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FUZZY EVALUATION OF VISUAL CONNECTEDNESS 

IN THERMOGRAPHY IMAGES OF CYLINDRICAL SURFACE 
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Abstract. This article presents an idea of visual connectedness measure between components in thermography images of rotating steel roller, cylindrically 

shaped. Both definition and method of measure calculus is given along with a short discussion. 
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ROZMYTA OCENA SPÓJNOŚCI WIZUALNEJ W OBRAZACH 

TERMOWIZYJNYCH POWIERZCHNI WALCOWEJ 

Streszczenie. Artykuł przedstawia metodę oceny spójności wizualnej komponentów temperaturowych w obrazach termowizyjnych obracającego się walca. 

Zaproponowano definicję oraz metodę wyznaczania wartości oceny spójności. 

Słowa kluczowe: logika rozmyta, termowizja, dekompozycja termografu, spójność wizualna 

Introduction 

Computational intelligence, able to imitate human perception 

along with decision making, expansively applies to many research 

fields. From the most basic, such as industry/production through 

data analysis and monitoring, to defense systems, simulating 

human expert with a computer software gains advantages, such as 

repeatability, fatigue-freedom or low-cost operation. 

One of the most important fields mentioned is image descrip-

tion and understanding. Classical image is a set of pixels, RGB 

or monochromatic, amount of which highly extends 106. Any 

inference or data analysis on such amount of information is hard 

to investigate or simply time consuming (critical in real-time 

systems). 

In this paper the authors propose a method that, for a given 

type of thermal image, generates a description on level of abstrac-

tion higher than pixels, based on so called visual connectedness. 

The obtained results can be used to develop advanced inferring 

methods of such images or to improve the existing ones, e.g. 

temperature regulators. The presented method is designed to ana-

lyze temperature distribution images of rotating steel cylinder‘s 

surface intended for paper milling industry. 

The important feature of the problem under consideration 

is that the thermal processes that take place on the surface of the 

heated object result in thermographs that are particularly fuzzy 

and irregular. Those images can be relatively easily analyzed by 

humans, however they are not very manageable to the typical 

procedures of automated image processing. Moreover, the non-

contact temperature field imaging of a rotating cylindrical roller, 

requires the use of specific methods at the data acquisition stage. 

It is also important to mention that additional sources of expertise 

in the discussed problem are: 1) a partial knowledge of the physi-

cal cause-effect relations that are observed in the obtained thermal 

images; 2) a qualitative description of the observation method for 

such images given by an experienced operator – a process expert. 

However, both the knowledge about physical phenomena and 

the description of human expert behavior are incomplete and 

imprecise. Hence a formal tool of choice, naturally suited to use 

in this type of task, is the fuzzy sets and fuzzy logic theory. 

  

Fig. 1. A temperature distribution on a paper sheet as a consequence of moisture 

inhomogeneity [8] 

We believe that proposed evaluation method will be useful 

in moisture distribution control problems [8], as they are closely 

related with paper sheet’s temperature (see Fig. 1). 

1. Description of a thermal image 

Every thermal image of a plain surface can be considered as a 

sum (superposition) of responses to heat pulses, generated over the 

surface [9, 23]. Heating source depends on technological process 

and expected outcome. Most common are laser point [15] and 

inductive heating [5, 6, 13]. Due to physical heat flux distribution 

of a given source (often denoted as Q/dS), the set of pulses is not 

directly given. To bypass this inconvenience, the authors propose 

a definition of a temperature component along with a method to 

represent an input image in terms of those components. 

Moreover, recognizing the thermal image representation 

as a thermal pulse responses superposition of inductively heated 

surface with further clustering of such type of basic temperature 

components (information granules) based on proposed visual 

connectedness fuzzy evaluation, allows to identify coherent areas 

of the heated object that have certain thermal state. This leads to 

a image processing method that is sensitive to the physical 

phenomena responsible for shape of observed images. 

1.1. Definition of a temperature component 

A temperature component describes a temperature distribution 

on a plain surface and can be considered as a pulse response 

to a point heat source. Such component can be denoted as an 

ordered four (1), with its representation in spatial-temperature 

domain given by (2). 

  , , ,n n n n nK r x y  (1) 

where:  [C] – peak temperature of the n-th component (its 

height) but with omitted ambient temperature; r [m] – radius of 

the component; x, y [m] – its localization on the surface. 
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where: n(p)[C] – temperature of n-th component in point p2; 

CR [m] – radius of the cylinder. 

The reason behind the bell-shape of (2) is the nature of heat 

transfer problems; it results from the solution of differential heat 

conduction equation for point source heat pulse [4, 9, 12, 31]. 

The sum of two exp functions allows to take the observed object’s 

cylindrical geometry into account.  
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Input image can be approximately represented by a finite set 

of components (1), denoted as K (3). 

  : 1..nK n N K  (3) 

where: N – number of components in set K 

Having a set K, one can calculate an approximation of input 

image in terms of components K. It can be defined as an image 

with characteristic function given by (4). 

    
1.. nn

i


  K
p p  (4) 

where: |K| - number of components in set K, p – pixel coordinates 

on image surface  

1.2. Image source 

Test images were obtained with use of a model developed by 

the authors [13], see Fig. 2. It is a coated steel cylinder of length 

1,2m and 20cm radius, driven by a motor-inverter module. 

 

Fig. 2. The physical model of a roller 

The heat source is provided by a set of 6 movable inductive 

heaters [7], with 1kW of power dispatch per each. Heaters are 

driven horizontally and can be placed or moved anywhere along 

the horizontal axis. Images are acquired by a Flir A615 infrared 

camera synchronized with cylinder’s angular position by a quadra-

ture incremental encoder, connected to its shaft.  

 

Fig. 3. Typical image seen by the IR camera 

Since the camera can see only a part of the heated surface (see 

Fig. 3), proper algorithms for image concatenation were developed 

[11]. The processing begins with obtaining a sequence of images 

(e.g. 8 of them). Images are equally spaced along the perimeter 

with their acquisition point fixed by the encoder. 

In order to retrieve the visible part of the surface, a 3D cylin-

drical geometry model (5) is used. It is expressed in terms 

of coordinates on cylinder’s surface. 
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where: u, v [px] – coordinates of a surface point; CL, 

CR [m] – cylinder’s length and radius; TH, TW [px] – height and 

width, of the texture;  

By means of reverse mapping (inverted perspective projec-

tion) given by (6), one can unwrap a texture from each image 

of the sequence. This can be seen as an opposite to well-known 

texturing process in 3D modeling or simply as rectification 

of curved image. It is worth to note, that only visible part can be 

unwrapped, as shown in Fig. 4 by hatched area. 

 ( , ) Proj ( , )
camMT u v Q u v  (6) 

where: Mcam – camera parameters. 

 

Fig. 4. A reverse mapping from 3D object (visible on an image) to a texture 

Camera parameters Mcam are selected manually by user 

or automatically by an algorithm [10]. They allow to mount 

the camera freely with respect to the object. Such flexibility can be 

convenient in industrial applications. 

 

Fig. 5. A sequence of eight images, taken at equally spaced points with overlapping 

areas visible 

Unwrapped set of textures (from a given sequence) have to be 

concatenated into full temperature map, as show in Fig. 5. 

In case of areas, where images are not overlapping, one can 

simply copy the content into the output temperature image. How-

ever in other case, two source of image distortion have to be taken 

into account. First one is the decreasing resolution caused by 

curved part of the surface, located near image top and bottom 

edge. This can be simply overcome by ignoring most distorted 

areas. Second one is caused by directional emissivity  [16, 30] 

and other misuses of infrared sensors [3, 17, 18, 22, 26, 29]. 

If surface has low values of , temperature measurements have to 

be corrected on basis of angle between surface normal vector and 

camera optical vector. The resulting part of the output image can 

be then calculated by means of fuzzy theory [11]. To illustrate 

the results of such unwrapping-concatenation procedure, an exper-

iment with setup Fig. 6 was conducted. The roller was wound with 

a resistive wire, connected to an external power supply. 

 

Fig. 6. Experimental setup 
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A sequence of images was acquired, rectified and concatenat-

ed. Obtained result is shown in Fig. 7. 

 

Fig. 7 a) Rectified and concatenated temperature map of heated wire (left); 

b) temperature map of typical experiment (from sequence with Fig. 3) 

Fig. 7 shows a temperature map from a real experiment 

involving inductive heaters instead of resistive wire. A sample 

image of the source sequence was previously shown in Fig. 3. 

1.3. Image decomposition 

In order to proceed with further analysis of visual connected-

ness, temperature maps have to be transformed into domain 

of components (2). To obtain a set of components K, denoted by 

K, one has to find its cardinality and values of (1). This process 

is a non-linear optimization (7) where the difference between 

input image and components’ superposition is taken into account. 
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where: I – input image; K – sought set of components. 

The initial values of K are to be found by means of an iterative 

algorithm, inspired by Mountain Method [2, 14, 20, 32]. During 

each iteration, the algorithm searches the input image for a point 

with highest temperature . When found, a new component 

is generated and stored into K with the r value of (1) set to rstart. 

The input image is then destroyed by removing new component 

from the input image by means of algebraic subtract. The value 

of rstart corresponds to the physical size of the inductive heater 

and has to be chosen manually. It’s value is constant regardless 

processed temperature map. 

 

Fig. 8. A visualization of a sample set K consisting of three components K1..3 

calculated by means of their representations 1..3 (2) with eq. (7) 

The number of components can be limited by their count 

or difference/distance between original input image and its 

approximation (4). Although the optimization (7) does not change 

the number of components, it helps to obtain better approximation 

(4) by adjusting the r parameter of each component K.  

The obtained set K is called a representation of an input 

image in terms of temperature components. A proper example was 

shown in fig. 8, where image I is represented by its profile (arbi-

trary chosen row or column). Three obtained components are 

the representation – they are approximation of input profile 

in terms of eq. (4). 

Overall process can be compared to a well-known vectoriza-

tion of raster images. More details on decomposition can be found 

in [11]. 

2. Visual connectedness of two components 

The proposed visual connectedness evaluation is based on 

similarity measure [24]. Its goal is to assign a unit degree to a pair 

of components in similar way that a human expert states “these 

two areas of higher temperature are visually connected”. 

The difference between typical similarity measure and the pro-

posed one is the nature of underlying object. To assess similarity 

one takes two physically separable objects or states and measures 

a difference between them. In contrast, the proposed visual con-

nectedness is applicable to objects that can superpose, which 

is justified by the heat transfer physics intrinsic to component 

definition given. 

Proposed method combines three separate evaluations by 

means of fuzzy inference, shown in Fig. 9. 

 

Fig. 9. Fuzzy based visual connectedness evaluation 

To obtain full information of set K in terms of visual connect-

edness, one has to calculate its value for each pair of components 

(Ki, Kj). Such result can be arranged in matrix, alike similarity 

matrix. A visualization of a sample matrix is shown in Fig. 10. 

 

Fig. 10. An example of connectedness matrix. Numbers on both axes denote an index 

of a component K 

It is important to note that both temperature and spatial 

connectedness are binary relations of each pair of components 

(Ki, Kj), resulting in fuzzy variables: SpP, SpT however visual 

importance is unary with outcome denoted as ZnW. 

2.1. Visual importance 

The assessment of visual importance allows to promote 

components that are well visible (high ) since barely visible ones 

are canceled out. It is done by calculating membership value 

of component n to a fuzzy set SMALL (8). Set BIG is given 

intrinsically. 
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where: max [C] – max temperature in whole set K; 

cSV [%] – point of max ambiguity between terms small and big; 

rSV [%] – size of ambiguity domain; mSV [-] – value of membership 

taken by (4) in extremes of ambiguity range, as shown in Fig.11a.    
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Fig. 11. Membership functions for: a) visual importance; b) spatial connectedness 
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Final memberships of fuzzy variable ZnW are given by (9). 

Since ZnW is the only unary relation in the proposed evaluation 

method, its value has to be calculated for both components in pair 

(Ki, Kj) resulting in two fuzzy variables: ZnW1 and ZnW2. 

2.2. Spatial connectedness 

Spatial connectedness of a pair tells to what degree relations 

“Ki is near Kj” and “Ki is far form Kj” hold. It is based on three 

Euclidean distances (10) from which the lowest is selected (11). 

This procedure allows to take into account cylindrical surface 

of the cylinder – when two components are located near top and 

bottom edge of the image space, they are actually near each other 

in cylindrical surface space. 
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    0, min , ,i jd K K d d d   (11) 

The authors have chosen exponential function (12) for the big 

membership, as its values are closest to the human perception 

[1, 19, 25]. The selected membership function is shown in 

Fig. 11b. 

 1( )
c d

big d e 
  (12) 

where: c1[1/m] – slope. 

Final assessment is given by a fuzzy variable (13) 
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2.3. Temperature connectedness 

The temperature connectedness is based on temperature 

analysis along shortest path between two assessed components, 

Fig. 12. The shortest path is based on the same principle 

as the distance (11). For each pixel along such path, a temperature 

is calculated by means of (4). Obtained values construct a set . 

 

Fig. 12. Temperature plot along shortest path between two (i and j) components; 

pi and pj denotes coordinates of components, pi=(xi,yi) and pi=(xj,yj) 

Conducted experiments show, that this method can be based 

on temperature ratio of extremes along the path. This assessment 

is given by (14). Both extremes (min and max ) are calculated 

from superposition of (2) functions over whole set K. 

 min
( , )

max

min
high i j

max

K K





 
Θ

Θ

 (14) 

Final assessment is given by (15). 
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2.4. Fuzzy inference 

In order to obtain a numerical degree of visual connectedness, 

the following set of 16 rules has to be applied to (9), (13) and (15). 

It is a complete, non-contradictory and non-redundant [21] set 

of rules – any possible combination of input values has its reflec-

tion in corresponding rule. They were formulated by an expert and 

provide the core of the visual connectedness definition. 

 Unlike parameters (e.g. cSV) previously introduced, 

the proposed rule base stays constant independently of those 

parameters. Moreover, not shape of inductive heaters nor dimen-

sions of the roller would affect the rules. This is caused by the fact 

that rules are separated from the input data by the physical mean-

ing of  the fuzzy variables involved.  

The output of the rule block used is denoted as fuzzy variable 

S and described by three values: high, medium, low. 

 

If SpP is b & SpT is h & ZnW1 is b & ZnW2 is b then S is h 

If SpP is b & SpT is h & ZnW1 is b & ZnW2 is s then S is m 

If SpP is b & SpT is h & ZnW1 is s & ZnW2 is b then S is m 

If SpP is b & SpT is h & ZnW1 is s & ZnW2 is s then S is l 

If SpP is b & SpT is l & ZnW1 is b & ZnW2 is b then S is l 

If SpP is b & SpT is l & ZnW1 is b & ZnW2 is s then S is l 

If SpP is b & SpT is l & ZnW1 is s & ZnW2 is b then S is l 

If SpP is b & SpT is l & ZnW1 is s & ZnW2 is s then S is l 

If SpP is s & SpT is h & ZnW1 is b & ZnW2 is b then S is h 

If SpP is s & SpT is h & ZnW1 is b & ZnW2 is s then S is l 

If SpP is s & SpT is h & ZnW1 is s & ZnW2 is b then S is l 

If SpP is s & SpT is h & ZnW1 is s & ZnW2 is s then S is l 

If SpP is s & SpT is l & ZnW1 is b & ZnW2 is b then S is l 
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If SpP is s & SpT is l & ZnW1 is b & ZnW2 is s then S is l 

If SpP is s & SpT is l & ZnW1 is s & ZnW2 is b then S is l 

If SpP is s & SpT is l & ZnW1 is s & ZnW2 is s then S is l 

In every rule of the given set, a consequence uses one of three 

fuzzy values (h, m, l) assigned to the fuzzy output variable S. 

Those values are represented by singletons with values respective-

ly 1, 0.5, 0. The inferring model used is TSK (Takagi-Sugeno-

Kang) [27, 28], hence final value is calculated with (16). 

 
16

1

( , )i j n n

n

S K K p k


  (16) 

where: pn [-] – n-th rule activation degree, kn [-] – value of corre-

sponding conclusion. 

As for logical conjunction operator, a classical function min 

or prod can be used. 

3. Conclusion 

The proposed method allows to calculate the visual connect-

edness of a pair of components that represent temperature distribu-

tion on a cylindrical surface. Extending this calculus through 

to every pair in K leads to a connectedness matrix – a form 

of similarity matrix. 

The values obtained by means of (16) can be further processed 

via standard approach, e.g. graph-based clusterization methods 

in order to arrive at image described by components (primitives) 

and objects (disjoint sets of one or more components). 

Constant values used in presented method: cSV, rSV, mSV, c1, 

rstart have to be chosen manually according to process expert’s 

intuition and knowledge. Assuring proper values of those parame-

ters affects the performance of overall assessment. 

In further work, the development of infrared image segmenta-

tion algorithm based on human perception of a cylindrical surface, 

introduced by the described visual connectedness, is planned. 

It will allow to obtain surface description as a set of consistent 

spatial and temperature areas. It  may for e.g. be a source 

of information for control decisions. The starting point for such 

algorithm is taking into account the physical side of the phenome-

na occurring in the thermal system, in particular the shape 

of the impulse response generated on the surface of the cylinder. 

Such approach allows for a significant decrease in information 

granularity in component-represented image compared to the 

conventional “pixel” images.  Simultaneously it is possible 

to obtain segmentation results similar to the perception of such 

images by human. 
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