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Abstract. This paper is devoted to the investigation of the Kolmogorov-Wiener filter weight function for continuous fractal processes with a power-law 

structure function. The corresponding weight function is sought as an approximate solution to the Wiener-Hopf integral equation. The truncated 

polynomial expansion method is used. The solution is obtained on the basis of the Chebyshev polynomials of the first kind. The results are compared with 
the results of the authors’ previous investigations devoted to the same problem where other polynomial sets were used. It is shown that different 

polynomial sets present almost the same behaviour of the solution convergence. 
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BADANIE FILTRU KOŁMOGOROWA-WIENERA DLA CIĄGŁYCH PROCESÓW FRAKTALNYCH 

W OPARCIU O WIELOMIANY CZYBYSZEWA PIERWSZEGO RODZAJU 

Streszczenie. Praca ta jest poświęcona badaniu wagi filtra Kołmogorowa-Wienera dla ciągłych procesów fraktalnych w oparciu o funkcję gęstości 

prawdopodobieństwa. Głównym zamierzeniem jest znalezienie odpowiedniej wagi będącej przybliżonym rozwiązaniem równania całkowego Wienera-

Hopfa. W tym celu wykorzystano metodę rozwinięcia ograniczonego wielomianu. Rozwiązanie oparte jest na wielomianach Czybyszewa pierwszego 
rodzaju. Wyniki są porównywane z wcześniejszymi badaniami autora dotyczącymi tego samego problemu, w których to użyte zostały inne układy 

wielomianów. Udowodniono, że różne układy wielomianów zachowują się podobnie a ich rozwiązania są zbieżne. 

Słowa kluczowe: ciągłe procesy fraktalne, waga filtru Kołmogorowa-Wienera, wielomiany Czybyszewa pierwszego rodzaju 

Introduction 

Nowadays fractal processes are widely used in different fields 

of knowledge, see, for example, [7] and references therein. We 

investigate the Kolmogorov-Wiener filter weight function for 

continuous fractal processes with a power-law structure function. 

The observation interval of the filter input signal is considered to 

be finite. The importance of the problem under consideration for 

the traffic forecast in telecommunications is stressed in [1]. 

As is known (see, for example, [6]), the Kolmogorov-Wiener 

filter weight function for continuous processes is the solution of 

the Wiener-Hopf integral equation, which, in fact, is the Fredholm 

integral equation of the first kind. In [1] it is proposed to use the 

Volterra integral equation rather than the Fredlolm one. The 

corresponding Volterra integral equation is exactly solvable (see 

[2]), but in the general case it may be not applicable, so we need to 

seek the solution of the Fredholm integral equation of the first 

kind.  

The explicit analytical solution of the corresponding Wiener-

Hopf integral equation meets difficulties, so an approximate 

solution may be found. As is known [8], such a solution may be 

sought in the form of a truncated expansion in a complete system 

of functions. Such a system is often chosen as a polynomial set. 

Our previous investigations were devoted to the above-

mentioned truncated polynomial expansion method on the basis of 

a polynomial set orthogonal on the observation interval without 

weight [3] and on the basis of the Chebyshev polynomials of the 

second kind [4]. The convergence behaviour of the solutions in [3] 

and [4] is, in fact, the same; some approximations fail, but some 

approximations give reliable results. Therefore, two interesting 

questions arise. First of all, is the behaviour of the solution 

convergence identical only for the sets in [3] and [4], or also for 

other polynomial sets? May the use of another polynomial set 

refine such behaviour? It is interesting then to investigate the 

problem under consideration on the basis of another polynomial 

set. 

The aim of this work is to obtain the corresponding 

Kolmogorov-Wiener filter weight function on the basis 

of the Chebyshev polynomials of the first kind and to compare the 

results with papers [3, 4]. 

1. Truncated polynomial expansion method 

We investigate the Kolmogorov-Wiener filter for а continuous 

stationary fractal process ( )x t  with a power-law structure 

function ( )с  :  
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where  is a constant and  0,5;1H   is the Hurst exponent. 

The correlation function of such a process is as follows [1]: 
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where 
2  is the process variance.  

Let the filter input signal be observed for a time interval 

[0, ]t T , and let us denote the time interval for which the 

forecast is made as k . Then, as is known, the Kolmogorov-

Wiener filter weight function ( )h   obeys the Wiener-Hopf 

integral equation 
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which, in fact, is the Fredholm integral equation of the first kind. 

In this paper we investigate the truncated polynomial expansion 

method based on the Chebychev polynomials of the first kind. 
As is known [5], the Chebychev polynomials of the first kind 

are given by the expression 
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where [ ]y  is the integer part of y . These polynomials obey the 

orthogonality property 
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As is known [8], according to (3) we need polynomials 

orthogonal on the interval [0, ]t T  rather than on [ 1,1] . 
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Changing the variable in (5) yields 
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So the polynomials 
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are orthogonal on [0, ]t T  with the weight  w y , and the 

solution ( )h   may be sought as 
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Substituting (8) into (3) one can obtain 
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which after multiplying by ( )mS   and integrating leads to 
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The quantities  
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are called the integral brackets, so (11) may be rewritten as 

 n nm m

n

g G b  (13) 

where 
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Expression (13) is an infinite set of linear algebraic equations 

in 
ng . This set can hardly be treated, so the sum (9) should be 

artificially truncated: 
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where 
[ ]( )lh   is the Kolmogorov-Wiener filter weight function in 

the l -polynomial approximation and 
[ ]l

ng  are the corresponding 

coefficients multiplying the polynomials. These coefficients are 

the solutions of the following set of linear algebraic equations: 
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So one should obtain the values of the coefficients 
[ ]l

ng  from 

(16) and substitute them into (15) to obtain the Kolmogorov-

Wiener filter weight function in the l -polynomial approximation. 
It should be explained why the Chebyshev polynomials of the 

first kind are convenient for the problem under consideration. On 

the basis of (4), (8), (12) and the fact that the correlation function 

( )R t  is an even one, it can be shown that 

 0nmG   if ,m n  are of different parity (17) 

Also, on the basis of the fact that ( )R t  is an even function, from 

(12) it is evident that  
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The calculation of the integral brackets takes the most part of 

the computing time. On the basis of (17) and (18) it can be seen 

that 
nmG  should be computed by a straightforward calculation 

only for n m  and ,n m  of the same parity. This fact 

significantly reduces the computing time. 

2. Investigation of the method convergence 

This section is devoted to the investigation of the convergence 

behavior of the obtained solutions. First of all, as is known (see, 

for example, [9]), the convergence is guaranteed if the kernel of an 

integral equation is a positively defined function. In our case 

( )R t  is not a positively defined function, so the method 

convergence is not guaranteed. 
In order to check the obtained solutions for different numbers 

of polynomials, we calculate the weight function on the basis of 

the Wolfram Mathematica 11.0 package and compare left-hand 

and right-hand sides of eq. (3) with each other.  
In other words, the functions  
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and 
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are numerically compared with each other, the coefficients 
[ ]l

ng  

are calculated on the basis of (16). It should be stressed that the 

substitution of (2) into (19) gives 
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and on the basis of the Wolfram Mathematica package this 

function is treated as 
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The following set of parameters is investigated: 

 100T  , 1.2  , 0.8H  , 
33 10   . (23) 

This set of parameters is also investigated in [3, 4]. It should be 

stressed that the well-known inequality 

    0R t R , (24) 

holds for the set (23) on the observation interval [0, ]t T .  

The investigation is made up to the 18-polynomial 

approximation, the corresponding coefficients multiplying the 

polynomials in the l -polynomial approximation are given in 

Table 1. The coefficients in Table 1 are rounded off to three 

significant digits.  

Table 1. Coefficients multiplying polynomials for the set (23) 

l  Coefficients multiplying the polynomials 

1 [1] 3

0 4,86 10g    

2 [2] 3

0 4,86 10g   , 
[2] 2

1 2,91 10g     

3 [3] 2

0 8,8 10g    , 
[3] 2

1 2,91 10g    , 
[3] 1

2 2, 06 10g     

4 

[4] 2

0 8,8 10g    , 
[4] 2

1 5, 01 10g    , 
[4] 1

2 2, 06 10g    , 

[4] 2

3 3, 24 10g     

5 

[5] 2

0 6,61 10g   , 
[5] 2

1 5, 01 10g    , 
[5] 1

2 1,36 10g   , 
[5] 2

3 3, 24 10g    , 

[5] 2

4 8,56 10g    

6 

[6] 2

0 6,61 10g   , 
[6] 2

1 7,19 10g    , 
[6] 1

2 1,36 10g   , 

[6] 2

3 6, 02 10g    ,
[6] 2

4 8,56 10g   , 
[6] 2

5 3, 28 10g     

7 

[7] 2

0 6,68 10g   , 
[7] 2

1 7,19 10g    , 
[7] 1

2 1,39 10g   , 

[7] 2

3 6, 02 10g    , 
[7] 1

4 1,15 10g   , 
[7] 2

5 3, 28 10g    , 
[7] 2

6 6,11 10g    

8 

[8] 2

0 6,68 10g   , 
[8] 2

1 9,51 10g    , 
[8] 1

2 1,39 10g   , 
[8] 2

3 8, 71 10g    , 

[8] 1

4 1,15 10g   , 
[8] 2

5 6,59 10g    , 
[8] 2

6 6,11 10g   , 
[8] 2

7 3, 27 10g     

9 

[9] 2

0 8,02 10g   , 
[9] 2

1 9,51 10g    , 
[9] 1

2 1,64 10g   , 

[9] 2

3 8, 71 10g    ,
[9] 1

4 1, 49 10g   , 
[9] 2

5 6,59 10g    , 
[9] 1

6 1,11 10g   , 

[9] 2

7 3, 27 10g    ,
[9] 2

8 5,37 10g    
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Table 1 (cont.). Coefficients multiplying polynomials for the set (23) 

l  Coefficients multiplying the polynomials 

10 

[10] 2

0 8,02 10g   , 
[10] 1

1 1, 20 10g    , 
[10] 1

2 1,64 10g   , 

[10] 1

3 1,15 10g    ,
[10] 1

4 1, 49 10g   , 
[10] 2

5 9,86 10g    , 
[10] 1

6 1,11 10g   , 

[10] 2

7 6,97 10g    ,
[10] 2

8 5,37 10g   , 
[10] 2

9 3, 26 10g     

11 

[11] 2

0 9,53 10g   , 
[11] 1

1 1, 20 10g    , 
[11] 1

2 1,94 10g   , 

[11] 1

3 1,15 10g    , 
[11] 1

4 1,86 10g   , 
[11] 2

5 9,86 10g    , 

[11] 1

6 1,57 10g   , 
[11] 2

7 6,97 10g    ,
[11] 1

8 1,09 10g   , 

[11] 2

9 3, 26 10g    , 
[11] 2

10 5,03 10g    

12 

[12] 2

0 9,53 10g   , 
[12] 1

1 1, 47 10g    , 
[12] 1

2 1,94 10g   , 

[12] 1

3 1, 44 10g    , 
[12] 1

4 1,86 10g   , 
[12] 1

5 1,32 10g    , 

[12] 1

6 1,57 10g   , 
[12] 1

7 1,07 10g    , 
[12] 1

8 1,09 10g   , 

[12] 2

9 7, 24 10g    , 
[12] 2

10 5,03 10g   , 
[12] 2

11 3, 25 10g     

13 

[13] 1

0 1,13 10g   , 
[13] 1

1 1, 47 10g    , 
[13] 1

2 2, 29 10g   , 

[13] 1

3 1, 44 10g    , 
[13] 1

4 2, 25 10g   , 
[13] 1

5 1,32 10g    , 

[13] 1

6 2,03 10g   , 
[13] 1

7 1,07 10g    , 
[13] 1

8 1,64 10g   , 

[13] 2

9 7, 24 10g    , 
[13] 1

10 1,09 10g   , 
[13] 2

11 3, 25 10g    , 
[13] 2

12 4,82 10g    

14 

[14] 1

0 1,13 10g   , 
[14] 1

1 1,76 10g    , 
[14] 1

2 2, 29 10g   , 

[14] 1

3 1,74 10g    , 
[14] 1

4 2, 25 10g   , 
[14] 1

5 1,65 10g    , 

[14] 1

6 2,03 10g   , 
[14] 1

7 1, 45 10g    ,
[14] 1

8 1,64 10g   , 

[14] 1

9 1,14 10g    , 
[14] 1

10 1,09 10g   , 
[14] 2

11 7, 44 10g    , 

[14] 2

12 4,82 10g   , 
[14] 2

13 3, 24 10g    . 

15 

[15] 1

0 1,31 10g   , 
[15] 1

1 1,76 10g    , 
[15] 1

2 2,68 10g   , 

[15] 1

3 1,74 10g    ,
[15] 1

4 2, 66 10g   , 
[15] 1

5 1,65 10g    , 

[15] 1

6 2,50 10g   , 
[15] 1

7 1, 45 10g    , 
[15] 1

8 2,18 10g   , 

[15] 1

9 1,14 10g    , 
[15] 1

10 1,69 10g   , 
[15] 2

11 7, 44 10g    , 

[15] 1

12 1,09 10g   , 
[15] 2

13 3, 24 10g    , 
[15] 2

14 4, 69 10g   . 

16 

[16] 1

0 1,31 10g   , 
[16] 1

1 2,07 10g    , 
[16] 1

2 2,68 10g   , 

[16] 1

3 2,07 10g    ,
[16] 1

4 2, 66 10g   , 
[16] 1

5 2,00 10g    , 

[16] 1

6 2,50 10g   , 
[16] 1

7 1,84 10g    ,
[16] 1

8 2,18 10g   , 

[16] 1

9 1,57 10g    , 
[16] 1

10 1,69 10g   , 
[16] 1

11 1, 20 10g    , 

[16] 1

12 1,09 10g   , 
[16] 2

13 7,56 10g    , 
[16] 2

14 4, 69 10g   , 

[16] 2

15 3, 22 10g     

17 

[17] 1

0 1,52 10g   , 
[17] 1

1 2,07 10g    , 
[17] 1

2 3,09 10g   , 

[17] 1

3 2,07 10g    ,
[17] 1

4 3,10 10g   , 
[17] 1

5 2,00 10g    , 

[17] 1

6 2,99 10g   , 
[17] 1

7 1,84 10g    , 
[17] 1

8 2, 72 10g   , 
[17] 1

9 1,57 10g    , 
[17] 1

10 2,30 10g   , 

[17[ 1

11 1, 20 10g    , 
[17] 1

12 1,74 10g   , 
[17] 2

13 7,56 10g    , 

[17] 1

14 1,09 10g   , 
[17] 2

15 3, 22 10g    , 
[17] 2

16 4,59 10g    

18 

[18] 1

0 1,52 10g   , 
[18] 1

1 2, 40 10g    , 
[18] 1

2 3,09 10g   , 

[18] 1

3 2, 41 10g    , 
[18] 1

4 3,10 10g   , 
[18] 1

5 2,36 10g    , 

[18] 1

6 2,99 10g   , 
[18] 1

7 2, 23 10g    ,
[18] 1

8 2, 72 10g   , 

[18] 1

9 2,00 10g    , 
[18] 1

10 2,30 10g   , 
[18] 1

11 1,66 10g    , 

[18] 1

12 1,74 10g   , 
[18] 1

13 1, 24 10g    , 
[18] 1

14 1,09 10g   , 

[18] 2

15 7,70 10g    , 
[18] 2

16 4,59 10g   , 
[18] 2

17 3, 21 10g     
 

The obtained comparison of Left(t) and Right(t) is illustrated 

on the following graphs. The function Right(t) is shown as a solid 

line, and the functions Left(t) are shown as dotted lines. 
The corresponding comparison for the one-polynomial 

approximation is shown in Fig. 1. As can be seen, the one-

polynomial approximation is not accurate enough. 
For the two-polynomial approximation we have (see Fig. 2). 
As can be seen, the two-polynomial approximation is rather 

accurate: the functions Left(t) and Right(t) are rather close to each 

other.  
The graphs for the three-polynomial and the four-polynomial 

approximations are approximately the same. As can be seen, they 

are less accurate than the two-polynomial one, but more accurate 

than the one-polynomial one.  
As can also be seen from Fig. 2 and Fig. 3, the approximation 

accuracy may not increase with the number of polynomials. Such 

behavior of the approximations may take place because the 

correlation function ( )R t , which is the kernel of the integral 

equation (3), is not positively defined. 

 

Fig. 1. Comparison of Left(t) and Right(t) for the one-polynomial approximation for 

parameters (23) 

 

Fig. 2. Comparison of Left(t) and Right(t) for the two-polynomial approximation for 

parameters (23) 

 

Fig. 3. Comparison of Left(t) and Right(t) for the three-polynomial approximation for 

parameters (23) 

As can be seen from Fig. 4, the five-polynomial 

approximation is accurate: the graphs of Left(t) and Right(t) 

almost coincide.  
The investigation of the number of polynomials from 5 to 8 

shows that the accuracy of the corresponding approximations 

increases with the number of polynomials. For example, the 

comparison for the eight-polynomial approximation is given in 

Fig. 5. 
As can be seen from Fig. 4 and Fig. 5, the eight-polynomial 

approximation is more accurate than the five-polynomial one. 
But, unfortunately, the investigation of the numbers of 

polynomials from 9 to 15 shows that the corresponding 

approximations completely fail. Such behavior of the solutions is 

rather strange. In our opinion, it may be explained as follows. The 

convergence of the method is not guaranteed because the kernel of 

the integral equation (3) is not a positively defined function. So, 

not only may the accuracy not increase with the number of 

polynomials, but some approximations may also completely fail.  
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Fig. 4. Comparison of Left(t) and Right(t) for the five-polynomial approximation for 

parameters (23) 

 

Fig. 5. Comparison of Left(t) and Right(t) for the eight-polynomial approximation for 

parameters (23) 

But the investigation of the number of polynomials from 16 to 

18 shows that the corresponding approximations give almost ideal 

results. Approximations of more than 18 polynomials are not 

investigated because the “unphysical ripple” takes place on the 

graphs in such a case. In our opinion, such a situation occurs 

because Wolfram Mathematica has not enough recourses to build 

corresponding graphs adequately.  
The same behavior of Left(t) and Right(t)  is also observed for 

other polynomial sets in papers [3, 4]. 
The following parameter sets are also investigated for the 

same reason as the set (23): 

 10T  , 1.2  , 0.8H  , 
110  . (24) 

and  

 1000T  , 1.2  , 0.8H  , 
58 10   . (25) 

It is obtained that the behavior of Left(t) and Right(t) for these 

sets is also the same as for the other polynomial sets described in 

[3, 4].  

3. Conclusion 

This paper is devoted to the investigation of the Kolmogorov-

Wiener weight function for continuous fractal processes with a 

power-law structure function. As an exact analytical solution to 

the corresponding integral equation (2) can hardly be found, we 

use the truncated polynomial expansion method in order to obtain 

an approximate solution to this equation. In this paper the weight 

function is expanded in a truncated series of the Chebyshev 

polynomials of the first kind.  
It is shown that the accuracy of polynomial approximations 

may not increase with the number of polynomials. Moreover, 

some of the approximations may totally fail. In our opinion, it 

takes place because the kernel of the integral equation (2) is not a 

positively defined function. 
However, it is shown that some approximations give reliable 

results, so the method under consideration may lead to good 

results. It should be stressed, however, that each approximation 

should be checked numerically. 

The results are compared with the corresponding results of 

papers [3, 4] where other polynomial sets were used. In paper [3] 

the same problem is investigated on the basis of polynomials 

orthogonal on the observation interval without weight. In paper [4] 

the corresponding investigation is made on the basis of the 

Chebyshev polynomials of the second kind. It is shown that the 

convergence behavior of the solutions is the same for all the 

above-mentioned polynomial sets. So, the hypothesis may be 

made that the convergence behavior of the solutions is 

independent of the polynomial set used in the framework of the 

truncated polynomial expansion method. 
The obtained results may be applied to the investigation of the 

fractal process forecast in different systems of practical interest, 

for example, for telecommunication traffic forecast. 
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