OPTIMIZATION OF CONTROLLED EXPLOSION PROCESSES PARAMETERS USING COMPLEX ANALYSIS METHODS

Andrii Ya. Bomba¹, Andrii P. Safonyk², Kateryna M. Malash¹
¹Rivne State Humanitarian University, Mathematics and Informatics Faculty
²National University of Water and Environmental Engineering, Institute of Automation, Cybernetics and Computer Engineering

Abstract. The optimal charge power and position necessary for forming the maximum possible size of the crater along with preservation of the integrity of the two nearby objects with the numerical quasiconformal mapping methods with the alternate parameterization of the of the medium and process character are established. Unambiguously the boundaries of crater, pressed and disturbed soil zones are identified and the corresponding field dynamic grid is built. A number of experiments was held on the basis of the developed algorithm and their results were analyzed.

Keywords: explosion processes, mathematical modelling, parameters identification, quasiconformal mappings

1. Problem statement

We solve the following problem. In the environment where the explosion should occur, there are some two points M and N, between which it is necessary to create a the crater of the maximum size so that these points are in the unperturbed zone. The form and size of charge are also known a priori. It is necessary to determine the explosive power of charge and location of its position, as well as the boundaries of the sections of the crater, pressed and unperturbed parts of the environment, resulting from the explosion (Fig. 1).

The idea of solving the problem is as follows. Some initial domain \(G_c (z = x + iy) \) is determined. The charge is placed so that it is evenly spaced from the points M and N at a minimum distance from them. The charge contour is known a priori: \(L_c = \{ z : f_c(x, y) = 0 \} = \{ x = x_c (t), y = y_c (t), \alpha_c < t < \beta_c \} \).

We set the \(\phi|_{L_c} = \varphi_c = 0, \quad \phi|_{L_c^*} = \varphi_c^* = \varphi_c^* < -\infty < \varphi_c^* < +\infty \).

The boundary values of potentials are set so that they do not differ significantly.

Fig. 1. Schematic physical domain
The process of particles motion of the medium will be described using the equation of motion \(\dot{\mathbf{v}} = k \nabla \psi \) and the equation of continuity \(\nabla \cdot \mathbf{v} = 0 \), where \(\mathbf{v} = (v_x, v_y, v_z) \) is the particle velocity, \(\psi = \psi(x, y) \) is the quasipotential of the corresponding field, \(k = k(\nabla \psi) \) is the permeability coefficient of the medium (which characterizes the ability of particles to rise) [4, 6]. Also, we take into account the inverse effect of the process characteristics on the characteristics of the environment, so in the process of solving the problem, the coefficient \(k \) is specified:

\[
 k = k_0 + \frac{1}{2} \beta \left(I - I' \right) \left[(I - I') + |I - I'| \right].
\]

(1)

Here \(I = \sqrt{\psi_1^2 + \psi_2^2}, \quad I' \) are the critical values of the gradient, which characterize the delay and particle separation (the position of the line of the section), the parameter characterizing the change in permeability of the medium, is selected on the basis of the physical experiment [4]. The outer contour \(L' = \{ z : f'(x, y) = 0 \} \) is the initial domain is defined as described in [5].

Let’s solve the problem using the quasiconformal mappings methods [3, 7]. We introduce the function \(\psi = \psi(x, y) \) complex conjugate to \(\varphi = \varphi(x, y) \) and form a conditional section of the domain \(G_0 \) along one of the flow lines (as shown in Fig. 1). We obtain the problem of a quasiconformal mapping \(\omega = \omega(z) = \varphi(x, y) + i \psi(x, y) \) of the formed single-connected domain \(G'^2 \) to an appropriate rectangular area of the quasiconformal potential

\[
 G_\omega = \{ \varphi + i \psi : \varphi, \psi < \varphi^*, 0 < \psi < Q \}
\]

with an unknown parameter \(Q \).

\[
 \kappa(\nabla \psi) \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}, \quad \kappa(\nabla \varphi) \frac{\partial \psi}{\partial y} = \frac{\partial \varphi}{\partial x}, \quad (x, y) \in G_\omega, \quad \phi|_{L_1} = \phi_0, \quad \psi|_{L_2} = 0, \quad \psi|_{L_0} = Q.
\]

(2)

2. The inverse problem statement

We turn to the inverse problem on the quasi-conformal mapping \(x = x(\varphi, \psi) \) and imaginary \(y = y(\varphi, \psi) \) parts of the characteristic function equation of the flow line with unknown partition lines and the unknown value of the parameter \(Q \) :

\[
 \kappa(\nabla \varphi) \frac{\partial \psi}{\partial x} = \frac{\partial \varphi}{\partial y}, \quad \kappa(\nabla \psi) \frac{\partial \ psi}{\partial y} = \frac{\partial \varphi}{\partial x}, \quad (\varphi, \psi) \in G_\omega, \quad \dot{J}_{ij} = \dot{x}_i x_j - \dot{y}_i y_j, \quad f_1(x, \varphi, \psi, y(\varphi, \psi)) = 0, \quad \varphi, \psi < \varphi^*, \quad f_1^*(x(\varphi^*, \psi), y(\varphi^*, \psi)) = 0, \quad 0 < \psi < Q, \quad x(\varphi, 0) = x(\varphi, Q), \quad y(\varphi, 0) = y(\varphi, Q), \quad \psi, \varphi < \varphi^*, \quad (\varphi, \psi) \in G_\omega.
\]

(3)

We arrive at the Laplace type equations:

\[
 \frac{\partial}{\partial x} \left(\frac{1}{\kappa} \frac{\partial \varphi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\kappa} \frac{\partial \varphi}{\partial y} \right) = 0. \quad (6)
\]

(6)

3. The numerical algorithm of problem solving

The algorithm for numerical solving the problem is constructed as described, for example, in [3]. The difference analogs of equations (6), boundary conditions (4), as well as additional conditions for boundary and near-boundary nodes in the corresponding uniform grid:

\[
 G_0 = \{ \varphi, \psi \}, \quad \varphi = \varphi + i \cdot \Delta \varphi, \quad \varphi = 0, \quad \psi = j \cdot \Delta \psi, \quad j = 0, m; \quad \Delta \varphi = \frac{\varphi^* - \varphi}{n}, \quad \Delta \psi = \frac{Q}{m}, \quad \gamma = \frac{\Delta \psi}{\Delta \varphi}
\]

will be written in the following form:

\[
 \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + (1 - 2 \sigma) \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + y^2 \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + (1 - 2 \sigma) \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + (7)
\]

\[
 \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + (1 - 2 \sigma) \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + (7)
\]

\[
 \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + (1 - 2 \sigma) \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + y^2 \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + (1 - 2 \sigma) \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] + \sigma \left[\frac{a_{11}}{x_{11}} \tau_{11,11} - \frac{a_{11}}{x_{11}} \tau_{11,11} \right] = 0.
\]

Here

\[
 a_{ij} = \frac{\kappa_{ij} + \kappa_{j-i}}{2 \kappa_{ij} \kappa_{j-i}}, \quad b_{ij} = \frac{\kappa_{ij} + \kappa_{j-i}}{2}, \quad k_{ij} = k_0 + \frac{1}{2} \beta \left(I_{ij} - I' \right) \left[(I_{ij} - I') + |I_{ij} - I'| \right], \quad I_{ij} = \frac{2 \Delta \psi}{J_{ij}} \sqrt{(x_{ij} - 1)^2 + (y_{ij} - 1)^2}.
\]

(4)

We obtain the formula for the approximation of the quantity \(\gamma \) on the basis of the quasi-conformal similarity in the small of the two domains [3]:

\[
 \gamma = \frac{k_{ij}}{m+1} \sum_{j=0}^{m} a_{ij} + a_{i+1} + a_{i+1, j}.
\]

(8)

Where

\[
 a_{ij} = \sqrt{(x_{ij} - 1)^2 + (y_{ij} - 1)^2}.
\]
We obtain the outer boundary contour L'_{b1} of the initial domain G_1 and the boundaries of the crater section (depicts I on Fig. 1), the pressed (II) and unperturbed (III) sections of the soil as a result of numerical calculations for the initial domain. We check the position of the M and N points relative to the contour L_{b1} according to the following algorithm:

1) If both points belong to the contour, then the problem is solved, and the potential value ϕ_0^* is sought. However, the probability of such a coincidence is rather low.

2) If one of the points (e.g., N) belongs to the contour, then we determine the position relative to the contour of the other point (M). If it is placed inside the contour, we find the distance from it to the contour (let we denote it l), and return to the beginning of the task solution with the specified position of the charge contour L_b by moving it towards point N at a distance of $l/2$. In the case the point M is located outside the contour L_{b1} we specify the contour L_b position by approaching it to the point M at a distance of $l/2$ and solve the problem again. Repeat these steps until both sides M and N are not placed inside the contour L'_{b1}. In this case, the problem is solved, the identified charge positions, the boundaries of the crater section, the pressed and unperturbed sections of the soil are sought-after, and the value of the explosive charge force ϕ_0^* is the desired magnitude.

3) If both the points N and M are placed inside the contour L'_{b1}, then we increase the value of ϕ_0 parameter to a certain value $\Delta \phi \ll \phi_0^*$ and solve the problem with the specified value ϕ_0^*, after which we check the position of the points M and N relative to the external contour again. If they are still placed inside the contour, we repeat paragraph 3) until one of them (or both) is belong or placed outside of the contour. If the both points belong to the contour then the problem is solved. If the only one point belongs to the contour then we go to paragraph 2). If at least one of the points has gone beyond the contour, we reduce the value ϕ_0^* by magnitude $\Delta \phi = \Delta \phi / 2$ and solve the problem with the specified value of quasipotential again. Repeat this action until one of the points will belong to the contour. Then we move to paragraph 2).

4) If one of the points (e.g., N) is placed outside the contour, and the other one is placed inside, we reduce the value ϕ_0 by value $\Delta \phi_0$ i and solve the problem with the specified quasipotential value again (similar to paragraph 3)) until one of the points belongs to the contour, and the other is placed inside. Then we move to paragraph 2).

5. The numerical experiments results

On the basis of the developed algorithm a number of numerical experiments have been carried out, which confirm the expediency of its use for solving such type of problems while the modelling of the impact of the explosive process on the medium.

Here are the results of numerical experiments for input data $n \times m = 70 \times 100$, $I = 0.008$, $I^0 = 0.004$.

$$
\{(y, x, z) : f(x, y) = 0 \} = \{x + iy : x = 10 + 6 \cos(t), y = 5 + 5 \sin(t), 0 \leq t < 2\pi\}, \quad \phi_0 = 0, \quad \phi_0^* = 0.1, \quad \beta = 0.05, \quad M = (0,1), \quad N = (0, -1)$$

(5) (Fig. 2).

6. Conclusions

A mathematical model of the explosion impact on the environment was developed using quasi-conformal mappings numerical methods and a step-wise parametrization of the environment and process parameters taking into account their interaction. This model provides optimization of the explosive process parameters, namely allows to identify the position and explosive force of the charge of a given shape and size in order to create the maximum crater between the two given points. At the same time, the points themselves are placed in the unperturbed zone. At the same time, the boundaries of the crater section, the pressed and unperturbed sections of the environment in which the explosion takes place are determined, and a dynamic grid of the field formed by it is constructed.

The developed algorithm allows to calculate the necessary parameters for carrying out blasting works nearby important objects for reception of the maximum possible cavity without danger of their damage.

In the long run is optimization of the explosive process parameters to get the crater of the maximum possible size, provided that the integrity of three or more objects adjacent to each other is preserved; determining the optimal shape or size of the required charge; taking into account the possible anisotropy of the medium; the possibility and expediency of using two or more charges; corresponding spatial problems.

\[f_x(x_n, y_n) = 0, \]
\[f_y(x_n, y_n) = 0, \quad j = 0, m. \]
References

D.Sc. Andrii Ya. Bomba

e-mail: abomba@ukr.net

The Head of Department of Informatics and Applied Mathematics of Rivne State Humanitarian University. He is the author of over 450 scientific works, including 9 monographs. A well-known specialist in mathematical modeling and computational methods. Academician of the UNGA. Member of four editions of collections of scientific works and two Specialized Scientific Councils for the defense of thesis.

ORCID ID: 0000-0001-5528-4192

D.Sc. Andrii Safonyk

e-mail: safonik@ukr.net

Professor of the Department of automation, electrical engineering and computer integrated technologies of the Institute of Automation, Cybernetics and Computer Engineering, National University of Water and Environmental Engineering, Rivne, Ukraine. Engaged in scientific mathematical modeling of natural and technological processes, computer techniques and computer technologies, programming.

ORCID ID: 0000-0002-5029-9051

M.Sc. Kateryna M. Malash

e-mail: katemalash@gmail.com

The Ph.D. student of Department of Informatics and Applied Mathematics of Rivne State Humanitarian University. She is engaged in mathematical modelling of technological processes, specially explosions, particularly using the numerical quasi-conformal mapping methods; also works with modern computer technologies and programming.

ORCID ID: 0000-0003-4771-9349

otrzymano/received: 20.02.2019 przyjato do druku/accepted: 11.03.2019