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Abstract. The research creates a new approach to estimate essential dimensions of plasmonic nanoparticles that use the Finite-Difference Time-Domain 
(FDTD) simulation program. The research team uses EfficientNetB0 alongside ResNet50 and VGG16 deep learning models to obtain quick and exact 

simulations parameter predictions from simulation image data. The developed dataset consists of dielectric and magnetic field images that stem from 

FDTD simulated fields through representative materials MgF₂, Au, and glass. The preparation process for the dataset includes a systematic variation 
of 38 structural parameters for achieving sufficient coverage of potential configurations. VGG16 proved to be the most effective model from the testing 

group because it attained a training loss 0.1592, validation loss of 0.1607, and test loss 0.1625. The outstanding result shows deep learning techniques can 
be effectively used to boost nanophotonic device design speeds and optimization processes. The methodology developed in this work has the potential 

to reduce substantially the computational expenses together with simulation duration for nanostructure engineering processes. 
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PROGNOZOWANIE PARAMETRÓW STRUKTURALNYCH W NANOSTRUKTURACH 

PLAZMONICZNYCH SYMULOWANYCH METODĄ FDTD Z WYKORZYSTANIEM 

UCZENIA GŁĘBOKIEGO 

Streszczenie. W niniejszym artykule opracowano nowe podejście do szacowania kluczowych wymiarów nanocząstek plazmonicznych z wykorzystaniem 
programu symulacyjnego opartego na metodzie różnic skończonych w dziedzinie czasu (FDTD). Zespół badawczy zastosował modele głębokiego uczenia, 

takie jak EfficientNetB0, ResNet50 oraz VGG16, w celu szybkiego i precyzyjnego przewidywania parametrów symulacji na podstawie obrazów uzyskanych 

z symulacji. Stworzony zbiór danych obejmuje obrazy pola dielektrycznego i magnetycznego uzyskane z symulacji FDTD dla reprezentatywnych 
materiałów: MgF₂, złota (Au) i szkła. Proces przygotowania danych uwzględniał systematyczną zmianę 38 parametrów strukturalnych w celu uzyskania 

odpowiedniego pokrycia możliwych konfiguracji. Spośród testowanych modeli, VGG16 okazał się najskuteczniejszy, osiągając błąd walidacyjny równy 

0,1607. Uzyskane wyniki dowodzą, że techniki głębokiego uczenia mogą skutecznie przyspieszyć projektowanie oraz optymalizacji urządzeń 
nanofotonicznych. Opracowana metodologia ma potencjał znacznego ograniczenia kosztów obliczeniowych oraz czasu trwania symulacji w procesach 

inżynierii nanostruktur. 

Słowa kluczowe: plazmoniczne nanostruktury FDTD, prognozowanie parametrów strukturalnych na podstawie obrazu, uczenie głębokie

Introduction 

Both nanophotonics and plasmonics have developed 

significantly, due to the unique ability of plasmonic structures 

working on optical light at the subwavelength scale. Due 

to the effect of light on the free electrons present on the surface 

of metallic nanostructures, these structures have opened many 

applications in high-resolution imaging, biological and chemical 

detection, data storage, and even the fabrication of miniaturized 

optical devices. An important aspect of their operation 

is the ability to modulate light on scales less than the wavelength 

which is desirable for accurate measurements of molecular 

or environmental changes necessary in health monitoring 

and environmental analysis. 

The design and optimization of such nanophotonic devices 

involve complicated simulation schemes wherein the initial 

simulation was based on an FDTD approach. This numerical 

method is used to solve Maxwell’s equations, modeling 

the behavior of electromagnetic waves traveling through 

challenging materials and interfering with complex 

nanostructures. However, as FDTD simulations consume 

a lot of computational resources especially when simulating 

structures with large geometries and a broad range of wavelengths, 

any new change in the parameters of a device e.g. its material 

composition, geometry or individual layer thickness requires 

a new simulation to be run. In turn, this make the design 

of optimized structures resource and time-intensive, not least 

when trying to optimize multiple variables.  

To overcome these challenges, scholars have started 

investigating the application of machine learning (ML), 

and in particular deep learning (DL) as a framework for predictive 

modeling in scientific computing. The predictivity and capability 

of learning non-linear functions from large computational data 

make DL a candidate for bypassing repetitive FDTD simulations. 

In nanophotonic and materials science, DNN has recently been 

used to predict results by using structural parameters or material

arrangements, saving much time as a design tool. For instance, 

deep learning has been used to predict electromagnetic responses 

or structural properties based on large sets of FDTD simulation 

data that take less time than full-scale simulation data.  

The present work follows on from this line of research 

by utilizing DL to estimate the extended structural profile 

of a particular layered plasmonic nanostructure, made of MgF₂, 

gold, and glass. These materials were carefully selected based 

on their good optical and mechanical characteristics where MgF₂ 

is transparent in the infrared range, gold provides the possibility 

of plasmonic resonance, and glass ensures the stability 

of the overall device. For this purpose, a new data set has been 

produced using the FDTD simulation which exhibits 

electromagnetic field distributions for several structural 

conditions. As each material layer spans 500 nm and the variation 

of 38 structural parameters up to 2000 nm is accounted for, this 

dataset is a broad set of nominals that may be compared to highly 

time-consuming computations when simulated recurrently. 

The purpose of this work was to build an effective predictor 

function using the DL that would allow calculation of these 

38 structural parameters from the image data obtained with FDTD 

simulations directly. In the present work, different CNN models 

were used and these models comprised efficient NetB0, ResNet50, 

and VGG16, each of which has its advantages in the area of model 

complexity and feature extraction ability. It is therefore 

the intention of this study to train these models on the generated 

image data in as much as to derive an accurate 

yet computationally efficient mean for parameter prediction. 

The accomplishment of this goal is useful not only to resolve 

the issues related to high computational costs required for FDTD 

simulations but also to further develop the nanophotonic design 

domain by creating a more effective predictive model. By way 

of these improvements, the study established a significant 

platform for enhanced routes to design nanostructures at a faster 

and more affordable process that will benefit various applications 

that need precisely engineered plasmonic devices. 
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1. Literature review 

Precedent literature research highlights colossal advancements 

within the application of deep learning (DL) and machine learning 

(ML) in increasing and accelerating the computationally 

challenging Finite-Difference Time-Domain (FDTD) simulations 

required in the design of plasmonic and nanophotonic structures. 

For example, Mahadi et al. (2024) analyzed the prospects of using 

Gated Recurrent Units (GRUs) to predict absorption spectra 

in plasmonic devices and found that while providing an accurate 

spectrum estimation, it is orders of magnitude more efficient than 

the standard fully discrete time-domain Finite-Difference Time-

Domain (FDTD) approaches [9]. This approach is especially 

useful for applications where timely spectrum estimation is most 

crucial. He and Ye (2019) used ML to improve FDTD tasks 

by modeling electric field distributions in plasmonic nanoparticles 

to help SNIP inverse design more accurately and effectively, 

necessary for the development of tailor-made nanostructures. 

Malkiel et al. (2018) proposed the use of an artificial DNN-

based approach for characterizing nanostructures which essentially 

substituted conventional FDTD simulations with DL thus bringing 

down the computational burdens greatly. This innovation enabled 

more frequent changes of design for an important application 

in sensing and imaging [10]. Likewise, Adibnia et al. (2024) 

were concerned with optical behavior predictions using DL 

in plasmonic switches, demonstrating that DL can save electricity 

for conventional iterative FDTD simulations in terms of modeling 

switching behaviors [2]. In another novel application, Baxter et al. 

(2019) used DNNs in predicting plasmonic colors which 

is an efficient method of modeling FDTD output for display 

devices where accurate colors are needed [3]. 

Persson (2024) expanded this field further by employing 

CNNs to predict anisotropic nanostructure design and minimizing 

the simulation of specific geometries as well as enhancing 

FDTD results [14]. Masson et al. (2023) also employed DL 

in nanoplasmonics and explained how DL could successfully 

predict the material property to execute the role of enhancing 

the design efficiency in nanophotonic applications [12].  

Likewise, in Du et al. (2021), DL was applied to estimate 

the geometric parameters of nanoparticles to similarly high 

accuracy, in contrast to the computationally complex FDTD 

requirement, which suggests the scalability of DL in nanoparticle 

design [4]. Verma (2023) implemented ANNs in FDTD 

to enhance photonic properties in metallic nanoparticles 

with greater computational parity by optimizing its parameters 

and computational paradigms [16].  

This study also extends previous findings by Li et al. (2020) 

regarding DL’s efficiency and accuracy of scattering behavior 

and real-time optical response predictions, respectively, making 

it a favorable model for any system in need of quick optical 

feedback [8]. In developing the core-shell nanoparticle property, 

Vahidzadeh & Shankar (2023) were able to invoke ML to predict 

properties to minimize overdependence on FDTD simulations 

for efficient design for complex core-shell structures [15]. 

For renewable energy applications, Manzhos et al. (2021) 

used DL to predict plasmonic behavior in solar cell 

structures by improving FDTD simulation for better light 

absorption in nanostructures [11]. Zhang et al. (2020) applied 

the evolutionary algorithms with ML to simulate the graphene 

metamaterials obtained accurate spectrum estimations 

and reinforced DL as the promising substitute of FDTD 

for the design of new advanced metamaterials [18]. 

Kazemzadeh (2022) employs the DL approach for optimizing 

the nanoplasmonic sensors for biomedical applications and it was 

shown how DL algorithms turned the fabricated design by FDTD 

for healthcare purposes [7].  

Adibnia & Mansouri-Birjandi (2024) used DL for spectral 

prediction in the nonlinear plasmonic ring resonator switches 

and proved the efficiency of the DL approach for modeling 

the optical responses in such resonators [1]. This spectrum 

of research illustrates the gradual progression of adopting both DL 

and ML into nanophotonics and plasmonics, and where these 

techniques largely substitute or enhance FDTD simulations, 

as more efficient, accurate, and economical solutions to complex 

nanostructure developments for multifaceted applications 

in the fields of display technology, sensing, energy, 

and biomedical engineering. Other papers worked with Plasmonic 

nanoparticle simulations and inverse design using machine 

learning and also used Deep Learning to simulate the parameters 

[5, 6, 17].  

2. Methodology 

2.1. Overview 

The methods section in this study explains how the authors 

designed and modeled plasmonic nanostructures and predicted 

their parameters. Based on the formulation, we created a set 

of images and their corresponding structural parameters 

and explicitly trained deep learning models using the Finite-

Difference Time Domain (FDTD) method. This section discusses 

the FDTD simulation employed, the dataset generation, the deep 

learning model, and its training. 

2.2. FDTD simulation setup 

Fig. 1a illustrates the material structure of the whole design 

in the FDTD software. Figs. 1b, 1c, and 1d show the different 

dimensions of the structure, such as the XY view, YZ view, 

and XZ view.  

 
(a) material structure 

 
(b) XY view of the structure 

 
(c) YZ view of the structure 

 
(d) XZ view of the structure 

Fig. 1. Structure of the design (a–d) 
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The model for observing the optical properties of the layered 

plasmonic structure was simulated in the FDTD software using 

MgF₂, gold, and glass substrate. It needed to structure be designed 

to absorb infrared radiation, which is a key component of such 

uses as sensing. Ranges that were allowed to differ from 

one simulation to another include the thickness of layers, pattern 

density, and some dimensions of the material. Changes in any 

of these parameters produced a different image, that featured 

electromagnetic field distribution patterns.  

2.3. Material properties 

MgF₂ (Magnesium Fluoride): Selected for deposition 

as a dielectric layer because it is transparent in the infrared range. 

Gold (Au): Applied for its plasmonic properties, it increases 

the field interaction at certain wavelengths. 

Glass: Served as support as a base layer to the walls 

of the building. 

2.4. Parameter configuration 

In each FDTD simulation, 38 parameters, including layer 

thickness and feature spacing, were varied to produce 30 sets 

of images representing structural geometries. 

2.5. Dataset creation 

In all, 200 images were gathered for study with a host 

arrangement put in 10 groups according to structural and field 

differences. For each image, the segmentation produced 

38 parameter values and these skills were logged in a CSV file 

for a supervised learning algorithm. The particular factors 

included Image Path, Circle_x_min, Circle_x_max, Circle_radius, 

Boundary_layer_min, Boundary_layer_mix, Source_x_min, 

Source_x_max, Source_y_min, Source_y_max, Monitor_x_min, 

Monitor_x_max, Monitor_y_min, Monitor_y_max, Mesh_x_min, 

Mesh_x_max, Mesh_y_min, Mesh_y_max, Gold_x_min, 

Gold_x_max, Gold_y_min, Gold_y_max, Gold_z_min, 

Gold_z_max, MgF2_x_min, MgF2_x_max, MgF2_y_min, 

MgF2_y_max, MgF2_z_min, MgF2_z_max, Source_z_min, 

Source_z_max, Monitor_z_min, Monitor_z_max, Mesh_z_min, 

Mesh_z_max, Monitor_point, Mesh_step, collectively offering 

information on the specific aspect of the structure to control the 

optical characteristics. Fig. 2 shows the dataset image samples 

where the categories are electric field (e), electric field 

at a specific region (e1), monitored magnetic field intensity (h1), 

energy flow or power density (p), integrated power through 

a surface (p1), transmitted power ratio (t), transmission through 

a particular structure (t1), combined electromagnetic field (e+h), 

frequency or wavelength-domain result (spectrum), time domain 

(time). 

2.6. Deep learning models 

Later, three different pre-trained CNNs, namely 

EfficientNetB0, ResNet50, and VGG16 were employed 

for parameter prediction. There are many models and based 

on the objective of the study these models were chosen because 

they are capable of feature extraction and may have different 

levels of complexity d to test them for application in high 

dimensional regression. 

EfficientNetB0: This efficient model applies compound 

scaling to adjust network depth, width, and resolutions. 

ResNet50: Resort to residual blocks that enable the network 

to be out of layers that do not contribute to enhancing feature 

extraction. 

VGG16: A deeper neural model, all layers are of equal depth 

and are good at capturing spatial features. 

For each model, fully connected (dense) layers were included 

for regression at the output layer, which consisted of 38 nodes 

as the parameters. 

 
a) Electric field, e 

 
b) Electric field at a specific region e1 

 
c) Combined electromagnetic field, e+h 

 
d) Monitored magnetic field intensity, h1 

 
e) Energy flow or power density, p 
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f) Integrated power through a surface, p1 

 
g) Frequency or wavelength-domain result, spectrum 

 
h) Time domain 

 
i) Transmission through a particular structure, t1 

 
j) Transmitted power ratio, t 

Fig. 2. Dataset image samples (a-j)  

2.7. Model architecture: VGG16 

The VGG16 is a CNN with simple and deep architecture 

because it is made up of many convolutions followed by fully 

connected layers. Being a model developed for classification 

tasks at first, VGG16 demonstrates great results in image 

processing because of its depth and uniformity. For this research, 

we modified the VGG16 architecture so that it can operate 

in a regression model since the aim was to make predictions 

of 38 structural parameters that are continuous, from FDTD 

simulation images. The initial complete connection layer 

for categorization was substituted by regression layers, allowing 

it to be used for parameter estimation. 

Convolutional layers 

They used twelve convolutional layers to extract features from 

images in VGG16 ranging from the basic level, and edges 

to higher level texture and shapes. The convolution operation 

in each layer is defined by: 

 Z i, j, k = ∑ Xi+m,   j+nm,n  . W m, n, k + b k (1) 

where: 

Z i, j, k is the activation map output for the k-th filter at spatial 

position (i,j), 

Xi+m,   j+n represents the input from the previous layer, 

W m, n, k  denotes the weights of the convolution filter, b k  is the 

bias term for the filter. 

ReLU activation 

Each convolutional layer’s output undergoes a ReLU 

activation function, defined as: 

 f(x) = max(0, x) (2) 

This introduces non-linearity, enabling the network to learn 

complex patterns and relationships in the data. 

Pooling layers 

Max pooling layers reduce spatial dimensionality 

by downsampling, which lowers the computational load 

and provides translation invariance. Pooling is defined as: 

 Pi,j,k = max(Xa,b,k) (3) 

where Pi,j,k is the pooled output for the k-th channel over 

the region (a,b). 

Fully connected layers for regression 

Specifically, the network features are extracted 

at the convolutional layers, but for regression, FC layers 

are used. Here we removed the classification layers and used 

a series of Dense layers that followed a last linear layer containing 

38 neurons for each parameter. 

Output layer 

In this layer, the 38 nodes are linearly activated to predict 

continuous parameter values; therefore, this layer is a multi-output 

regression layer. 

Loss function and optimization 

For the regression task, the Mean Squared Error (MSE) was 

used as the loss function:  

 MSE = 
1

n
 ∑ (yi − yî)

2n
i=1  (4) 

where yi is the true parameter value and yî is the predicted 

parameter value for each data sample n. 

L2 Regularization 

To reduce overfitting, L2 regularization was added, penalizing 

larger weights: 

 Regularized Loss = MSE+λ ∑ wj
2p

j=1  (5) 

where λ controls regularization strength, and wj are the weights. 
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2.8. Model architecture: EfficientNetB0 

Codified by key layers, EfficientNetB0 also employed 

a compound scaling method for the width, depth, and resolution 

of inputs it used. This balance helped EfficientNetB0 deliver high 

performance with relatively fewer parameters, which makes 

it more computationally efficient, especially for datasets 

with fewer samples. In this work, EfficientNetB0 was fine-tuned 

for regression because the model was intended to predict 

38 continuous features that describe plasmonic structure attributes 

FDTD. 

EfficientNetB0 scales the width, depth, and resolution 

of the network using a compound coefficient, represented 

mathematically as: 

 Width = α⋅ϕ, Depth = β⋅ϕ, Resolution = γ⋅ϕ (6) 

where: α, β, γ are constants determining scaling ratios for each 

dimension, ϕ is the scaling coefficient. 

EfficientNetB0 uses α = 1.2, β = 1.1, and γ = 1.15 to balance 

performance and efficiency, making it ideal for high-dimensional 

regression tasks. 

Convolutional layers with swish activation  

EfficientNetB0 employs Swish activation, defined as: 

 f(x) = x⋅σ(x) (7) 

where σ(x) is the sigmoid function. Swish helps smooth gradient 

flows, which is especially useful for deep architectures. 

Squeeze-and-Excitation (SE) block  

Each block in EfficientNetB0 contains an SE module 

that dynamically scales feature maps by their channel-wise 

importance. The SE block can be defined as:  

 s = σ(W2⋅ReLU(W1⋅z)) (8) 

where z is the global average-pooled feature map, W1 and W2 

are trainable weight matrices, and s represents the scaled feature 

map. 

Fully connected (dense) layers for regression  

A new classification layer was proposed and thrown into fully 

connected layers which terminate in a linear layer of 38 nodes, 

each representing one parameter. The regression layers were 

incorporated with dropout regularization to reduce cases 

of overfitting. 

Loss function and optimization 

EfficientNetB0 was trained to minimize Mean Squared Error 

(MSE) with L2 regularization: 

 Loss = MSE+λ ∑ wj
2p

=1  (9) 

The Adam optimizer was used as the first choice with decay 

when the validation loss did not change for a few iterations. 

2.9. Model architecture: ResNet50 

ResNet50 is one of the widely used ResNet models, 

a convolution neural network based on a residual learning formula 

to solve the vanishing gradient problem in deeper learning 

architectures. ResNet50 incorporates residual blocks to help 

increase the depth and improve training for deeper networks 

by skipping layers that do not support the direction, a benefit 

that increases the model's learning capacity for intricate data sets. 

In this work, ResNet50 was used for regression on 38 continuous 

structural parameters obtained from FDTD-simulated images. 

The ResNet50 architecture uses Shortcut connections 

that enable gradients to flow directly through the network and skip 

the convolutional layers, stabilizing training deep networks. Each 

residual block in ResNet50 can be expressed as:  

 y = F(x,{Wi})+x (10) 

where: x is the input feature map, F(x,{Wi}) represents 

the residual mapping learned by stacked layers with weights 

{Wi},and y is the output feature map after the shortcut connection. 

The residual connection also precisely maps to identity, 

so modifications can be learned instead of features from scratch. 

This makes training deep networks possible, which also enhances 

accuracy. 

Each residual block in ResNet50 includes two or three 

convolutional layers followed by batch normalization and ReLU 

activation, defined as follows: 

Convolution operation 

 Z i, j, k = ∑ Xi+m,   j+nm,n  . W m, n, k + b k (11) 

where Z i, j, k  is the output of the convolution, Xi+m,   j+n 

is the input, and W m, n, k, and b k represent weights and bias. 

Batch normalization 

Batch normalization standardizes activations within each 

batch, improving convergence and reducing internal covariate 

shift. For activations x, it is defined as: 

 𝑥̂ = 
𝑥− μ

√σ2+  ϵ
 (12) 

where μ and σ2 are batch statistics and ϵ is a small constant 

for numerical stability. 

ReLU activation 

The ReLU activation introduces non-linearity: 

 f(x) = max(0, x) (13) 

Fully connected layers for regression 

For regression tasks, we removed the classification layer 

of ResNet50 and added a series of fully connected (dense) layers 

that output 38 linear units to estimate each of the structural 

parameters we desired. 

Loss function and optimization 

We employed Mean Squared Error (MSE) as the loss function 

with L2 regularization to mitigate overfitting: 

 Loss = MSE+λ ∑ wj
2p

j=1  (14) 

where λ is the regularization parameter. As the optimizer's choice, 

Adam was applied using the learning rate decay strategy, in which 

the learning rate was to be reduced in case of validation loss 

stagnation for a definite number of iterations. 

3. Experiments and results 

The dataset is separated into two parts, 80% of which 

is the training set to use data augmentation to train the model 

and 20% is the validation set to keep track of performance 

and adjust it throughout the training. The dataset split does 

not include a single test set isolated to test the model, 

but rather attempts to test the model by uploading external 

images to find out which way the model works with completely 

unseen data. In this manner, model development is taken care 

of by training and validation, and external image uploads act 

as the testing stage. 

3.1. Training and evaluation of VGG16 model 

Data preparation 

Dataset: The dataset consists of 200 images of FDTD-simulated 

plasmonic structures, divided into 10 categories,and 38 parameters 

per image overall. 

Preprocessing: Images were also altered by resizing them 

to 224  224 pixels and then normalized. 

Training configuration 

Optimizer: Although the optimizer's default state was set 

to the Adam algorithm with a learning rate of 10−5, learning rate 

decay was implemented if the validation loss was not reduced. 

Batch Size: 16. 

Epochs: 70 (depending on which value the validation loss does not 

continue to decrease early stopping is performed). 
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Table 1. Losses of VGG16 model  

Metric Value 

Training Loss 0.1592 

Validation Loss 0.1607 

Test Loss 0.1625 

The test MSE of 0.1625 indicates that VGG16 effectively 

generalized to new data, accurately predicting the 38 parameters 

with low error. Fig. 3 illustrates the VGG16 model's training, 

validation loss and Table 1 shows the values. 

 

Fig. 3. Training and validation loss graphs of the VGG16 model 

Discussion on VGG16 model performance 

VGG16 proved to be more effective than other architectures 

because it could capture fine-grained spatial features of FDTD 

images. Due to its feature-extraction ability provided by deep 

convolutional layers, together with the regularization adopted, 

it was able to learn the parameter-image mapping in this high-

dimensional space. 

3.2. Training and evaluation of EfficientNetB0 

Data preparation and model configuration 

Dataset: These 200 FDTD-generated images were normalized 

and resized to improve the visualization of features upon 

superimposition over the original RGB images. 

Batch Size: 16 

Epochs: 70, with early stopping. 

Optimizer: Adam with 10−5 learning rate, ReduceLROnPlateau 

was used here to reduce the learning rate when necessary. 

Table 2. Losses of EfficientNetB0 Model 

Metric Value 

Training Loss 0.2895 

Validation Loss 0.291 

Test Loss 0.2888 

Results 

EfficientNetB0 showed a good ability to predict with a slightly 

higher test loss than VGG16 suggesting they possibly overfit even 

though it has very few parameters. Fig. 4 shows the training, 

validation loss of the EfficientNetB0 Model and table 2 shows 

the values.  

 

Fig. 4. Training and validation loss graphs of the EfficientNetB0 model  

Analysis 

The compound scaling of EfficientNetB0 makes 

it computationally efficient, though it lacks the complexity 

that might be essential to capture multiscalar spatial patterns 

in FDTD data. 

3.3. Training and evaluation of ResNet50 

Data preparation and model configuration 

Dataset: 200 FDTD-simulated images processed for model input. 

Batch Size: 16 

Epochs: 70, with early stopping and learning rate decay. 

Optimizer: Adam with an initial learning rate of 10−5. 

Table 3. Losses of ResNet50 model 

Metric Value 

Training Loss 0.3258 

Validation Loss 0.326 

Test Loss 0.3239 

Results 

Although ResNet50 has provided reasonable performance, 

loss values were a bit higher than VGG16, which indicates that 

ResNet architecture may need more regulatory measures or may 

require better generalization of data augmentations. Fig. 5 shows 

the training, validation loss of the ResNet50 Model and table 3 

shows the values.  

 

Fig. 5. Training and Validation Loss Graphs of the ResNet50 Model  

3.4. Combined analysis and discussion 

The connectivity pattern in ResNet50 provided an opportunity 

to learn deeper hierarchies and feature mapping in the images 

provided by FDTD. However, even though it has achieved 

a higher loss at the end of epochs, it shows that ResNet50’s depth 

can result in the overfitting of a comparatively small dataset. 

The next improvements could focus on different forms of training, 

or apply ensemble methods to enhance future generalizations. 

Evaluation metrics 

Table 4 shows the comparison of three models.  

Table 4. Comparison of all Models  

Model Validation Loss Test Loss 

EfficientNetB0 0.291 0.2888 

ResNet50 0.326 0.3239 

VGG16 0.1607 0.1625 

Analysis 

VGG16 performed better than other kinds of networks 

because of its potential to address complex spatial information 

handling. Although EfficientNetB0 is an efficient network, 

fluctuations in the model parameters could not be captured 

appropriately, or this might be because of the restricted model 

size. 

In order to further illustrate the performance of the models 

we were used to test sample image which was not visible 

and was compared with the predicted values against the true 

values. The Table 5 summarizes the predictions of VGG16, 

ResNet50 and EfficientNetB0. VGG16 also gave the nearest 

predictions to the real values in the majority of parameters when 

compared to the other two models. This proves that VGG16 

behaves more predictively on unseen data in our experiments. 

On the whole, the findings indicate the feasibility of practicality 

of the proposed models, with VGG16 being the best. 
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Table 5. Test and predicted values of the test image 

Parameter 
True 

Value 

VGG16 

Predicted 

ResNet50 

Predicted 

EfficientNetB0 

Predicted 

Circle_x_min 185 181.92337 176.20316 215.00941 

Circle_x_max 245 241.0471 214.78952 240.07141 

Circle_radius 79 107.27265 78.712776 86.88177 

Boundary_layer_min 38 12.94438 9.175221 -4.9068174 

Boundary_layer_max 64 64.11309 63.69646 64.03258 

Source_x_min -570 -660.99316 -689.36707 -654.25397 

Source_x_max 570 592.575 558.9657 555.6847 

Source_y_min -570 -636.73254 -692.3318 -692.5504 

Source_y_max 570 617.10034 562.10944 572.1373 

Monitor_x_min -280 -320.48346 -350.44702 -309.69818 

Monitor_x_max 280 285.40384 262.076 294.51648 

Monitor_y_min -280 -325.1408 -350.7416 -336.7725 

Monitor_y_max 280 279.25845 290.50894 265.79102 

Mesh_x_min -280 -330.40387 -345.17172 -332.93652 

Mesh_x_max 280 297.67297 284.0118 288.7856 

Mesh_y_min -280 -322.83112 -350.85315 -374.89114 

Mesh_y_max 280 276.65918 286.72977 277.90216 

Gold_x_min -280 -326.2986 -351.46222 -355.43503 

Gold_x_max 280 273.81323 280.50262 275.33655 

Gold_y_min -280 -338.2107 -340.96518 -350.45605 

Gold_y_max 280 287.5291 277.2876 292.74664 

Gold_z_min 26.5 2.7478118 3.7242126 -8.412284 

Gold_z_max 239.5 214.8449 217.60916 222.16992 

MgF2_x_min -280 -332.02725 -340.0608 -343.87402 

MgF2_x_max 280 298.601 285.16437 310.82095 

MgF2_y_min -280 -328.6493 -334.82016 -309.2372 

MgF2_y_max 280 288.63135 277.42896 283.77515 

MgF2_z_min 177.5 182.1871 157.8646 221.78505 

MgF2_z_max 266.5 112.438385 62.300987 32.23016 

Source_z_min 1210 1222.7931 1207.1602 1229.1868 

Source_z_max 1210 1216.8757 1188.4434 1192.3567 

Monitor_z_min 1410 1428.2998 1402.2832 1417.1187 

Monitor_z_max 1410 1423.0444 1394.084 1391.2072 

Mesh_z_min 141 138.73506 135.62877 113.84221 

Mesh_z_max 271 263.58746 250.25621 249.49942 

Monitor_point 98 62.475952 55.606926 65.464424 

Mesh_step 17 4.9715495 1.6483359 4.6041627 

3.5. Reason to use loss function instead of accuracy 

In these code implementations, the models (EfficientNetB0, 

ResNet50, and VGG16) are assessed based on the Mean Squared 

Error (MSE) loss since these models are developed for regression 

tasks not classification. Here’s why: 

Nature of prediction 

These models estimate structural quantities – thickness, 

and distances between layers in nanostructures – that are numeric, 

not nominal values. In regression tasks, getting an impression 

of how close actual values are to the predicted values (using MSE 

or similar measures) is more informative than accuracy, which 

applies to classification. 

Loss function for regression 

Regression (loss functions such as MSE) measures 

the precision of the models in terms of the error in the continuous

value predictions, and the loss functions penalize the error through 

a mathematical function. For instance, if the model estimates 

a structural parameter to be somewhat off, then MSE will measure 

the extent of this error with some precision, but accuracy would 

not be perceptive of this fineness. 

Minimizing error, not maximizing correct predictions  

The models are trained to minimize error instead of aiming 

for the highest possible number of correct classifications as this 

is not applicable where there are continuous outcomes. 

By doing so, these models can solely center on the MSE 

to reduce the error in predicting the continuous variables 

and estimate how reasonably the models approximate 

the true parameter. 

3.6. Novelty of the work 

In this paper, a strategy that incorporates FDTD simulation 

data and deep learning architectures is to estimate a diverse range 

of structural parameters in plasmonic nanostructures. In contrast 

to the previous studies which dealt with the prediction of at most 

6 optical properties and/or certain structural dimensions, 

the present study enriches the model predictive functionality 

by training EfficientNetB0, ResNet50, and VGG16 models 

on a dataset of the FDTD-derived images. The novelty of this 

work is based on the low prediction error of 38 parameters 

simultaneously and proving that VGG16 performs unexpectedly 

well with negligible validation loss, thus allowing the least 

computational time as compared to the conventional iterative 

FDTD technique. 

4. Conclusion 

In this study, a deep learning model, which applies VGG16 

model, was used to learn 38 structural parameters of FDTD-

simulated images with a high accuracy (training loss 0.1592, 

validation loss 0.1607, and test loss 0.1625). The findings 

validate the strength of VGG16 in revealing the spatial complexity 

of electromagnetic field distributions, which proves its use in fine-

grained structural tasking of biosensing, imaging, and storage 

of high-dense data. The proposed approach significantly lowers 

the computational cost as compared with the traditional design 

iteration based on FDTD, and it also speeds up the design 

optimization. Moreover, this paper demonstrates the opportunity 

of applying deep learning to nanophotonic design processes 

and indicates the possibility of expanding the framework 

to other computationally expensive models, including finite-

element and finite-volume models. On the whole, the results 

will act as a foundation to hasten the simulated design 

in nanophotonics and other scientific and engineering-based fields. 

5. Future work 

Future work should investigate additional means of enriching 

the datasets, to include materials with different compositions, 

and extend the analyzed parameters from the current 38. 

Moreover, if the given model architectures are not the best 

or if one wants to improve the predictive accuracy, there 

is space to do so. Studying other deep learning models, 

such as transformers and other progressive CNN structures, can 

also be used to conclude handling larger datasets or complex 

distribution of fields. The authors also recommend extending 

the use of this predictive framework to other computational 

domains of finite-element or finite-volume kind to extend its 

applicability to the variety of electromagnetic simulation 

platforms. 
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