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Abstract. The given paper is devoted to the software development of block cipher based on reversible one-dimensional cellular automata and the study of 

their statistical properties. The software implementation of the proposed encryption algorithm is performed in C# programming language in Visual Studio 
2017. The paper presents specially designed approach for key generation. To ensure a desired cryptographic stability, the shared secret parameters can be 

adjusted in order to contain information needed for creating substitution tables, defining reversible rules, and hiding the final data. For the first time, it is 

suggested to create substitution tables based on iterations of a cellular automaton that is initialized by the key data.  
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SZYFRY BLOKOWE NA PODSTAWIE ODWRACALNYCH AUTOMATÓW KOMÓRKOWYCH 

Streszczenie. Niniejszy artykuł poświęcony jest rozwojowi oprogramowania szyfrów blokowych opartych na odwracalnych jednowymiarowych automatach 

komórkowych oraz badaniu ich właściwości statystycznych. Zastosowanie oprogramowania w proponowanym algorytmie kodowania wykonywane jest w 
języku programowania C# w Visual Studio 2017. Artykuł przedstawia specjalnie zaprojektowane podejście do generowania klucza. Aby zapewnić 

pożądaną stabilność kryptograficzną, dostosowane mogą zostać wspólne tajne parametry w taki sposób, aby zawierały informacje wymagane dla 

stworzenia tabel substytucyjnych, określające zasady odwracalne oraz ukrywające dane końcowe. Po raz pierwszy, proponowane jest tworzenie tabeli 
substytucyjnych w oparciu o iterację automatów komórkowych, które zostają zainicjowane poprzez dane klucza.  

Słowa kluczowe: szyfr bloku, algorytm szyfrowania symetrycznego, odwracalny automat komórkowy 

Introduction  

The increased use of computers, converged networks with 

high-speed Internet access and IoT deployment resulted in an 

urgent need for means to protect information and to provide 

various security services. Encryption is known to be a primary 

method of protecting valuable electronic information. 

A cryptographic algorithm, or cipher, is a set of well-defined but 

complex mathematical instructions used to encrypt or decrypt 

data. The encryption and decryption processes depend on a 

cryptographic key selected by the parties participating in the 

communication process. Typically, details of the algorithm are 

publicly open. However, operation of the algorithm and security 

of the encrypted message relies on the cryptographic key used in 

the encryption and decryption process. 
The transformation of a message from plaintext to cipher-

text occurs through a substitution or a transposition process, or a 

combination of both. A substitution cipher replaces a digit or a 

data block in a message with another arbitrarily chosen digit or 

data portion. A transposition cipher implies different permutations 

of a data block. Based on how cryptographic algorithms are 

applied on the plaintext, they are categorized as block ciphers and 

stream ciphers. 
As the name implies, the block ciphers work on a fixed-length 

segment of plaintext, typically a 64- or 128-bit block as input, and 

produces a fixed length cipher text, usually of the same size as the 

input. The message is broken into blocks, and each block is 

processed in the same manner. Where there is insufficient data to 

fill a block, the blank space will be padded prior to the encryption. 

Block ciphers are mostly used in the symmetric key encryption. 

DES, Triple DES and AES are some of the well-recognized 

examples of block ciphers [4, 7]. 
Cellular automata (CA) are typically considered as a regular 

grid of cells, with each presenting a finite number of possible 

states. These automata cells are modified independently by the 

transition function on a discrete time step. The application of the 

function to each cell in the grid leads to the next generation for the 

grid. The outcome of the transition function depends on states of 

the cell itself and of their neighbors. Every cell follows the same 

rule for determining these transitions. Types of their interaction 

are simple and diverse, while their implementation imposes low 

demands for computational complexity. Some of the CAs are 

reversible, enabling one to restore the information processed 

through direct transformations [7].  

1. Reversible cellular automata 

A number of papers are dedicated to the application of CA in 

cryptography [1–3, 5–7]. Namely, they are considered as 

promising candidates for symmetric and asymmetric enciphering. 

Security of the latter was based on the complexity to solve non-

linear polynomial equations. Stream enciphering with the use of 

CA was first proposed by Wolfram [11]. The idea consists in 

usage of CA as the generator of pseudorandom numbers. The 

considerations were further embodied in the algorithms, developed 

by Seredynski [7] and Tomassini [8]. The block cipher using both 

reversible and irreversible rules was reported in [1, 3]. 
As a dynamic system CA can be represented as follows [7]:  

 A = {S, Zd, f, V}, (1) 

where S is a finite number of states; Z is the set of integers; d is the 

size of automation; Zd is the space of CA (the number of cells), f is 

a rule (transition function), V is the set of neighbours (including 

the current cell and the neighbours involved in interaction). 
The simplest CA can be represented as one-dimensional array 

of 0 and 1, as the states of cells. Each cell has its network 

environment of three cells: left, right and a current cell itself. 

Normally, finite CA are used with cyclic edge conditions, when 

the first and the last cells are treated as neighbours. The CA 

consists of a number of steps. When calculating the next state of a 

cell, the step changes. In order to execute the next function of the 

state, three states of the interacting cells are applied as an input, 

producing the next state of the cell on the output. 
A CA space denotes the number of the cells, which are 

updated according to some rule f [11]. In total, the 256 rules of 

CA interaction are defined. For example, the rule 30 in terms of 

Boolean functions is given as follows:  

  C[i] = C[i-1]  (C[i]  C[i+1]) (2) 

where C[i] is a current cell, C[i] is the value of the current cell 

after the rule application, C[i-1], C[i+1] are previous and next 

neighbor cells, and ,  denote the bitwise XOR and OR 

operations, respectively. As shown in Fig. 1, the rule 30 is called 

so since all possible combinations of cell states at step t produce a 

sequence of 00011110 which when converted to the decimal 

system gives a value of 30. 

t 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

t + 1 0 0 0 1 1 1 1 0  

Fig. 1. CA cell states resulted from application of rule 30 
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Some CA rules possess an interesting property of being 

reversible, providing not only a direct but also a reverse iteration. 

When applying reversible rule, this enables the CA getting back to 

the initial state. To be applicable for cryptographic purpose the 

reverse rules must comply with the following criteria: they must 

be numerous and exhibit complex behavior. When analyzing 

elementary CA, it turns out that only a small number of rules are 

known to be reversible. For example, of all the 256 elementary 

radius rules, only six are stated to be reversible. In addition, their 

behavior is very simple [3, 7]. For this reason, standalone 

elementary reversible rules cannot be used for encryption. 
In order to accomplish this task, it is proposed to use a class of 

reversible rules, first described by Wolfram in [9, 11]. Each rule 

belonging to this class can be described by two elementary CA 

transition rules. The first one determines the state of transition in 

the case when at step t-1 the cell is in the state of 0, and the second 

rule applies for the cell state of 1. These two rules depend on each 

other. By knowing one rule, we can derive another one using the 

following formula: 

 R2 = 2n - R1 - 1, (3) 

where R is the elementary rule; n is the neighborhood of the cell. 
Fig. 2. shows the reversible rule consisting of rule 57 (00111001)2 

and 198 (11000110)2, inverse to it. 

t - 1 0 0 0 0 0 0 0 0

t 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

t + 1 0 0 1 1 1 0 0 1

t - 1 1 1 1 1 1 1 1 1

t 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

t + 1 1 1 0 0 0 1 1 0  

Fig. 2. Reversible rule, including CA transformation rules 57 and 198 

2. Cryptographic application of the reversible CA 

Since the reversible rule depends on a previous step, the initial 

state of the CA must consist of two consecutive configurations. 

The text to be encrypted comes as a second configuration, while 

the first configuration is populated with random data (Fig. 3). 

Traditionally, the encryption is performed by direct iteration of the 

CA. However, the final outcome consists of two configurations 

and both of them must be used in the decryption. The first is 

encrypted text and the second is called the final data. During 

decryption, these operations are executed in reverse order [10].  

 

Fig. 3. Basic scheme of encryption and decryption process [9] 

A rule used for both encryption and decryption is considered 

as a secret key. The end data must be kept in secret, since knowing 

two consecutive configurations (end data and encrypted message) 

one can easily define the rule, applied for the encryption. 
There are two approaches for processing the final data 

generated in the encryption process. The most secure one assumes 

that this information is kept private, and therefore it becomes a 

part of a key. Now, the key consists of the rule and final 

configuration. The drawback of this option is that after each 

encryption the key is to be changed and shared with the message 

recipient. According to the second option the end data is encrypted 

with the use of Vernam algorithm [5] applying logical bitwise 

operation of XOR to the final data and the key portion as follows: 
 efdi = ki  fdi, (4) 

where ki is the і-th bit of the key, fdi is the і-th bit of the end data, 

efdi is the і-th bit of the encrypted end data, ⊕ denotes XOR 

operation. 
Now, the encrypted final data should be no longer kept in 

secret and can be added to the cipher text. 

3. Software implementation of the block cipher 

on the basis of reversible one-dimensional CA 

The paper aimed at development of the block cipher on one-

dimensional CA, processed by reversible CA transformation rules. 

Software implementation of the proposed encryption algorithm 

has been performed in the C# programming language in the 

integrated application development environment of Visual Studio 

2017. 

 
Fig. 4. Generalized representation of the chosen encryption approach 

The designed algorithm uses the single reversible one-

dimensional CA and the corresponding rules. To achieve basic 

cryptographic strength, we have proposed a novel approach to key 

formation, when the rule to use for CA transformation and specific 

bits for concealing the final data are contained inside the key. 

Depending on the needs the rule may be implemented with 

different radii (1, 2, 3). The larger the radius of the rule, the more 

time the calculations take, yet producing more tangled output. 
The block size may acquire values of 128, 256 and 512 bits. 

The key may be 384, 512 or 640 bits long. The standard algorithm 

leans upon one reversible rule, however, its modification implies 

utilization of several transition functions. The number of iterations 

and rounds may vary. The size of CA equals the doubled size of 

the block, since the reversible rule depends not only on the 

neighbours on the right or left, but on the state of the cell at 

previous iteration. Schematically, the implemented encryption 

algorithm is shown in Fig. 4.  
To utilize the algorithm, input messages are read and padded 

to the size multiple of the block S size. Then some random value 

(Initial data) of S bits in size is generated. The CA is initialized 

with this initial data and a block of information to be encrypted 

(m1). 
Before being supplied to the CA, the data undergo procedure 

of byte substitution, denoted as SubBytes, with the use of the AES 

substitution tables. The algorithm implies utilization of the 

alternative substitution tables which should be generated and 

transmitted together with the secret key. After that, the CA is 

processed with the reversible rule of radius 3 obtained from the 

key. The h rounds produce a portion of encrypted information (c1) 

and data that can be used to initialize the cellular automaton when 

encrypting the next block of information. In this way all blocks of 

information are encrypted. The last piece of the encrypted 

message (cn), i.e. final data, should be hidden because their 

discovery may provide a clue for deciphering all the information. 

For this reason, XOR operation is additionally applied to the final 

data and specific bits of the key, producing the outcome which 

supplements the encrypted message (cn + 1) [7].  
The decryption algorithm includes the same steps of the 

encryption algorithm in the reverse order. 
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4. The function creating a key and substitution 

tables 

The cryptographic key consists of the following components: 
 bits for initialization of the CA, generated by the substitution 

tables (128 bits); 

 CA rules with the radius of 3 (128 bits); 

 special bits for hiding the CA final data (the size is equal to 

the block size). 

The size of the key is calculated using a formula: 

 L = 128 +128 + S, (5) 

where S is the size of the block. 
Thus, the key may be 384, 512 or 640 bits long. 
For key generation the System.Security.Cryptography module 

of NET Framework has been used. The data generated, experience 

1000 iterations on the CA with rule 30 and radius 1. As a result, 

the encryption key of the algorithm is obtained. 
The function of substitution tables formation creates two S-

Box tables and one Inverse S-Box, providing protection against 

attacks based on simple algebraic properties. In fact, this is an 

example of common cipher of the simple substitution. 
The substitution tables are generated on the basis of the CA 

operating with the application of rule 30 with the radius 1 and the 

key bits used for the CA initialization (Fig. 5). 

 

Fig. 5. The flow chart of generating substitution tables using the reversible CA 

The procedure forming the substitution tables is as follows. 

First, the CA is initialized with the specific part of the key to 

generate the tables. The CA are processed until direct and inverse 

tables are completed. 
With each iteration the first bit of CA is written to form a 

location byte P, pointing to a cell in the substitution table. If this 

cell appears to be already used, new location byte will be 

generated. After the location byte is formed, another byte D is 

derived. If its value is already in use, a new byte value will be 

formed. In parallel, the inverse substitution table is created. In this 

table the byte-value (D) becomes a location byte (P) and vice 

versa. As a result, two inverted substitution tables are formed. 

Repeating this function forms the identical substitution tables. 
Depending on demands, the designed algorithm can be easily 

modified. The key comprises additional reversible CA rule with 

radius 3 to be applied. Eq. 5 used to calculate the key size is 

altered as follows: 

 L = 128 + 128N + S, (6) 

where N is the number of the additional reversible CA rules. 

5. Scattering properties of the designed block 

cipher 

Pseudorandom behavior is generally considered as a good 

indicator of a secure block cipher. We have used a technique of 

NIST STS statistical testing in order to check randomness 

properties of the developed encryption algorithm. Good 

encryption algorithm should also satisfy the Strict Avalanche 

Criterion [6]. This means that each output bit should change with a 

probability of one half when-ever a single input bit is 

complemented.  
Investigation of the scattering properties of the block cipher 

based on reversible one-dimensional cellular automata has been 

performed on the binary file of 12.3 MB resulted from the 

programmed encryption procedure through the designed algorithm 

applied to cellular automata of the corresponding length. The 

statistical suit of NIST STS v.2.1.2 divided generated binary 

sequences into 100 equal parts of 106 bits each. The bit strings 

were tested against 15 statistical tests with different parameters. 

The randomness properties were assessed in terms of probability 

of the tests being passed. As a result, a vector of 189 values of 

probability was formed. Ideally, only one sequence out of a 

hundred can be rejected, providing a coefficient of the test passing 

of 99%. However, this requirement is rather strict. In most cases 

the evaluation is conducted within a confidence interval, the lower 

limit of which is assumed to be at the level of 96% [10]. 
The following initial parameters were used during the testing: 

 binary file of 12.3 MB; 

 sequences of 103.4 Мbits. 

 

The performance of the selected set of transformations was 

evaluated on a following hardware platform: AMD Athlon X4 740 

Quad Core Processor 3.2 GHz, AMD Radeon HD 7700 

(1050 MHz), 8 GB RAM. 
When studying the block cipher encryption algorithm based 

on reversible one-dimensional cellular automata, we used a 

combination of one (RCA1), two (RCA2) and three (RCA3) 

reversible rules with a radius of 3. The results presented in Table 1 

consider the block size of 256 bits, 5 processing rounds and 

5 iterations. 

Table 1. Statistical and performance parameters of the designed block ciphers 

Parameters RCA1 RCA2 RCA3 

The number of tests passed by 

at least 99% of the sequences 68.6% 72.3% 73.9% 

The number of tests passed by 

at least 96% of the sequences 100% 99.5% 99.5% 

Minimal proportion of the tests 

passed 96% 95% 95.5% 

12.3 MB file encryption time 
7 min 

55 sec 

15 min 

22 sec 

23 min 

26 sec 

 

Fig. 6. shows the results of the conducted statistical testing. 

The obtained data prove that the least ratio of bit sequences that 

successfully passed the tests, is at the level of 96% – 97%, 

pointing out satisfactory scattering properties of the developed 

encryption algorithm. 
Investigating scattering properties of the proposed block 

cipher built on the basis of reversible one-dimensional cellular 

automata with NIST STS revealed the applying three 

transformation rules to be most effective. Inclusion of additional 

processing rules to the algorithm ensures better scattering 

properties. However, the most optimal in terms of performance 

and statistical properties is a one-way design with a radius of 3, 

using 5 rounds and 5 iterations. Avalanche effect investigations 

should be further performed. 
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Fig. 6. Statistical portraits of the block cipher on the reversible one-dimensional CA, 

processed by one (a), two (b) and three (c) transformation rules with a radius of 3. 

The block is 256 bits long. The chosen reversible rules were applied for 5 round 

including 5 iterations. N is a number of a test, P is the portion of sequences under 

study that passed the test 

6. Conclusions 

Thus, summarizing the investigations carried out, the 

following conclusions can be made: 

1) By means of the C# programming language, a software 

implementing the block cipher on reversible one-dimensional 

cellular automata has been developed, which allows to process 

files of arbitrary types. 

2) In order to ensure the cryptographic stability, a key generation 

approach has been developed. The key is designed to contain 

information about processing rules, data to create substitution 

tables, and information to hide the final data. 

3) For the first time we have proposed to form substitution tables 

based on iterations of the cellular automaton, initialized by the 

key data. This may allow for additional protection against 

attacks in case when the applied reversible rules are revealed. 

4) To enhance cryptographic strength, the basic encryption 

algorithm with the use of single one-dimensional CA and one 

reversible rule with radius 3 can be complemented with two or 

three reversible rules. 

5) The created block cipher design uses blocks of 128, 256, 512 

bits, and allows one to generate the keys of 384, 512 and 640 

bits. 

6) Investigations of the scattering properties of the block cipher 

based on one-dimensional CA using NIST STS statistical tests 

revealed that the minimum portion of studied bit sequences, 

meeting the requirements of the tests, fell within 96% – 97%, 

indicating the qualitative statistical characteristics of the 

developed cryptosystem. 

7) According to the research conducted, for the same number of 

processing rounds, the use of three reversible rules with a 

radius of 3 appeared to be most effective, ensuring better 

scattering characteristics. However, in terms of performance a 

one-rule design with a radius of 3, turned out to be more 

appropriate. 
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