
8 IAPGOŚ 1/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 1/2020, 8–11

http://doi.org/10.35784/iapgos.919

BLOCK CIPHERS ON THE BASIS OF REVERSIBLE CELLULAR

AUTOMATA

Yuliya Tanasyuk, Petro Burdeinyi
Yuriy Fedkovych Chernivtsi National University, Department of Computer Systems and Networks, Chernivtsi, Ukraine

Abstract. The given paper is devoted to the software development of block cipher based on reversible one-dimensional cellular automata and the study of

their statistical properties. The software implementation of the proposed encryption algorithm is performed in C# programming language in Visual Studio
2017. The paper presents specially designed approach for key generation. To ensure a desired cryptographic stability, the shared secret parameters can be

adjusted in order to contain information needed for creating substitution tables, defining reversible rules, and hiding the final data. For the first time, it is

suggested to create substitution tables based on iterations of a cellular automaton that is initialized by the key data.

Keywords: block cipher, symmetric encryption algorithm, reversible cellular automata

SZYFRY BLOKOWE NA PODSTAWIE ODWRACALNYCH AUTOMATÓW KOMÓRKOWYCH

Streszczenie. Niniejszy artykuł poświęcony jest rozwojowi oprogramowania szyfrów blokowych opartych na odwracalnych jednowymiarowych automatach

komórkowych oraz badaniu ich właściwości statystycznych. Zastosowanie oprogramowania w proponowanym algorytmie kodowania wykonywane jest w
języku programowania C# w Visual Studio 2017. Artykuł przedstawia specjalnie zaprojektowane podejście do generowania klucza. Aby zapewnić

pożądaną stabilność kryptograficzną, dostosowane mogą zostać wspólne tajne parametry w taki sposób, aby zawierały informacje wymagane dla

stworzenia tabel substytucyjnych, określające zasady odwracalne oraz ukrywające dane końcowe. Po raz pierwszy, proponowane jest tworzenie tabeli
substytucyjnych w oparciu o iterację automatów komórkowych, które zostają zainicjowane poprzez dane klucza.

Słowa kluczowe: szyfr bloku, algorytm szyfrowania symetrycznego, odwracalny automat komórkowy

Introduction

The increased use of computers, converged networks with

high-speed Internet access and IoT deployment resulted in an

urgent need for means to protect information and to provide

various security services. Encryption is known to be a primary

method of protecting valuable electronic information.

A cryptographic algorithm, or cipher, is a set of well-defined but

complex mathematical instructions used to encrypt or decrypt

data. The encryption and decryption processes depend on a

cryptographic key selected by the parties participating in the

communication process. Typically, details of the algorithm are

publicly open. However, operation of the algorithm and security

of the encrypted message relies on the cryptographic key used in

the encryption and decryption process.
The transformation of a message from plaintext to cipher-

text occurs through a substitution or a transposition process, or a

combination of both. A substitution cipher replaces a digit or a

data block in a message with another arbitrarily chosen digit or

data portion. A transposition cipher implies different permutations

of a data block. Based on how cryptographic algorithms are

applied on the plaintext, they are categorized as block ciphers and

stream ciphers.
As the name implies, the block ciphers work on a fixed-length

segment of plaintext, typically a 64- or 128-bit block as input, and

produces a fixed length cipher text, usually of the same size as the

input. The message is broken into blocks, and each block is

processed in the same manner. Where there is insufficient data to

fill a block, the blank space will be padded prior to the encryption.

Block ciphers are mostly used in the symmetric key encryption.

DES, Triple DES and AES are some of the well-recognized

examples of block ciphers [4, 7].
Cellular automata (CA) are typically considered as a regular

grid of cells, with each presenting a finite number of possible

states. These automata cells are modified independently by the

transition function on a discrete time step. The application of the

function to each cell in the grid leads to the next generation for the

grid. The outcome of the transition function depends on states of

the cell itself and of their neighbors. Every cell follows the same

rule for determining these transitions. Types of their interaction

are simple and diverse, while their implementation imposes low

demands for computational complexity. Some of the CAs are

reversible, enabling one to restore the information processed

through direct transformations [7].

1. Reversible cellular automata

A number of papers are dedicated to the application of CA in

cryptography [1–3, 5–7]. Namely, they are considered as

promising candidates for symmetric and asymmetric enciphering.

Security of the latter was based on the complexity to solve non-

linear polynomial equations. Stream enciphering with the use of

CA was first proposed by Wolfram [11]. The idea consists in

usage of CA as the generator of pseudorandom numbers. The

considerations were further embodied in the algorithms, developed

by Seredynski [7] and Tomassini [8]. The block cipher using both

reversible and irreversible rules was reported in [1, 3].
As a dynamic system CA can be represented as follows [7]:

 A = {S, Zd, f, V}, (1)

where S is a finite number of states; Z is the set of integers; d is the

size of automation; Zd is the space of CA (the number of cells), f is

a rule (transition function), V is the set of neighbours (including

the current cell and the neighbours involved in interaction).
The simplest CA can be represented as one-dimensional array

of 0 and 1, as the states of cells. Each cell has its network

environment of three cells: left, right and a current cell itself.

Normally, finite CA are used with cyclic edge conditions, when

the first and the last cells are treated as neighbours. The CA

consists of a number of steps. When calculating the next state of a

cell, the step changes. In order to execute the next function of the

state, three states of the interacting cells are applied as an input,

producing the next state of the cell on the output.
A CA space denotes the number of the cells, which are

updated according to some rule f [11]. In total, the 256 rules of

CA interaction are defined. For example, the rule 30 in terms of

Boolean functions is given as follows:

 C[i] = C[i-1]  (C[i]  C[i+1]) (2)

where C[i] is a current cell, C[i] is the value of the current cell

after the rule application, C[i-1], C[i+1] are previous and next

neighbor cells, and ,  denote the bitwise XOR and OR

operations, respectively. As shown in Fig. 1, the rule 30 is called

so since all possible combinations of cell states at step t produce a

sequence of 00011110 which when converted to the decimal

system gives a value of 30.

t 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

t + 1 0 0 0 1 1 1 1 0

Fig. 1. CA cell states resulted from application of rule 30

http://doi.org/10.35784/iapgos.919

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2020 9

Some CA rules possess an interesting property of being

reversible, providing not only a direct but also a reverse iteration.

When applying reversible rule, this enables the CA getting back to

the initial state. To be applicable for cryptographic purpose the

reverse rules must comply with the following criteria: they must

be numerous and exhibit complex behavior. When analyzing

elementary CA, it turns out that only a small number of rules are

known to be reversible. For example, of all the 256 elementary

radius rules, only six are stated to be reversible. In addition, their

behavior is very simple [3, 7]. For this reason, standalone

elementary reversible rules cannot be used for encryption.
In order to accomplish this task, it is proposed to use a class of

reversible rules, first described by Wolfram in [9, 11]. Each rule

belonging to this class can be described by two elementary CA

transition rules. The first one determines the state of transition in

the case when at step t-1 the cell is in the state of 0, and the second

rule applies for the cell state of 1. These two rules depend on each

other. By knowing one rule, we can derive another one using the

following formula:

 R2 = 2n - R1 - 1, (3)

where R is the elementary rule; n is the neighborhood of the cell.
Fig. 2. shows the reversible rule consisting of rule 57 (00111001)2

and 198 (11000110)2, inverse to it.

t - 1 0 0 0 0 0 0 0 0

t 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

t + 1 0 0 1 1 1 0 0 1

t - 1 1 1 1 1 1 1 1 1

t 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

t + 1 1 1 0 0 0 1 1 0

Fig. 2. Reversible rule, including CA transformation rules 57 and 198

2. Cryptographic application of the reversible CA

Since the reversible rule depends on a previous step, the initial

state of the CA must consist of two consecutive configurations.

The text to be encrypted comes as a second configuration, while

the first configuration is populated with random data (Fig. 3).

Traditionally, the encryption is performed by direct iteration of the

CA. However, the final outcome consists of two configurations

and both of them must be used in the decryption. The first is

encrypted text and the second is called the final data. During

decryption, these operations are executed in reverse order [10].

Fig. 3. Basic scheme of encryption and decryption process [9]

A rule used for both encryption and decryption is considered

as a secret key. The end data must be kept in secret, since knowing

two consecutive configurations (end data and encrypted message)

one can easily define the rule, applied for the encryption.
There are two approaches for processing the final data

generated in the encryption process. The most secure one assumes

that this information is kept private, and therefore it becomes a

part of a key. Now, the key consists of the rule and final

configuration. The drawback of this option is that after each

encryption the key is to be changed and shared with the message

recipient. According to the second option the end data is encrypted

with the use of Vernam algorithm [5] applying logical bitwise

operation of XOR to the final data and the key portion as follows:
 efdi = ki  fdi, (4)

where ki is the і-th bit of the key, fdi is the і-th bit of the end data,

efdi is the і-th bit of the encrypted end data, ⊕ denotes XOR

operation.
Now, the encrypted final data should be no longer kept in

secret and can be added to the cipher text.

3. Software implementation of the block cipher

on the basis of reversible one-dimensional CA

The paper aimed at development of the block cipher on one-

dimensional CA, processed by reversible CA transformation rules.

Software implementation of the proposed encryption algorithm

has been performed in the C# programming language in the

integrated application development environment of Visual Studio

2017.

Fig. 4. Generalized representation of the chosen encryption approach

The designed algorithm uses the single reversible one-

dimensional CA and the corresponding rules. To achieve basic

cryptographic strength, we have proposed a novel approach to key

formation, when the rule to use for CA transformation and specific

bits for concealing the final data are contained inside the key.

Depending on the needs the rule may be implemented with

different radii (1, 2, 3). The larger the radius of the rule, the more

time the calculations take, yet producing more tangled output.
The block size may acquire values of 128, 256 and 512 bits.

The key may be 384, 512 or 640 bits long. The standard algorithm

leans upon one reversible rule, however, its modification implies

utilization of several transition functions. The number of iterations

and rounds may vary. The size of CA equals the doubled size of

the block, since the reversible rule depends not only on the

neighbours on the right or left, but on the state of the cell at

previous iteration. Schematically, the implemented encryption

algorithm is shown in Fig. 4.
To utilize the algorithm, input messages are read and padded

to the size multiple of the block S size. Then some random value

(Initial data) of S bits in size is generated. The CA is initialized

with this initial data and a block of information to be encrypted

(m1).
Before being supplied to the CA, the data undergo procedure

of byte substitution, denoted as SubBytes, with the use of the AES

substitution tables. The algorithm implies utilization of the

alternative substitution tables which should be generated and

transmitted together with the secret key. After that, the CA is

processed with the reversible rule of radius 3 obtained from the

key. The h rounds produce a portion of encrypted information (c1)

and data that can be used to initialize the cellular automaton when

encrypting the next block of information. In this way all blocks of

information are encrypted. The last piece of the encrypted

message (cn), i.e. final data, should be hidden because their

discovery may provide a clue for deciphering all the information.

For this reason, XOR operation is additionally applied to the final

data and specific bits of the key, producing the outcome which

supplements the encrypted message (cn + 1) [7].
The decryption algorithm includes the same steps of the

encryption algorithm in the reverse order.

10 IAPGOŚ 1/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

4. The function creating a key and substitution

tables

The cryptographic key consists of the following components:
 bits for initialization of the CA, generated by the substitution

tables (128 bits);

 CA rules with the radius of 3 (128 bits);

 special bits for hiding the CA final data (the size is equal to

the block size).

The size of the key is calculated using a formula:

 L = 128 +128 + S, (5)

where S is the size of the block.
Thus, the key may be 384, 512 or 640 bits long.
For key generation the System.Security.Cryptography module

of NET Framework has been used. The data generated, experience

1000 iterations on the CA with rule 30 and radius 1. As a result,

the encryption key of the algorithm is obtained.
The function of substitution tables formation creates two S-

Box tables and one Inverse S-Box, providing protection against

attacks based on simple algebraic properties. In fact, this is an

example of common cipher of the simple substitution.
The substitution tables are generated on the basis of the CA

operating with the application of rule 30 with the radius 1 and the

key bits used for the CA initialization (Fig. 5).

Fig. 5. The flow chart of generating substitution tables using the reversible CA

The procedure forming the substitution tables is as follows.

First, the CA is initialized with the specific part of the key to

generate the tables. The CA are processed until direct and inverse

tables are completed.
With each iteration the first bit of CA is written to form a

location byte P, pointing to a cell in the substitution table. If this

cell appears to be already used, new location byte will be

generated. After the location byte is formed, another byte D is

derived. If its value is already in use, a new byte value will be

formed. In parallel, the inverse substitution table is created. In this

table the byte-value (D) becomes a location byte (P) and vice

versa. As a result, two inverted substitution tables are formed.

Repeating this function forms the identical substitution tables.
Depending on demands, the designed algorithm can be easily

modified. The key comprises additional reversible CA rule with

radius 3 to be applied. Eq. 5 used to calculate the key size is

altered as follows:

 L = 128 + 128N + S, (6)

where N is the number of the additional reversible CA rules.

5. Scattering properties of the designed block

cipher

Pseudorandom behavior is generally considered as a good

indicator of a secure block cipher. We have used a technique of

NIST STS statistical testing in order to check randomness

properties of the developed encryption algorithm. Good

encryption algorithm should also satisfy the Strict Avalanche

Criterion [6]. This means that each output bit should change with a

probability of one half when-ever a single input bit is

complemented.
Investigation of the scattering properties of the block cipher

based on reversible one-dimensional cellular automata has been

performed on the binary file of 12.3 MB resulted from the

programmed encryption procedure through the designed algorithm

applied to cellular automata of the corresponding length. The

statistical suit of NIST STS v.2.1.2 divided generated binary

sequences into 100 equal parts of 106 bits each. The bit strings

were tested against 15 statistical tests with different parameters.

The randomness properties were assessed in terms of probability

of the tests being passed. As a result, a vector of 189 values of

probability was formed. Ideally, only one sequence out of a

hundred can be rejected, providing a coefficient of the test passing

of 99%. However, this requirement is rather strict. In most cases

the evaluation is conducted within a confidence interval, the lower

limit of which is assumed to be at the level of 96% [10].
The following initial parameters were used during the testing:

 binary file of 12.3 MB;

 sequences of 103.4 Мbits.

The performance of the selected set of transformations was

evaluated on a following hardware platform: AMD Athlon X4 740

Quad Core Processor 3.2 GHz, AMD Radeon HD 7700

(1050 MHz), 8 GB RAM.
When studying the block cipher encryption algorithm based

on reversible one-dimensional cellular automata, we used a

combination of one (RCA1), two (RCA2) and three (RCA3)

reversible rules with a radius of 3. The results presented in Table 1

consider the block size of 256 bits, 5 processing rounds and

5 iterations.

Table 1. Statistical and performance parameters of the designed block ciphers

Parameters RCA1 RCA2 RCA3

The number of tests passed by

at least 99% of the sequences 68.6% 72.3% 73.9%

The number of tests passed by

at least 96% of the sequences 100% 99.5% 99.5%

Minimal proportion of the tests

passed 96% 95% 95.5%

12.3 MB file encryption time
7 min

55 sec

15 min

22 sec

23 min

26 sec

Fig. 6. shows the results of the conducted statistical testing.

The obtained data prove that the least ratio of bit sequences that

successfully passed the tests, is at the level of 96% – 97%,

pointing out satisfactory scattering properties of the developed

encryption algorithm.
Investigating scattering properties of the proposed block

cipher built on the basis of reversible one-dimensional cellular

automata with NIST STS revealed the applying three

transformation rules to be most effective. Inclusion of additional

processing rules to the algorithm ensures better scattering

properties. However, the most optimal in terms of performance

and statistical properties is a one-way design with a radius of 3,

using 5 rounds and 5 iterations. Avalanche effect investigations

should be further performed.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2020 11

a

b

c

Fig. 6. Statistical portraits of the block cipher on the reversible one-dimensional CA,

processed by one (a), two (b) and three (c) transformation rules with a radius of 3.

The block is 256 bits long. The chosen reversible rules were applied for 5 round

including 5 iterations. N is a number of a test, P is the portion of sequences under

study that passed the test

6. Conclusions

Thus, summarizing the investigations carried out, the

following conclusions can be made:

1) By means of the C# programming language, a software

implementing the block cipher on reversible one-dimensional

cellular automata has been developed, which allows to process

files of arbitrary types.

2) In order to ensure the cryptographic stability, a key generation

approach has been developed. The key is designed to contain

information about processing rules, data to create substitution

tables, and information to hide the final data.

3) For the first time we have proposed to form substitution tables

based on iterations of the cellular automaton, initialized by the

key data. This may allow for additional protection against

attacks in case when the applied reversible rules are revealed.

4) To enhance cryptographic strength, the basic encryption

algorithm with the use of single one-dimensional CA and one

reversible rule with radius 3 can be complemented with two or

three reversible rules.

5) The created block cipher design uses blocks of 128, 256, 512

bits, and allows one to generate the keys of 384, 512 and 640

bits.

6) Investigations of the scattering properties of the block cipher

based on one-dimensional CA using NIST STS statistical tests

revealed that the minimum portion of studied bit sequences,

meeting the requirements of the tests, fell within 96% – 97%,

indicating the qualitative statistical characteristics of the

developed cryptosystem.

7) According to the research conducted, for the same number of

processing rounds, the use of three reversible rules with a

radius of 3 appeared to be most effective, ensuring better

scattering characteristics. However, in terms of performance a

one-rule design with a radius of 3, turned out to be more

appropriate.

References

[1] Bouchkaren S., Lazaar S.: A fast cryptosystem using reversible cellular

automata. International Journal of Advanced Computer Science and

Applications 5(5)/2014, 207–210.

[2] Debasis D., Abhishek R.: A parallel encryption algorithm for block ciphers

based on programmable reversible cellular automata. J. Computer Science and

Engineering 1(1)/2010, 82–90.

[3] Gutowitz H.A.: Cryptography with Dynamical Systems: Cellular Automata and

Cooperative Phenomena. Kluwer Academic Press, Dordrecht 1993.

[4] Paar C., Peltz J.: Understanding cryptography. Springer-Verlag, Berlin

Heidelberg 2010.

[5] Leporati A., Mariot L.: Cryptographic properties of bipermutive cellular

automata rules. J. Cellular Automata 9/2014, 437–475.

[6] Seredynski M., Bouvry P.: Block cipher based on cellular automata. New

Generation computing 23(3)/2005, 245–258.

[7] Seredynski F., Bouvry P., Zomaya A. Y.: Cellular automata and secret

key cryptography. Parallel Computing 30(5-6)/2004, 753–766,

[http://doi.org/10.1016/j.parco.2003.12.014].

[8] Tomassini M., Perrenoud M.: Stream Cyphers with One- and Two-Dimensional

Cellular Automata. Parallel Problem Solving from Nature PPSN VI. PPSN.

Lecture Notes in Computer Science 1917. Springer, Berlin, Heidelberg, 2000,

722–731.

[9] Wolfram S.: Cryptography with Cellular Automata.: Advances in Cryptology:

Crypto’85, Springer-Verlag LNCS 218, 1985, 429–432.

[10] NIST SP 800-22: Documentation and Software. Random bit generation.

Guide to the statistical tests, https://csrc.nist.gov/Projects/Random-Bit-

Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests

[11] Wolfram S.: A New Kind of Science.: Wolfram Media, Inc, 2002, 1197,

http://www.wolframscience.com/nksonline/toc.html

Ph.D. Yuliya Tanasyuk

e-mail: y.tanasyuk@chnu.edu.ua

Associate professor at Department of Computer

Systems and Networks, Physical, Technical and

Computer Sciences Institute, Yuriy Fedkovych

Chernivtsi National University, Chernivtsi, Ukraine.

Research interests and academic activities:

programming, network information technologies,

cryptography.

http://orcid.org/0000-0001-8650-0521

M.Sc. Petro Burdeinyi

e-mail: pburdeyniy@gmail.com

Master in Computer Engineering, Department of

Computer Systems and Networks, Physical, Technical

and Computer Sciences Institute, Yuriy Fedkovych

Chernivtsi National University, Chernivtsi, Ukraine.

Research interests and academic activities:

cryptography, information technologies, software

engineering.

http://orcid.org/0000-0002-3859-7522

otrzymano/received: 15.11.2019 przyjęto do druku/accepted: 15.02.2020

https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests
http://www.wolframscience.com/
http://orcid.org/0000-0001-8650-0521
http://orcid.org/0000-0002-3859-7522

