
22 IAPGOŚ 2/2015 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 2/2015, 22-24

DOI: 10.5604/20830157.1159324

OPTIMIZATION OF 3D LOCAL ORIENTATION MAP CALCULATION

IN THE MATLAB FRAMEWORK

Ranya Al Darwich, Laurent Babout
Lodz University of Technology, Institute of Applied Computer Science

Abstract. This paper presents the development and evaluation of a new approach toward the optimization of 3D local orientation map calculation

in the Matlab framework. This new approach can be detailed as: optimize eigenvector calculation for PCA analysis of X-ray micro tomography images
of lamellar Titanium alloys image. We use two different methods to find the eigenvector of the largest eigenvalue and compare them with the Matlab

built-in function (eigs). The results show a steep decrease of the calculation time using the authors' method compared to the Matlab built-in function.

Keywords: local orientation, PCA analysis, eigenvalue, eigenvector, matrix of inertia

OPTYMALIZACJA OBLICZEŃ TRÓJWYMIAROWYCH LOKALNYCH MAP KIERUNKOWYCH

Z UŻYCIEM ŚRODOWISKA OBLICZENIOWEGO MATLAB

Streszczenie. W artykule przedstawiono rozwój i ocenę nowego podejścia dotyczącego optymalizacji obliczeń 3D lokalnych orientacji map w środowiska

Matlab. Zastosowano dwie różne metody wyznaczania wektora własnego największej wartości własnej. Wyniki są porównywane z wynikami otrzymanymi

przy pomocy wbudowanych w pakiecie Matlab funkcji wyznaczające wektory i wartości własne. Wyniki porównania pokazują redukcję czasu obliczeń
przy użyciu autorskiej metody w stosunku do funkcji wbudowanej w Matlab.

Słowa kluczowe: orientacja lokalna gradientu, analiza PCA, wartość własna, wektor własny, macierz bezwładności

Introduction

There is a non-negligible amount of structured materials that

show a local orientation in their microstructures. For instance the

microstructure of titanium alloys can appear with a 3dimensional

lamellar texture [1], or fiber composite materials can be designed

with a woven pattern like textile fabrics (see fig. 1). They can be

classified as texture materials and one may need to locally

estimate the orientation of the features for further quality or

property analysis. These orientation can be extracted from 2D/3D

images and popular image processing method, which is based on

gradient estimation and its matrix representation using matrix of

inertia [4] or Hessian matrix [2] are frequently used. Next the local

orientation can be calculated using principal component analysis

(or matrix diagonalization), where the eigenvector of the

largest/smallest eigenvalue represents the local direction. The

main problem that arises from such methodology is the very time

consuming process of matrix reduction as it is done with

pixel/voxelwise operations. For instance, if one assume a 3D

image of size 5003, the Matlab built-in function (eigs), which uses

the Arnoldi iteration method [6] to obtain the

eigenvalues/eigenvectors, will have to be run sequentially 125

millions times, which is computationally very slow.

Fig. 1. Examples of microstructure, a) fibrous microstructure of glass fiber

reinforced polymers (GFRP) b) lamellar microstructure of Titanium alloys (Ti)

Therefore, this paper aims at proposing alternative methods to

speed up the calculation of eigenvector. The main objective is to

use matrix operations and avoid loops, which are known as the

main slowing elements in algorithms. The two proposed

approaches are compared with the standard method based on the

Matlab built-in function (eigs). Both eigenvector maps and

computation times are compared to testify the usefulness of the

new approaches. The aim of this paper is introducing methods to

optimization of 3D local orientation. These methods are tested in

2D and 3D image of X-ray micro tomographic images of Titanium

lamellar alloys (Ti) [1], and glass fiber reinforced polymers

(GFRP) [7].

1. Algorithms

PCA, or Principal Component Analysis, is the most important

3-dimensionality reduction technique. This technique was initially

employed by statisticians to reduce the variables into a lower

number of orthogonal variables (factors), which are also called

eigenvectors. In this paper we will calculate the eigenvectors and

eigenvalues of the data covariance matrix using three methods.

The eigenvector corresponding to the largest eigenvalue is the

direction of greatest variation. The covariance matrix is based on

the average gradient (first derivative) defined in the

neighbourhood W(p) of each pixel/voxel p composing the 2D/3D

image I. In a more formal way, let consider the Definition domain

Δ(N1, N2, N3)= {1,2,… N1}x{1,2,… N2}x{1,2,… N3} of an input

volumetric image I: Δ (N1, N2, N3)→{0,1,2,…,255}

To find the principle orientation of an image we use the matrix

of inertia, we consider a neighbouring window W of size sn (in n-

dimensional space Rn) located around every point (i,j,k)  Δ,

inside this window the matrix of inertia Jijk is given by (in the 3D

case):











































































































ijkijkijk

ijkijkijk

ijkijkijk

ijk

cfe

fbd

eda

z

I

z

I

y

I

z

I

x

I

z

I

y

I

y

I

y

I

x

I

z

I

x

I

y

I

x

I

x

I

J

2

2

2

(1)

where .

denotes the averaging operation in the neighbourhood

W (usually performed using convolution with a matrix of 1 in the

Fourier domain for decrease processing time, especially in the 3D

space).

At that stage we obtain a n-D map of matrix of inertia J. Since

Jijk is symmetric, each point in the n-D space is represented

by a vector of size n(n+1)/2. For instance, in the 3D case,

this vector is of length 6 and can be represented as follows for a

point (i,j,k)  Δ:

 (2)

and the map of matrix of inertia takes the following form:

 (3)

with

A = a

ijk{ } where

a

ijk
= a

ijk
,

B = b

ijk{ } where

b

ijk
= b

ijk

and so on.

 -

 -

 -

 -

 -

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2015 23

In what follows, we will present the 2 proposed methods that

perform the eigenvector calculation on J.

1.1. Method 1: analytical method

This method relies on the determinant solution. Let M be an

n-by-n matrix. So λ is an eigenvalue if:

  0Det  IM  (4)

where I is the n-by-n identity matrix.

This equation gives us a characteristic polynomial

in λ of degree n, and the roots of this equation are the eigenvalues.

In three-dimensional space we will get a cubic equation

(a λ3+b λ2+c λ+d=0), that is solvable analytically using the well-

known Cardano method published in 1545 [3]:

x = q+ q2 + r - p2()

3
3 + q- q2 + r - p2()

3
3 + p (5)

where:

 p= -b 3a

q= p3 + bc- 3ad() 6a2

 r = c 3a
In the case of J (eq. 3), the set of variables defining the cubic

equation are:

 a= -1

 b= A +B+C

where denotes the Hadamart product (i.e. an element-wise

multiplication). Knowing one root of the cubic equation

representing the diagonalization of the tensor of inertia, it is

straightforward to estimate the 2 other roots by reducing the

polynomial by one degree.

What is important to notice here is that in the previous

equations of the eigenvalue, each parameter can be considered as a

3D matrix, where each point corresponds to the local eigenvalue

from the input image, following the PCA reduction of the tensor

of inertia. This approach is well adapted for n3. For larger

dimension, the next method is more appropriate.

Fig. 2. Flow chart of the power iteration method

1.2. Method 2: power iteration

We implement this method to find iteratively the largest

eigenvalue and its corresponding eigenvector from an initial

eigenvector guess [5] (see Fig. 2 for the general power iteration

flow chart). The power iteration algorithm is frequently used in

the cases when the first couple of eigenvalues need to be

computed, as in the case of searching the main spatial feature

orientation. As in the previous method, the input is the map of

matrix of inertia J. The iteration step is initially performed in

parallel on each voxel yielding a vector corresponding to the local

matrix of inertia Jijk. However, the number of points to be

considered in the next iteration is decreased as the Euclidean

distance between the eigenvectors at 2 successive steps is smaller

than a given tolerance (typically 10-3). Obviously, the number of

updates of local eigenvector decreases as the number of iteration

increases. This approach speeds up the iteration procedure and

therefore the overall execution time of the algorithm.

1.3. Method 3: Matlab built-in function

In this method we calculate the eigenvalue and the eigenvector

by using the Matlab built-in function eigs.

Eigs(A) solves the eigenvalue problem using the Arnoldi

iteration [6]. While the approach is well suited for large sparse

matrix, it is not designed to solve in parallel a large set of

eigenvalue/vector decompositions, as in the case of the two

previous methods.

Let consider, as previously, every point (i,j,k)  Δ of an input

image I and the corresponding matrix of inertia Jijk. The pseudo

code is the following:

For i  1 to N1

 For j  1 to N2

 For k  1 to N3

 [xijk, ijk]  eigs(Jijk)

where xijk and ijk are the eigenvectors and eigenvalues of Jijk.

2. Results

The comparison between the 3 methods is done in the

following way. The results are verified qualitatively by comparing

the map of eigenvector projection with respect to the main axis

[001] (i.e. z-axis of the 3D image). Then comparison about the

CPU time (i.e. execution time) is performed to estimate which

method is the most appropriate to estimate local orientation in 3D.

Fig. 3 shows the result about the projection map for the 3

tested methods. Once can clearly see that they give very similar

results. This has been done in the case of an input image of size

1003.

Fig. 3. a) the input image; b) the projection map calculated using method #1

(analytical method); c) the projection map calculated using method #2 (power

iteration); d) the projection map calculated using method #3 (Matlab built-in

function). The colour bar correspond to the projection angle (in degree)

 -

 -

 -

 -

 -

24 IAPGOŚ 2/2015 p-ISSN 2083-0157, e-ISSN 2391-6761

One can also judge the accuracy of the calculation looking at

the mean square error (MSE) of the 3D projection maps between

method #3 (taken here as the reference method) and methods #1

and #2. In the case of the comparison between method #1 and #3,

MSE is ~10-11, while it is 0.09 between method #2 and #3. In the

latter case, this MSE result is obtained for a tolerance value of 10-

3. This is considered as a good compromise between the execution

time and the MSE, as shown in Fig. 4. Again, this calculation has

been done in the case of an input image of size 1003.

Fig. 4. Evolution of MSE and CPU time with respect to the tolerance, for an input

image of size 1003

Fig. 5 shows the evolution of the computation time as a

function of the number of voxels of an input image, for the 3

tested methods. One can see that the three evolutions are linear (at

least for the given range of image sizes that are lower than 1003),

but the fastest is clearly the method #1, which takes advantages of

the analytical approach for the Eigen decomposition based on

Hadamart product. Method #3 is particularly slow because of the

algorithm that estimates voxel-by-voxel the

eigenvector/eigenvalue using the Matlab built-in function eigs.

Fig. 5. Evolution of the CPU time with respect to the number of voxels for the 3 tested

methods

Table 1 presents the results of our study, which once again

shows that the calculation time of the determinant solution (i.e.

method #1) is the smallest, which justifies the use of such method

to accurately calculate main orientation of features in 3D images

in the smallest time. This choice is also justified by the

corresponding MSE value presented above. Also the table reveals

that in average, method #1 is faster than method #2 by about 10

times, while it is ~500 times faster than method #3. Note that in

this table, we disregard the calculation time for the Matlab built-in

function (method #3) when the number of element is more than

1003 because of its extremely long processing time for larger data

set.

Table 1. Summary of execution time for the 3 tested methods and different 3D images

sizes

Number

of

elements

CPU time for method

#1 (analytical method)

(s)

CPU time for

method #2 (power

iteration) (s)

CPU time for

method #3 (Matlab

built-in function) (s)

503 0.13 1.13 66.2

1003 1.6 16 517.3

2003 10.6 166 -

4003 231.2 2621.5 -

Table 2 summarises the results and the properties of the 3

methods. In the case of matrix of inertia of dimension n3,

method #1 is the best choice, considering both its computational

time and accuracy. However, for largest dimensions, the power

iteration should be considered, even if the accuracy depends on

the chosen tolerance level. However, perspective work will aim at

generalizing the Arnoldi/Lanczos method [5,6], which is used in

the Eigs function (i.e. incorporating Hadamart product for matrix

operations) to circumvent the main execution time drawback.

Table 2. summary of the advantages and disavantages of the 3 tested methods

Methods Advantages Disadvantages

Method1: The

determinant

solution

 very fast

 analytical method

 exact solution

 limited to 2D/3D case

 need important RAM

Method2:

power

iteration

 locate the dominant

eigenvalue

 n-D (even quite complex

to program for n>3)

 iterative method convergence

speed depends on tolerance

 need important RAM

Method3:

Matlab built-

in functions

 easy programming

 n-D

 exact solution

 very large CPU time

In all cases, the computation has been done on a server

equipped with 2 IntelXeon processors (12M Cache, 2.53 GHz,

4 cores, 8 logical threads) and 24 GB of RAM.

3. Conclusion

 The current paper has presented a comparison between three

methods to calculate the largest eigenvalue and corresponding

eigenvector for large set of matrix of inertia calculated for 3D

images. The comparison shows that the first authors' method

based on analytical approach is the fastest and most accurate

method compared to the two other methods (power iteration, and

the Matlab built-in functions) with similar accuracy. This is of

great importance when dealing with large data set as the one in 3D

tomography images.

References

[1] Babout L., Jopek L., Janaszewski M.: A New Directional Filter Bank for 3D

Texture Segmentation: Application to Lamellar Microstructure in titanium

Alloys, MVA2013 IAPR International Conference on Machine Vision

Applications, May 20-23, 2013, Kyoto, JAPAN.

[2] Eriksen E.: Principal Minors and the Hessian, BI Norwegian School of

Management Department of Economics, October 01, 2010.

[3] Wituła R., Słota D.: Cardano’s formula, square roots, Chebyshev polynomials

and radicals, Journal of Mathematical Analysis and Applications, vol 363, Issue

2, 15 March 2010 , 639–647.

[4] Jeulin D., Moreaud M.: Segmentation of 2D and 3D textures from estimates of

the local orientation, Image Anal Stereol 27, 2008, 183-192.

[5] Lanczos C.: An Iteration Method for the Solution of the Eigenvalue Problem of

Linear Differential and Integral Operators, Journal of Research of the National

Bureau of Standard, vol 45, No. 4, October 1950.

[6] Lehoucq R.B., Sorensen D.C.: Deflation Techniques for an Implicitly Re-Started

Arnoldi Iteration, SIAMJ. Matrix Analysis and Applications, SIAM Journal on

Matrix Analysis and Applications, Vol 17, Number 4, 1996, 789-821.

[7] Schell J.S.U., Renggli M., van Lenthe G.H., Mu ̈ller R., Ermanni P.:

Microcomputed tomography determination of glass fibre reinforced polymer

mesostructure, Composites Science and Technologie,Vol66, Issue 13 October,

2006, 2016–2022.

M.Sc. Ranya Al Drwich

e-mail: raldarwich@kis.p.lodz.pl

Ranya Al Darwich is a Ph.D. student at Lodz

University of Technology (TUL), Institute of Applied

Computer Science. Her scientific interest covers

image processing and analysis.

Prof. Laurent Babout

e-mail: Laurent.babout@p.lodz.pl

Prof. L. Babout obtained his Ph.D. degree in 2002

from INSA-Lyon (France) and D.Sc. degree in 2011

from the Lodz University of Technology (TUL).

Currently he holds a position of associate professor at

TUL. His scientific interest covers X-ray tomography

and 3Dimage processing, with main focus on materials

science applications. Prof. L .Babout is a SIAM

member and author or co-author of more than 100

scientific papers,scientific papers, books and chapters.

otrzymano/received: 27.11.2014 przyjęto do druku/accepted: 15.04.2015

 -

 -

 -

 -

 -

