
12 IAPGOŚ 4/2018 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 4/2018, 12–15

DOI: 10.5604/01.3001.0012.8013

FEATURES OF THE MANAGEMENT OF DATA ENCRYPTION KEYS

IN THE CLOUD STORAGE MS SQL AZURE

Olexander Beley
Lviv Polytechnic National University, Institute of Computer Science and Information Technologies / Department of Computer-Aided Design

Abstract. The main principles of data security and access organization in the Microsoft Azure cloud storage are considered. A role of hierarchy and access

keys are presented. We describe the setup and the use of their keys (BYOK) for transparent data encryption (TDE) using Azure Key Vault keyring.

Keywords: communication equipment, data communication, cyberspace, data transfer

CECHY ZARZĄDZANIA KLUCZAMI SZYFROWANIA DANYCH PRZECHOWYWANYCH

W CHMURZE MS SQL AZURE

Streszczenie. Uwzględniono główne zasady bezpieczeństwa danych i organizacji dostępu w chmurze Microsoft Azure. Przedstawiono zagadnienia

hierarchii ról i kluczy dostępu. Zostały opisane dostosowywanie i używanie własnych kluczy (BYOK) do przezroczystego szyfrowania danych (TDE) przy
użyciu magazynu kluczy platformy Azure.

Słowa kluczowe: sprzęt komunikacyjny, komunikacja danych, cyberprzestrzeń, transfer danych

Introduction

With the spread of the Internet, the technology of data

processing has undergone significant changes. Previously, a

computer without any software was just a pile of scrap metal.

With the appearance of cloud technologies, even a simple mobile

phone with the access to the Internet can help solve complex tasks.

Cloud technology is a browser-based mailbox interface with the

ability to create and edit online office documents, the solution to

complex mathematical calculations, for which the power of one

personal computer is not enough.

Currently the cloud computing technology is one big concept

that includes many different concepts: software, infrastructure,

platform, data, and workplace. The most important feature of

cloud technologies is to meet the needs of users who need remote

data processing.

Of course, for an average computer user, cloud-based techno-

logy is not something you can do nothing without. However,

cloud computing is essential for business. Its main advantage is

the ability to save on expensive software. After all, you do not

have to install expensive office packages and specialized data

processing software on each computer. In addition, cloud

computing can allow all employees of the enterprise to use, in

general, only one operating system, with the access to their

workplaces through much cheaper terminals.

However, the concept of cloud technology is a subject to

considerable criticism. The main drawback is the security, because

not everyone considers it to be reliable to store personal data on a

remote server. However, cloud computing has significant

prospects, since Microsoft, Apple and Google almost

simultaneously began to implement cloud-based technologies in

their designs and are not going to abandon them before too long.

Flexibility, scalability and cost-effectiveness contribute to

cloud-computing enterprises. This is the answer to the constantly

changing economic, financial and technical conditions in which

modern enterprises have to work. Constant changes require new

ways of thinking, working and doing things. In this new reality,

the development of a hybrid cloud model is based. Successful

businesses, from small businesses to multinational corporations,

recognize the importance of an information system that provides

secure data access and effective administration. Cloud-based

systems need to be quickly rebuilt to provide cost-effective

efficiency with a positive return on investment. This combination

of requirements is best served by the various IT services offered in

the hybrid cloud.

The cloud storage solution for modern applications that

provides stability, availability and scalability to meet customer

needs is the MS Azure repository. The Azure repository provides

many different security features, such as: the storage account can

be protected by RBAC and Azure Active Directory; the data

transmitted between the application and Azure can be protected by

encrypting the client, HTTPS or SMB; automatic data encryption

can be configured when writing to the Azure repository using the

"Encrypting the repository" function; for OS drives and data disks

used in virtual machines, the Azure disk encryption can be

configured; delegated access to data objects in the Azure

repository service can be provided with signed URLs; also you

can use the analytics to track the authentication method used when

accessing the repository.

The security features of Microsoft Azure repository include

storage keys, data encryption during data transfer, inaccessible

data encryption, and repository analytics. We can protect your

storage account with role-based access control. Restricting access

according to security principles (the principle of providing access

only in those cases and to the extent that knowledge of such

information will be necessary, as well as the principle of minimum

rights) is extremely important for organizations that need to apply

security policies for access to data. These rights are granted by

assigning an appropriate role to RBAC groups and applications for

a specific area. We can assign users the rights, for example, the

rights to a member of the storage account, with the built-in RBAC

roles.

The public signature provides delegated access to resources in

your storage profile. This means that the client can get a limited

right to work with objects in your storage profile for a certain

period of time and with a certain set of permissions. We may grant

these limited rights without notifying access keys to your account.

To access the repository resources with SAS, client just has to

pass SAS to the appropriate constructor or method, which contains

all the information needed to access the authenticated storage

repository in its query parameters.

The Azure data repository for data protection includes the use

of: transport layer encryption for data transfer to or from the

Azure storage service; SMB 3.0 encryption for Azure file

resources; client-side encryption, which encrypts the data before

being transferred to the repository and decrypts it after the data is

received from the repository service.

1. Basic principles of security management

in the Microsoft Azure Data Warehouse

The main recommendations for protecting and encrypting data

in Azure include: Multi-Factor Authentication; role-based access

control (RBAC); encryption of Azure virtual machines; use of

hardware security models; safe management of workstations; SQL

data encryption; data protection during transmission; application

of file-level encryption.

Verifying the authenticity of the user is the first step in

providing access to and management of data in Microsoft Azure.

To do this, the Multi-Factor Authentication (MFA) Azure method

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2018 13

is used with additional tools other than the user name and

password. This method helps to protect access to data and

applications without compromising the user's login process. By

incorporating Azure MFA for our users, we add a second level of

security for signing in and transactions. A transaction may refer to

a document hosted on a file server or in SharePoint Online. Azure

MFA also minimizes the risk that third parties will be able to

access data using compromised credentials. Enterprises that do not

use this additional level of protection are more vulnerable to

attacks through stealing credentials, which may lead to

compromising data.

The main key store solution for Azure services is the Azure

Key Vault, which provides general key management capabilities.

Keys are stored by users and services. Azure Key Vault supports

the creation of user keys or the import of custom keys using the

scripts used by our encryption keys.

When implementing encryption of inactive data, several

encryption keys are used. Asymmetric encryption can be used to

provide the credentials and authentication necessary for key

management and access to them. Symmetric encryption is more

efficient for mass encryption and decryption, which ensures much

more reliable encryption and better performance. Restricting the

use of the encryption key reduces the risk of its damage, as well as

the cost of re-encrypting if it is necessary to replace the key.

The AES256 (DEK) symmetric key is used to encrypt a

partition or data block, which may include many sections and

many data encryption keys. Encrypting each data block with

another key creates additional complexity for executing attacks on

encrypted data. When creating a new DEK key, re-encrypting this

key requires only data in its associated block.

The Asymmetric Encryption Key (KEK) is used to encrypt

data keys, the use of which allows you to encrypt the data

encryption keys directly and manage them. Since KEK keys are

needed to decrypt the DEK keys, it can actually be considered as

the single point to control the DEK keys. Data encryption keys

encrypted using key encryption keys are stored separately, and

only the entity that has access to key encryption keys may receive

any encryption key encrypted with the KEK key.

The client's encryption model is the encryption process that

we perform with the service program in Azure or an application

that works in the user's data processing center. When using this

encryption model, we will receive encrypted data in the form of a

large binary code without the possibility of decrypting it and also

without the access to encryption keys. In this model, the keys are

managed by the appropriate application and this process is opaque

for the Azure service.

Fig. 1 Model encryption client

Fig. 2. Models for managing encryption keys on the server side

Server-side encryption models are Azure encryption. In this

model, we perform encryption and decryption operations. In the

Azure repository, you can retrieve data using plain text operations,

and then perform internal encryption and decryption. We may use

Microsoft encryption keys or our own.

If you want to encrypt inactive data and manage encryption

keys, you can use server-side encryption with the help of user-

managed keys in the repository. Some services can store root key

encryption keys in Azure Key Vault and store the encryption key

of encrypted data in the internal repository along with the data. In

this scenario, we can transfer your own keys (BYOK) to the key

store or create keys to use them to encrypt the desired resources.

In doing so, we perform encryption and decryption operations

using the custom key as the root key for all encryption operations.

When Azure disks are encrypted, the Azure key store is used.

Thanks to this, we can manage the keys and secrets of disk

encryption as a part of the key store subscription. Encryption is

performed for all inactive data on virtual drives in the Azure

storage service. The Azure key store should be used for key audit

and policy use. There are many risks associated with the lack of

suitable secret key protection tools used to encrypt data. If

intruders have the access to secret keys, they will be able to

decrypt data and gain access to confidential information.

To encrypt data stored on disk using a secret key, secure key

creation, storage, access control and encryption keys are required.

Although some points may differ, the implementation of inactive

data encryption can be described using the concepts illustrated in

the following scheme (see Fig. 1).

Fig. 3. Azure key storage

Since most attacks are aimed at the user, one of the main

targets of the attackers is the end point. If the attacker damages the

end point, they will be able to use user credentials to access the

organization's data. Most end-to-end attacks occur because users

are administrators on their local workstations.

All Azure storage services (BLOB storage, queue storage,

spreadsheet and Azure file service) support server-side

inaccessible encryption, and some services support customer-

managed client-side encryption keys. The Azure BLOB storage

and the Azure file service also support the 2048-bit RSA-

controlled RSA keys in Azure Key Vault. When using client-side

encryption, data is encrypted and transmitted as an encrypted large

binary object.

Currently, the SQL Azure database supports inaccessible data

encryption in client-side and on Microsoft managed services.

Server-side encryption support is currently provided using SQL

functions that implement transparent data encryption. Inactive data

encryption can be enabled at the database level and at the server

level. The SQL Azure database supports the client-managed 2048-

bit RSA key in Azure Key Vault.

Azure role-based access control (RBAC) is used to assign

users, groups, and access rights within a particular area. A role can

be a subscription, a group of resources or a separate resource. We

can assign users rights using the built-in RBAC roles in Azure: the

role of "Member of the storage account", the role of "Member of

the classical storage account", the role of "Participant of the

virtual machine".

14 IAPGOŚ 4/2018 p-ISSN 2083-0157, e-ISSN 2391-6761

2. Transparent encryption of data using

its own key

Using Your Own Keys (BYOK) for Transparent Data

Encryption (TDE) allows you to encrypt the database encryption

key (DEK) using an asymmetric key called protector TDE. With

TDE keys, we can manage and store data in the Azure Key Vault

cloud system for managing external keys. The TDE encryption

key stored on the bootstrap database page is encrypted and

decrypted with the TDE fuse. The protector TDE is stored in the

key store of Azure Key Vault. If the server's access to the key

store is cancelled, it will lose the ability to decrypt and read the

encrypted database. Protector TDE is configured at the logical

server level with the inheritance of all databases that are

associated with this server.

TDE with BYOK support allows us to provide: higher

transparency and precision with the ability to independently

control the TDE fuse; centralized protector's TDE control (with

other keys and permissions for all other Azure services) due to

their location in Key Vault; division of responsibilities for

managing keys and data in an organization; increasing customer

confidence, as the Key Vault principle does not allow Microsoft

employees to see or receive encryption keys; key change support.

Fig. 4. The work of TDE with support of BYOK

When we first set up TDE to use a key logger with Key Vault,

the server sends Key Vault encryption keys from all databases that

support TDE to create a key packet request. Key Vault returns the

encryption key for the encrypted database and this key is stored in

the user's database. Saved in the Azure Key Vault protector, TDE

never leaves the Azure Key Vault. A logical server can only send

key operation requests to the TDE protector key material within

Key Vault, and never accesses or caches the TDE protector. The

Key Vault Administrator has the right to revoke Key Vault

permissions of the server at any point, in which case all

connections to the server are cut off.

Fig. 5. Setting up a geographic emergency recovery for Azure Key Vault

The Azure Key Vault can be configured in a variety of ways:

for a stand-alone database or logical server without geo-

replication; for the database or logical server, configured denial

handling groups or geo-replicated. At the same time, for each geo-

replicated copy, a local Azure Key Vault is required within the

refusal group to properly process geographically distributed

bounces. In the first case, the high level of accessibility for a

database and logical server without geo-replication can be

configured by creating two different keystrokes for the server in

two different regions, which will store the same key material. To

do this, we create a protector TDE in the primary repository

located in the same region with the logical server and a clone that

is a key to the key store in another Azure region. Now the server

will be able to use a secondary repository if primary problems

arise during the operation of the database.

For geo-replicated SQL Azure databases, we create the

appropriate Azure Key Vault configuration: one source database

with a repository and one repository database for the repository in

the same region; there must be at least one and no more than four

recipient databases; secondary replica databases recipient

(threading) are not supported.

For a new deployment of a SQL Server with a geographic

disaster recovery, we will need to do the following: create two

logical SQL servers in the same regions that previously created the

repositories; select the TDE area for the logical server, and then

for each SQL logical server select AKV in the same region and the

key that can now be used as the protector of TDE. Each server will

use a local copy of the protector's TDE. When we perform this

operation on the portal, we will receive an AppID for the logical

SQL server that allows you to assign a logical permission from the

SQL server to access the key repository. After the active geo-

replicate action is performed, the recipient database will be

created.

Fig. 6. Deploying SQL-Server with geographical disaster recovery using Azure Key

Vault

In a script for SQL Geographic Disaster Recovery Database,

you must create and maintain two Azure Key Vault repositories

with identical content in the same regions that will be used for

georeplication of the SQL database before turning on TDE with

the keys stored in Azure Key Vault and the managed client.

"Identical Content" here means that both key repositories must

contain copies of one protector TDE so that both servers have

access to the protector TDE used for all databases. We

synchronize both key holders, i.e., we place identical copies of

protector TDE in them after changing the keys; maintain the old

versions of the keys that were used for log files or backups;

preserve the same key properties for all subsequent TDE fuses;

maintain the same permissions for accessing SQL servers in the

repositories.

To restore a backup copy encrypted with a protector TDE

from Key Vault, you need to make sure that the key is in the

original repository with the same name. When the protector TDE

changes for the database, the old database backups are not updated

to the latest version of the protector TDE. We recommend you to

keep all older versions of protector TDE in Key Vault to restore

database backups. Saved backups of logs remain encrypted using

the original TDE encoder, even if the TDE protector has changed

and the database already uses the new TDE fuse. Both the key will

be required to restore the database. If the log file uses a TDE fuse

stored in the Azure Key Vault, this key will be required during the

recovery, even if the database is transferred to the TDE fired

service.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2018 15

Supporting the creation of own keys allows us to

independently manage the keys for TDE and establish who and

when can access them. The cloud-based external key management

system Azure Key Vault has become the first key management

service in which transparent data encryption is integrated with the

support for the creation of its own keys. Support for creating your

own keys allows you to protect the key encryption database

asymmetric key stored in Key Vault. This asymmetric key never

leaves Key Vault. If the server has permission to access the key

repository, the server sends requests for basic key operations in

the corresponding Key Vault. The asymmetric key is configured at

the server level and inherited by all databases on that server.

We can manage such key management tasks as changing a key

and setting permissions for key repositories. You can also delete

the keys and enable auditing for all encryption keys. Key Vault

provides centralized key management and uses strict tracking with

hardware security modules. Key Vault supports division of key

management tasks and data to ensure compliance with regulatory

requirements.

For operations within Azure, the database does not need to be

decrypted. The TDE parameters are transmitted transparently from

the source database to the recipient database. This applies to all

the following operations: heavens; recovery at a certain point in

time through the self-service interface; restore of a remote

database; active geo-replication; creation of a copy of the

database.

To configure TDE on the Azure portal, we connect on behalf

of the owner, member, or SQL Azure security administrator.

Transparent data encryption is configurable at the database level.

To include TDE in the database, we enter the Azure portal with an

administrator account or a member of Azure. The settings for

transparent data encryption are displayed in the database user

information section. By default, it is managed by a transparent

data encryption service. For a server that has a database, the TDE

certificate is created automatically.

Fig. 7. Set up the protector TDE on the Azure portal

The primary key of transparent data encryption (also called

transparent data protection protector) is set at the server level. To

use TDE to support our own keys creation and to protect databases

using the key stored in Key Vault, we use TDE parameters for our

server.

Thanks to BYOK support, users can independently manage

their keys and perform operations such as changing keys, setting

keys per key retention, removing keys, turning on audits and

reporting through all protectors’ TDE through Azure Key Vault.

Key Vault supports centralized key management, utilizes carefully

crafted hardware security modules (HSM), and allows you to

share key management and data management responsibilities to

ensure compliance with legal requirements.

Conclusion

A complete solution for encrypting inactive data assumes that

data is never stored in unencrypted form. During use, when the

server loads data into memory, data can be stored locally in a

variety of ways, including the Windows paging file, a crash dump,

and logging that the application can perform. To ensure that this

data is encrypted during storage, IaaS applications can use Azure

Disk Encryption on the Windows Azure IaaS virtual machine and

virtual disk.

In IaaS applications, we often have to encrypt Azure disks and

inactive data encryption settings provided by any Azure service

used. In some cases, such as with non-standard encryption

requirements or using non-Azure storage, the IaaS application

developer may need to implement inactive data encryption on its

own. IaaS solution developers can provide better integration with

Azure management and meet user expectations by using specific

components of Azure. We use the Azure Key Vault service to

provide secure key storage and to provide our users with

consistent key management options for most of the services of the

Azure platform. In addition, our solutions must use the credentials

of Azure-managed services to provide service accounts with

access to encryption keys.

Protecting user data stored in Azure services is of particular

importance to Microsoft. All services hosted in Azure are

committed to providing inactive data encryption options. Basic

services, such as Azure storage, Azure SQL Database and key

analytics services already provide inactive data encryption

options. Some of these services support user-managed keys and

client-side encryption, as well as service-managed keys and

encryption. Microsoft Azure services are constantly improving the

availability of inactive data encryption, and new parameters will

appear in the preliminary and public versions in the near future.

References

[1] Amies Alex H. S., Qiang Guo Tong, Guo Ning Liu.: Developing and Hosting

Applications on the Cloud. IBM Press, 2012.

[2] Armbrust M., et al.: A view of cloud computing. Commun. ACM 53/2010,

50–58.

[3] Armbrust M., et al.: Above the Clouds: A Berkeley View of Cloud Computing,

2009.

[4] Buyya R., et al.: Cloud computing and emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th utility. Future Gener. Comput.

Syst. 25/2009, 599–616.

[5] Casanova H.: Simgrid: a toolkit for the simulation of application scheduling.

Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM

International Symposium on, 2001, 430–437.

[6] Dean J., Ghemawat S.: MapReduce: Simplified Data Processing on Large

Clusters. ACM OSDI, Dec. 2004.

[7] Hamdaqa Mohammad L. T., Ladan T.: A Reference Model for Developing

Cloud Applications. Presented at the CLOSER, 2011.

[8] Krauter K., et al.: A taxonomy and survey of grid resource management systems

for distributed computing. Software: Practice and Experience 32/2002, 135–164.

[9] Qaisar E. J.: Introduction to cloud computing for developers: Key concepts, the

players and their offerings. Information Technology Professional Conference

(TCF Pro IT), IEEE TCF, 2012, 1–6.

[10] Quiroz A., et al.: Towards autonomic workload provisioning for enterprise Grids

and clouds. 10th IEEE/ACM International Conference on Grid Computing,

2009, 50–57.

[11] Rajkumar Buyya R. N. C.: Modeling and Simulation of Scalable Cloud

Computing Environments and the CloudSim Toolkit: Challenges and

Opportunities. Presented at the 7th High Performance Computing and

Simulation Conference (HPCS), Leipzig, Germany.

[12] Trunfio P., et al.: Peer-to-Peer resource discovery in Grids: Models and systems.

Future Gener. Comput. Syst. 23/2007, 864–878.

[13] Voorsluys W., et al: Introduction to Cloud Computing. Cloud Computing. John

Wiley & Sons, Inc., 2011.

Ph.D. Beley Olexander Igorovych

e-mail: tiger_oles@i.ua, Oleksandr.I.Belei@lpnu.ua

Since 1998 he has worked as a software engineer and

system administrator for various companies. Since

2000 he has been engaged in information technology,

design, programming, database development and web

pages, modeling and control of complex processes and

systems, mining systems and forecasting data

He is the author of more than 100 scientific works,

co-author of 6 monographs, 20 teaching and

methodological works, 3 manuals. He participated in

more than 50 international scientific-practical

conferences.

ORCID ID: 0000-0003-4150-7425

otrzymano/received: 1.10.2018 przyjęto do druku/accepted: 15.12.2018

