
60      IAPGOŚ 2/2019      p-ISSN 2083-0157, e-ISSN 2391-6761 

artykuł recenzowany/revised paper IAPGOS, 2/2019, 60–63 

DOI: 10.5604/01.3001.0013.2550 

GENERATORS OF ONE-TIME TWO-FACTOR AUTHENTICATION 

PASSWORDS 

Olga Ussatova
1
, Saule Nyssanbayeva

2
 

1Al-Farabi Kazakh National University, Almaty, Kazakhstan, 2Institute of Information and Computational Technologies, Almaty, Kazakhstan 

Abstract. The paper presents algorithms for generating a one-time two-factor authentication passwords where application of trigonometric functions have 

been considered. To protect the opening of a one-time password, a secret string is read that consists of a sequence of randomly generated characters. The 
second factor is due to the fact that that the code has a certain validity period. The presented password generators allow the formation of secret words and 

trigonometric functions that the proposed two-factor authentication method consists of. The algorithm presented was implemented in Java Script. The 

algorithm includes blocks for checking randomly generated words and functions. 

Keywords: password generator, two-factor authentication, data protection 

GENERATORY JEDNORAZOWYCH DWUCZYNNIKOWYCH HASEŁ AUTORYZACJI  

Streszczenie. W pracy przedstawiono algorytmy generowania jednorazowych, dwuczynnikowych haseł uwierzytelniających, w których uwzględniono 

zastosowanie funkcji trygonometrycznych. Aby chronić otwarcie jednorazowego hasła, odczytywany jest tajny ciąg składający się z sekwencji losowo 

generowanych znaków. Drugi składnik wynika z faktu, że kod ma określony okres ważności. Przedstawione generatory haseł umożliwiają tworzenie tajnych 
słów i funkcji trygonometrycznych, z których składa się proponowana metoda dwuczynnikowego uwierzytelniania. Przedstawiony algorytm został 

zaimplementowany w Java Script. Algorytm zawiera bloki do sprawdzania losowo generowanych słów i funkcji. 

Słowa kluczowe: generator hasła, uwierzytelnianie dwuskładnikowe, ochrona danych 

Introduction 

Ensuring the safety of confidential information must begin 

with identifying a system of threats, that is, negative processes that 

contribute to information leakage. In the modern world, the stor-

age of electronic information, its value and significance has in-

creased many times over. The need to ensure the safety of data 

storage, regular change and verification of passwords and control 

of the probability of information leakage have become an integral 

part of the information system. One of the most common methods 

of protecting information is password access to data. However, 

along with the undoubted advantages, this method of data protec-

tion has certain disadvantages: you can forget the password, it can 

be “hacked”. A two-factor authentication data protection system 

based on one-time password generation is proposed. 

This article describes the results obtained when developing a 

generator of trigonometric functions and secret words for generat-

ing a one-time two-factor authentication password based on an 

application using a smartphone. 

1. Material and methods 

The proposed system of information protection based on two-

factor authentication using a combination of two factors: perma-

nent and one-time passwords [7]. The user chooses a permanent 

password (the first factor) himself and uses it when registering an 

account. Before authorization must be registered in the applica-

tion. After that, the application starts to enter user data (login and 

password), which must correspond to the registered data.  

Then you need to enter the application on your smartphone 

and enter the initial data to generate a temporary password. A one-

time or temporary password (the second factor) is generated on the 

server by the proposed algorithm [7] and is valid for a specific 

period of time for one authentication session. The time in the 

application is 20 seconds. The advantage of a one-time password 

is that the password is not reused. Thus, an attacker who intercept-

ed data from a successful authentication session cannot use the 

copied password to gain access to the protected system. One-time 

password generation is possible online. The software sends a 

request to the authorization server to generate a temporary pass-

word. It is generated on the server and displayed to the user in 

additional software on the smartphone. The password has a short 

duration – 20 seconds. The one-time password is generated based 

on the result of the selected trigonometric function, which has a 

number of variables generated based on the result of the SHA256 

hash function [4, 5]. The input string for the hash function is a 

combination of user credentials, the current Greenwich Mean 

Time, and an additional secret string. The result of the hash func-

tion is divided into individual numbers, which will be the indices 

for selecting the function and its initial data. The secret string is a 

required field that will be randomly selected from the array. The 

secret line is changed at each input, due to which it will be much 

more difficult to open the initial input line, which allows to further 

strengthen the protection. The data for the input string has the 

values: login, password, current date, time and secret string. The 

next step to generate a password will be the result of the SHA256 

hash function, which underlies the choice of the trigonometric 

function. 

2. Secret word generating 

For the formation of a secret string, a generator has been de-

veloped that allows one to randomly form words. Word dictionar-

ies were not used, as words are easier to crack [3, 6]. The genera-

tor is based on the use of the Latin alphabet of capital and upper-

case characters in a total of 52. The length of the generated word 

is 5 characters. 

In the final code, the algorithm described above is implement-

ed in the Java Script language and has the following form: 

letfuncVariblesList = [] 

letfuncComponents = [] 

let expressions = ['+', '-', '/', '*'] 

 

module.exports.getWord = function() { // word generator 

let chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZa-

bcdefghijklmnopqrstuvwxyz' 

letwordLength = getRandomInt(5, 10) 

let word = '' 

for (let i = 0; i <= wordLength; i++) { 

letcharIndex = getRandomInt(0, chars.length - 1) 

word += chars[charIndex] 

  } 

return word 

} 

For the analysis of the generator used the method of complete 

enumeration [1, 2]. According to this method, the length of the 

string is taken into account (the length of the string is 5 characters 

in the appendix) and, for example, the search speed of 100,000 

words per second is used. The number of options is calculated by 

the formula: 

 nAS   (1) 

where A is the number of characters and n the length of the string. 



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2019      61 

An example of the analysis of the generator is presented 

in table 1. 

Table 1. Analysis of the generator 

Number of 

characters 
Number of options Persistence Search Time 

1 52 5 byte 
Less than 

a second 

5 380204032 26 byte 63 minutes 

S= 525=380204032 

 

Due to the fact that, according to the developed two-factor au-

thentication algorithm, the generation of a one-time password 

occurs every 20 seconds, the probability of hacking the generated 

secret word is almost impossible. This confirms the efficiency of 

the proposed generator. 

3. Trigonometric Function Generator 

As stated above, the generation of a one-time password is 

based on the result of the selected trigonometric function, which 

has a number of variable parameters. The choice is made in ac-

cordance with the result of the obtained hash function of the 

SHA256 standards, where the first characters are used, which will 

be indices in a table of 256x256 dimension. By this index, the 

function will be selected and its parameters will be determined. 

According to the results of the calculation, digits after the comma 

are taken as a one-time temporary password, starting from the 5th 

position and 6 digits long.  

The resulting number will be a temporary password that must 

be entered into the application. To implement this method, a gen-

erator of trigonometric functions has been developed, the use of 

which will greatly facilitate the formation of these functions. The 

algorithm of the generator of the trigonometric function is shown 

in Figure 1–3. 

To generate a trigonometric function, the number of variables 

is taken as the basis. There are 7 of them in this generator: a, b, c, 

x, y, p1, p2. Initially, a list of variables is formed, resulting in a 

random number of variables Count from 1 to the number of varia-

bles minus 1. Then, the array is searched through the array with 

certain variables N- times based on a random number from 0 to 

the length of the array minus 1.  

Read variable from the array, which is added in the new array 

and removed from the old.  

After the cycle is completed, a list of variables for the function 

is formed.  

Based on this list, the constituent parts (Math.sin (a), 1 / 

Math.tan (p2)) of the format – “['Math.sin ()', 'Math.cos ()', 

'Math.tan ( ) ',' (1 / Math.tan ()) ',' () '] ”.The ComponentsCount 

function (the number of elements minus 1) starts the loop through 

the array with the generated variables. In the loop at each step, a 

random number componentIndex from 0 to componentsCount is 

formed. The element with the corresponding value of the compo-

nentIndex index is converted by replacing the symbol “with a 

variable from the list and added to the new array.  

As a result, a list of component parts with variables is formed. 

Next, rows are formed based on a random number from 1 to 3. In 

the cycle, the components, separated by signs of mathematical 

expressions, merge randomly.  

After receiving the strings, they are joined separated by math-

ematical expressions. 

 

Fig. 1. Function getFunc 

 

Fig. 2. Function getComponents 



62      IAPGOŚ 2/2019      p-ISSN 2083-0157, e-ISSN 2391-6761 

 

Fig. 3. Function getFunction 

Software implementation of the generator has the following 

form: 

module.exports.getFunc = function()  

{ // function generator 

funcVariblesList = [] 

  let variablesList = ['a', 'b', 'c', 'x', 'y', 'p1', 'p2'] 

letvariablesCount = getRandomInt(1, variablesList.length - 1) 

for (let i = 0; i <= variablesCount; i++)  

{ 

letvariableIndex = getRandomInt(0, variablesList.length - 1) 

funcVariblesList.push(variablesList[variableIndex]) 

variablesList.splice(variableIndex, 1) 

  } 

returngetComponents(funcVariblesList) 

} 

functiongetComponents(variablesList)  

{ 

funcComponents = [] 

let components = ['Math.sin(*)', 'Math.cos(*)', 'Math.tan(*)', 

'(1/Math.tan(*))', '(*)'] 

letcomponentsCount = components.length - 1 

variablesList.forEach(item =>  

{ 

letcomponentIndex = getRandomInt(0, componentsCount) 

funcComponents.push(components[componentIndex].replace('*', 

item)) 

  }) 

returngetFunction() 

} 

functiongetFunction()  

{ 

// forming a block of variables 

letvariablesBlock = `(${funcVariblesList.join(',')}) => ` 

// forming a body function 

letseriesCount = getRandomInt(1, 3) 

letseriesList = [] 

for (let seriesIndex = 0; seriesIndex<= seriesCount; seriesIn-

dex++) { // there will be 2 rows 

letseriesBlock = '' 

letfuncComponentsCount = funcComponents.length - 1 

for (let j = 0; j <= funcComponentsCount; j++)  

{ 

letcomponentIndex = getRandomInt(0, funcComponentsCount) 

letexpressionIndex = getRandomInt(0, expressions.length - 1) 

if (j != funcComponentsCount)  

{ 

seriesBlock += `(${funcComponents[componentIndex]})` + ex-

pressions[expressionIndex] 

      } else  

{ 

seriesBlock += `(${funcComponents[componentIndex]})` 

      } 

    } 

seriesList.push(`(${seriesBlock})`) 

  } 

letfuncBlock = '{return(' 

for (let i = 0; i<= seriesList.length - 1; i++)  

{ 

letexpressionIndex = getRandomInt(0, expressions.length - 1) 

if (i != seriesList.length - 1)  

{ 

funcBlock += seriesList[i] + expressions[expressionIndex] 

    } else { 

funcBlock += seriesList[i] 

    } 

  } 

funcBlock += ')}' 

  // string of results 

returnfunc = variablesBlock + funcBlock 

} 



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2019      63 

FunctiongetRandomInt(min, max) { // function to get a random 

number for a given range 

returnMath.floor(Math.random() * (max - min + 1)) + min; 

} 

As a result, we obtain a generated string function, which we 

use to calculate a one-time two-factor authentication password. 

4. Conclusion 

The use of generators to work in the formation of a one-time 

password, allows you to enhance the level of protection of the 

described system. Entropy is traditionally a measure of the 

strength of passwords - a measure of uncertainty, usually meas-

ured in bits. One bit entropy corresponds to the uncertainty of the 

choice of two passwords, two bits of 4 passwords, etc. The 

strength of a password should be considered only in the context of 

a specific password authentication system. This is due to the fact 

that different systems in varying degrees implement (or do not 

implement at all) the mechanisms for counteracting attacks aimed 

at breaking passwords, and also because some systems contain 

errors or use unreliable algorithms. 

References 

[1] Alata E., Nicomette V., Kaaniche M., Dacier M., Herrb M.: Lessons learned 

from the deployment of a high-interaction honeypot. Proc. Dependable 

Computing Conference (EDCC06), Coimbra, Portugal, October 18-20, 2006, 

39–46. 

[2] Ayankoya F., Ohwo B.: Brute-Force Attack Prevention in Cloud Computing 

Using One-Time Password and Cryptographic Hash Function. International 

Journal of Computer Science and Information Security (IJCSIS) 17(2)/2019, 

7–19. 

[3] Bahaa Q.M.: Preventing brute force attack through the analyzing log. Iraqi 

Journal of Science 55(3)/2013, 663–667. 

[4] https://www.nist.gov (available 02.09.2018). 

[5] https://www.seagate.com/files/www-content/solutions-content/security-and-

encryption/id/docs/faq-fips-sed-lr-mb-605-2-1302-ru.pdf (available 12.10.2018). 

[6] Lamar A.: Types of threats to database security (http://www.brighthub.com/ 

computing/smbsecurity/articles/61402.aspx), 2012, (available 18.03.2019). 

[7] Nyssanbayeva S., Ussatova O.: Two-factor authentication in the automated 

control system. International scientific conference Information Science and 

Applied Mathematics. Almaty, 2018, Vol. II, 239–242. 

 

 

M.Sc. Olga Ussatova 

e-mail: uoa_olga@mail.ru 

 

Al-Farabi Kazakh National University, Institute of 

Information and Computational Technologies  

Ph.D. student in the specialty: «Information Security 

Systems». In 2003 graduated of the KazNTU – 

specialty 3704 – “Software computer technology and 

automated systems”.  In 2014 graduated of the Turan 

University – master’s degree of “Computing system 

and Software”. Research interests research theme - 

database protection using two-factor authentication. 

 

ORCID ID: 0000-0002-5276-6118 
 

Prof. Saule Nyssanbayeva 

e-mail: sultasha1@mail.ru 

 

Institute of Information and Computational 

Technologies, Information Security Laboratory. 

A specialist in the field of information security. 

The goals and objectives of the research are 

development and analysis of methods, algorithms and 

means of cryptographic protection of information 

based on modular arithmetic during its transmission 

and storage in info communication systems and 

networks. 

 

ORCID ID: 0000-0002-5835-4958 
 

otrzymano/received: 15.05.2019 przyjęto do druku/accepted: 15.06.2019

 

http://www.brighthub.com/%20computing/smbsecurity/articles/61402.aspx
http://www.brighthub.com/%20computing/smbsecurity/articles/61402.aspx
http://iict.kz/en
http://iict.kz/en
http://iict.kz/en
http://iict.kz/en

