we removed the classification layers and used
a series of Dense layers that followed a last linear layer containing
38 neurons for each parameter.

Output layer

In this layer, the 38 nodes are linearly activated to predict
continuous parameter values; therefore, this layer is a multi-output
regression layer.

Loss function and optimization
For the regression task, the Mean Squared Error (MSE) was
used as the loss function:
1 ~
MSE == XL (vi — ¥? @)

where y; is the true parameter value and ¥, is the predicted
parameter value for each data sample n.

L2 Regularization
To reduce overfitting, L2 regularization was added, penalizing
larger weights:

Regularized Loss = MSE+1. X", w;? ®)

where A controls regularization strength, and w; are the weights.
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2.8. Model architecture: EfficientNetB0

Codified by key layers, EfficientNetBO also employed
a compound scaling method for the width, depth, and resolution
of inputs it used. This balance helped EfficientNetBO0 deliver high
performance with relatively fewer parameters, which makes
it more computationally efficient, especially for datasets
with fewer samples. In this work, EfficientNetBO was fine-tuned
for regression because the model was intended to predict
38 continuous features that describe plasmonic structure attributes
FDTD.

EfficientNetBO scales the width, depth, and resolution
of the network using a compound coefficient, represented
mathematically as:

Width = a-¢, Depth = B-¢, Resolution = y-¢ (6)
where: o, B, y are constants determining scaling ratios for each
dimension, ¢ is the scaling coefficient.

EfficientNetBO uses o= 1.2, p=1.1, and y = 1.15 to balance
performance and efficiency, making it ideal for high-dimensional
regression tasks.

Convolutional layers with swish activation
EfficientNetBO employs Swish activation, defined as:

f(x) = x-0(x) @)
where o(x) is the sigmoid function. Swish helps smooth gradient
flows, which is especially useful for deep architectures.

Squeeze-and-Excitation (SE) block

Each block in EfficientNetBO contains an SE module
that dynamically scales feature maps by their channel-wise
importance. The SE block can be defined as:

s = 6(W2-ReLU(W1-2)) )
where z is the global average-pooled feature map, W; and W,

are trainable weight matrices, and s represents the scaled feature
map.

Fully connected (dense) layers for regression

A new classification layer was proposed and thrown into fully
connected layers which terminate in a linear layer of 38 nodes,
each representing one parameter. The regression layers were
incorporated with dropout regularization to reduce cases
of overfitting.

Loss function and optimization
EfficientNetBO was trained to minimize Mean Squared Error
(MSE) with L2 regularization:

Loss = MSE+A Y2, w;? 9)

The Adam optimizer was used as the first choice with decay
when the validation loss did not change for a few iterations.

2.9. Model architecture: ResNet50

ResNet50 is one of the widely used ResNet models,
a convolution neural network based on a residual learning formula
to solve the vanishing gradient problem in deeper learning
architectures. ResNet50 incorporates residual blocks to help
increase the depth and improve training for deeper networks
by skipping layers that do not support the direction, a benefit
that increases the model's learning capacity for intricate data sets.
In this work, ResNet50 was used for regression on 38 continuous
structural parameters obtained from FDTD-simulated images.

The ResNet50 architecture uses Shortcut connections
that enable gradients to flow directly through the network and skip
the convolutional layers, stabilizing training deep networks. Each
residual block in ResNet50 can be expressed as:

y = F(x{Wi})+x (10)
where: x is the input feature map, F(x,{W;}) represents

the residual mapping learned by stacked layers with weights
{W;},and y is the output feature map after the shortcut connection.
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The residual connection also precisely maps to identity,
so modifications can be learned instead of features from scratch.
This makes training deep networks possible, which also enhances
accuracy.

Each residual block in ResNet50 includes two or three
convolutional layers followed by batch normalization and ReLU
activation, defined as follows:

Convolution operation

Z; k= Zm,n Xi+m, j+n - Wi n it by (11)
where Z ; j  is the output of the convolution, Xiim j+n
is the input, and W, ,, , and b represent weights and bias.

Batch normalization
Batch normalization standardizes activations within each

batch, improving convergence and reducing internal covariate
shift. For activations x, it is defined as:

N X—U

X= = (12)
where p and o° are batch statistics and € is a small constant
for numerical stability.

2

ReLU activation
The ReLU activation introduces non-linearity:

f(x) = max(0, x) (13)

Fully connected layers for regression

For regression tasks, we removed the classification layer
of ResNet50 and added a series of fully connected (dense) layers
that output 38 linear units to estimate each of the structural
parameters we desired.

Loss function and optimization
We employed Mean Squared Error (MSE) as the loss function
with L2 regularization to mitigate overfitting:

Loss = MSE+A 2, w;? 14)

where A is the regularization parameter. As the optimizer's choice,
Adam was applied using the learning rate decay strategy, in which
the learning rate was to be reduced in case of validation loss
stagnation for a definite number of iterations.

3. Experiments and results

The dataset is separated into two parts, 80% of which
is the training set to use data augmentation to train the model
and 20% is the validation set to keep track of performance
and adjust it throughout the training. The dataset split does
not include a single test set isolated to test the model,
but rather attempts to test the model by uploading external
images to find out which way the model works with completely
unseen data. In this manner, model development is taken care
of by training and validation, and external image uploads act
as the testing stage.

3.1. Training and evaluation of VGG16 model

Data preparation

Dataset: The dataset consists of 200 images of FDTD-simulated
plasmonic structures, divided into 10 categories,and 38 parameters
per image overall.

Preprocessing: Images were also altered by resizing them
to 224 x 224 pixels and then normalized.

Training configuration

Optimizer: Although the optimizer's default state was set
to the Adam algorithm with a learning rate of 107>, learning rate
decay was implemented if the validation loss was not reduced.
Batch Size: 16.

Epochs: 70 (depending on which value the validation loss does not
continue to decrease early stopping is performed).
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Table 1. Losses of VGG16 model

Metric Value
Training Loss 0.1592
Validation Loss 0.1607
Test Loss 0.1625

The test MSE of 0.1625 indicates that VGG16 effectively
generalized to new data, accurately predicting the 38 parameters
with low error. Fig. 3 illustrates the VGG16 model's training,
validation loss and Table 1 shows the values.

— Training Loss
| Validation Loss

Fig. 3. Training and validation loss graphs of the VGG16 model

Discussion on VGG16 model performance

VGG16 proved to be more effective than other architectures
because it could capture fine-grained spatial features of FDTD
images. Due to its feature-extraction ability provided by deep
convolutional layers, together with the regularization adopted,
it was able to learn the parameter-image mapping in this high-
dimensional space.

3.2. Training and evaluation of EfficientNetB0

Data preparation and model configuration

Dataset: These 200 FDTD-generated images were normalized
and resized to improve the visualization of features upon
superimposition over the original RGB images.

Batch Size: 16

Epochs: 70, with early stopping.

Optimizer: Adam with 107> learning rate, ReduceLRONPlateau
was used here to reduce the learning rate when necessary.

Table 2. Losses of EfficientNetBO Model

Metric Value
Training Loss 0.2895
Validation Loss 0.291
Test Loss 0.2888

Results

EfficientNetB0O showed a good ability to predict with a slightly
higher test loss than VGG16 suggesting they possibly overfit even
though it has very few parameters. Fig. 4 shows the training,
validation loss of the EfficientNetBO Model and table 2 shows
the values.

30 \ — Training Loss
\| walidation Loss

25 \
\

0 10 20 0 40 50 60 70

Fig. 4. Training and validation loss graphs of the EfficientNetBO model

Analysis

The compound scaling of EfficientNetBO makes
it computationally efficient, though it lacks the complexity
that might be essential to capture multiscalar spatial patterns
in FDTD data.
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3.3. Training and evaluation of ResNet50

Data preparation and model configuration

Dataset: 200 FDTD-simulated images processed for model input.
Batch Size: 16

Epochs: 70, with early stopping and learning rate decay.
Optimizer: Adam with an initial learning rate of 107,

Table 3. Losses of ResNet50 model

Metric Value
Training Loss 0.3258
Validation Loss 0.326
Test Loss 0.3239

Results

Although ResNet50 has provided reasonable performance,
loss values were a bit higher than VGG16, which indicates that
ResNet architecture may need more regulatory measures or may
require better generalization of data augmentations. Fig. 5 shows
the training, validation loss of the ResNet50 Model and table 3
shows the values.

—— Training Loss
Validation Loss

Fig. 5. Training and Validation Loss Graphs of the ResNet50 Model
3.4. Combined analysis and discussion

The connectivity pattern in ResNet50 provided an opportunity
to learn deeper hierarchies and feature mapping in the images
provided by FDTD. However, even though it has achieved
a higher loss at the end of epochs, it shows that ResNet50’s depth
can result in the overfitting of a comparatively small dataset.
The next improvements could focus on different forms of training,
or apply ensemble methods to enhance future generalizations.

Evaluation metrics
Table 4 shows the comparison of three models.

Table 4. Comparison of all Models

Model Validation Loss Test Loss
EfficientNetB0 0.291 0.2888
ResNet50 0.326 0.3239
VGG16 0.1607 0.1625

Analysis

VGG16 performed better than other kinds of networks
because of its potential to address complex spatial information
handling. Although EfficientNetB0O is an efficient network,
fluctuations in the model parameters could not be captured
appropriately, or this might be because of the restricted model
size.

In order to further illustrate the performance of the models
we were used to test sample image which was not visible
and was compared with the predicted values against the true
values. The Table 5 summarizes the predictions of VGG16,
ResNet50 and EfficientNetB0. VGG16 also gave the nearest
predictions to the real values in the majority of parameters when
compared to the other two models. This proves that VGG16
behaves more predictively on unseen data in our experiments.
On the whole, the findings indicate the feasibility of practicality
of the proposed models, with VGG16 being the best.
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Table 5. Test and predicted values of the test image

e True VG_GlG ResNetSO Ef'ﬁcien_tNetBO
Value Predicted Predicted Predicted
Circle_x_min 185 181.92337 176.20316 215.00941
Circle_x_max 245 241.0471 214.78952 240.07141
Circle_radius 79 107.27265 78.712776 86.88177
Boundary_layer_min 38 12.94438 9.175221 -4.9068174
Boundary_layer_max 64 64.11309 63.69646 64.03258
Source_x_min -570 -660.99316 -689.36707 -654.25397
Source_x_max 570 592.575 558.9657 555.6847
Source_y_min -570 -636.73254 -692.3318 -692.5504
Source_y_max 570 617.10034 562.10944 572.1373
Monitor_x_min -280 -320.48346 -350.44702 -309.69818
Monitor_x_max 280 285.40384 262.076 294.51648
Monitor_y_min -280 -325.1408 -350.7416 -336.7725
Monitor_y_max 280 279.25845 290.50894 265.79102
Mesh_x_min -280 -330.40387 | -345.17172 -332.93652
Mesh_x_max 280 297.67297 284.0118 288.7856
Mesh_y_min -280 -322.83112 | -350.85315 -374.89114
Mesh_y_max 280 276.65918 286.72977 277.90216
Gold_x_min -280 -326.2986 -351.46222 -355.43503
Gold_x_max 280 273.81323 280.50262 275.33655
Gold_y_min -280 -338.2107 -340.96518 -350.45605
Gold_y_max 280 287.5291 277.2876 292.74664
Gold_z_min 26.5 2.7478118 3.7242126 -8.412284
Gold_z_max 239.5 214.8449 217.60916 222.16992
MgF2_x_min -280 -332.02725 -340.0608 -343.87402
MgF2_x_max 280 298.601 285.16437 310.82095
MgF2_y_min -280 -328.6493 -334.82016 -309.2372
MgF2_y_max 280 288.63135 277.42896 283.77515
MgF2_z_min 177.5 182.1871 157.8646 221.78505
MgF2_z_max 266.5 | 112.438385 | 62.300987 32.23016
Source_z_min 1210 1222.7931 1207.1602 1229.1868
Source_z_max 1210 1216.8757 1188.4434 1192.3567
Monitor_z_min 1410 1428.2998 1402.2832 1417.1187
Monitor_z_max 1410 1423.0444 1394.084 1391.2072
Mesh_z_min 141 138.73506 135.62877 113.84221
Mesh_z_max 271 263.58746 250.25621 249.49942
Monitor_point 98 62.475952 55.606926 65.464424
Mesh_step 17 4.9715495 1.6483359 4.6041627

3.5. Reason to use loss function instead of accuracy

In these code implementations, the models (EfficientNetBO,
ResNet50, and VGG16) are assessed based on the Mean Squared
Error (MSE) loss since these models are developed for regression
tasks not classification. Here’s why:

Nature of prediction

These models estimate structural quantities — thickness,
and distances between layers in nanostructures — that are numeric,
not nominal values. In regression tasks, getting an impression
of how close actual values are to the predicted values (using MSE
or similar measures) is more informative than accuracy, which
applies to classification.

Loss function for regression
Regression (loss functions such as MSE) measures
the precision of the models in terms of the error in the continuous
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value predictions, and the loss functions penalize the error through
a mathematical function. For instance, if the model estimates
a structural parameter to be somewhat off, then MSE will measure
the extent of this error with some precision, but accuracy would
not be perceptive of this fineness.

Minimizing error, not maximizing correct predictions

The models are trained to minimize error instead of aiming
for the highest possible number of correct classifications as this
is not applicable where there are continuous outcomes.

By doing so, these models can solely center on the MSE
to reduce the error in predicting the continuous variables
and estimate how reasonably the models approximate
the true parameter.

3.6. Novelty of the work

In this paper, a strategy that incorporates FDTD simulation
data and deep learning architectures is to estimate a diverse range
of structural parameters in plasmonic nanostructures. In contrast
to the previous studies which dealt with the prediction of at most
6 optical properties and/or certain structural dimensions,
the present study enriches the model predictive functionality
by training EfficientNetBO, ResNet50, and VGG16 models
on a dataset of the FDTD-derived images. The novelty of this
work is based on the low prediction error of 38 parameters
simultaneously and proving that VGG16 performs unexpectedly
well with negligible validation loss, thus allowing the least
computational time as compared to the conventional iterative
FDTD technique.

4. Conclusion

In this study, a deep learning model, which applies VGG16
model, was used to learn 38 structural parameters of FDTD-
simulated images with a high accuracy (training loss 0.1592,
validation loss 0.1607, and test loss 0.1625). The findings
validate the strength of VGGL16 in revealing the spatial complexity
of electromagnetic field distributions, which proves its use in fine-
grained structural tasking of biosensing, imaging, and storage
of high-dense data. The proposed approach significantly lowers
the computational cost as compared with the traditional design
iteration based on FDTD, and it also speeds up the design
optimization. Moreover, this paper demonstrates the opportunity
of applying deep learning to nanophotonic design processes
and indicates the possibility of expanding the framework
to other computationally expensive models, including finite-
element and finite-volume models. On the whole, the results
will act as a foundation to hasten the simulated design
in nanophotonics and other scientific and engineering-based fields.

5. Future work

Future work should investigate additional means of enriching
the datasets, to include materials with different compositions,
and extend the analyzed parameters from the current 38.
Moreover, if the given model architectures are not the best
or if one wants to improve the predictive accuracy, there
is space to do so. Studying other deep learning models,
such as transformers and other progressive CNN structures, can
also be used to conclude handling larger datasets or complex
distribution of fields. The authors also recommend extending
the use of this predictive framework to other computational
domains of finite-element or finite-volume kind to extend its
applicability to the wvariety of electromagnetic simulation
platforms.
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