ANALYSIS OF METROLOGICAL PROPERTIES FIBER BRAGG GRATINGS WITH A CONSTANT AND VARIABLE PERIOD

Tomasz Zieliński

tomasz.zielinski.1992@gmail.com
Lublin University of Technology, Institute of Electronics and Information Technology (Poland)

Piotr Kisała


Lublin University of Technology, Institute of Electronics and Information Technology (Poland)

Abstract

The paper presents periodic structures in terms of metrological properties in the distinction for a fiber Bragg grating (FBG) with a constant and changeable period. The process of their formation and characteristics as well as applications in many areas have been described. On the basis of the literature, the results of research and measurements of measurable quantities such as temperature and stress made by periodic structures applied to the fiber of the optical fiber are presented. Analysis of the presented measurements allowed to mark the ranges and accuracy of measurements of individual applications.


Keywords:

fiber Bragg grating, optical sensors, uniform fiber Bragg grating, chirped fiber Bragg grating

Albert J., Hill K.O., Malo B., Theriault S., Bilodeau F., Erickson L.E.: Apodization of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency. Electron. Lett. 31, 1995, 222–223.
  Google Scholar

Anderson D.Z., Mizrahi V., Erdogan T., White A. E.: Production of in-fiber gratings using a diffractive optical element. Electron. Lett. 29, 1993, 566–568.
  Google Scholar

Azaña J., Chen L.R., Muriel M.A., Smith P.W.E.: Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings. Electron. Lett. 35(25), 1999, 2223–2224.
  Google Scholar

Barbarin Y.: Dynamic measurements of physical quantities in extreme environment using fiber Bragg grating. 27th Optical Fiber Sensors Conference (OFS), IEEE, 2017, 1–4.
  Google Scholar

Canning J.:Fibre gratings and devices for sensors and lasers. Laser & Photonics Reviews 2(4), 2008, 275–289.
  Google Scholar

Deepa S., Bhargab D.: Pico-strain-level dynamic perturbation measurement using ᴨFBG sensor. arXiv preprint arXiv:1710.04206, 2017.
  Google Scholar

Dziuda Ł., Krej M., Lewandowski J., Różanowski K., Skibniewski F.: Światłowodowy czujnik czynności oddechowej i rytmu serca. Polski Przegląd Medycyny i Psychologii Lotniczej 3(17), 2011.
  Google Scholar

Eggleton B.J., Nielsen T.N., Rogers J.A., Westbrook P.S., Strasser T.A., Hansen P. B., Dreyer K.F.: Dispersion compensation in 20 Gbit/s dynamic nonlinear lightwave systems using electrically tunable chirped fiber grating. Electron. Lett. 35, 1999, 832–833.
  Google Scholar

Eggleton B.J., Rogers J.A., Westbrook P.S., Strasser T.A.: Electrically tunable power efficient dispersion compensating fiber Bragg grating. IEEE Photonics Technology Letters 11(7), 1999, 854–856.
  Google Scholar

Fernandez A.F., Berghmans F., Brichard B., Mégret P., Decréton M., Blondel M., Delchambre A.: Multi-component force sensor based on multiplexed fibre Bragg grating strain sensors. Meas. Sci. Technol. 12(7), 2001, 810.
  Google Scholar

Garrett L.D., Gnauck A.H., Forgherieri, Scarano D.: 8 X 20 Gb/s–315 km–480 km WDM transmission over conventional fiber using multiple broadband fiber gratings. Tech. Digest of Conf. On Opt. Fiber Commun. OFC '98, Post-Deadline paper, PD18, 1998, 1–4.
  Google Scholar

Hill P.C., Eggelton B.J.: Strain gradient chirp of fibre Bragg gratings. Electronics Letters 30(14), 1994, 1172–1174.
  Google Scholar

Hill K.O., Bilodeau F., Malo B., Kitagawa T., Thériault S., Johnson D. C., Albert J., Takiguchi K.:Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion. Opt. Lett. 19(17), 1994, 1314–1316.
  Google Scholar

Hill K.O., Fujii Y., Johnson D.C., Kawasaki B.S.: Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 1978, 647–649.
  Google Scholar

Hill K.O., Malo B., Bilodeau F., Johnson D.C., Albert J.: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62, 1993, 1035–1037.
  Google Scholar

Hill K.O., Meltz G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1997, 1263–1275.
  Google Scholar

Ikhlef A.: Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method. International Journal of Computer Science Issues 9(1), 2012, 368–374.
  Google Scholar

James S.W., Dockney M.L., Tatam R.P.: Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electronics Letters 32(12), 1996, 1133–1134.
  Google Scholar

Kalli K., Simpson G., Dobb H., Komodromos M., Webb D., Bennion I.: Annealing and temperature coefficient study of type IA fibre Bragg gratings inscribed under strain and no strain-implications to optical fibre component reliability. Proc. SPIE 6193, 2006.
  Google Scholar

Kashyap R.: Fiber Bragg Gratings. New York, Academic, 1999.
  Google Scholar

Kisała P., Klimek J., Skorupski K.: W pełni optyczny przełącznik wykorzystujący jednorodne światłowodowe siatki Bragga. Przegląd Elektrotechniczny 91(11), 2015, 266–270.
  Google Scholar

Kisała P., Cięszczyk S.: Method of simultaneous measurement of two direction force and temperature using fbg sensor head. Appl. Opt. 54, 2015, 2677–2687.
  Google Scholar

Kisała P.: Generation of a zone chirp in uniform Bragg grating as a way of obtaining double functionality of a sensor. Metrology and Measurement Systems 4, 2012, 727–738.
  Google Scholar

Kisała P.: Method of simultaneous measurement of bending forces and temperature using Bragg gratings. Proc. SPIE 9506, Optical Sensors, 2015.
  Google Scholar

Kisała P.: Optoelectronic sensor for simultaneous and independent temperature and elongation measurement using Bragg gratings. Przegląd Elektrotechniczny 11a, 2012, 343–346.
  Google Scholar

Kisała P.: Periodyczne struktury światłowodowe w optoelektronicznych czujnikach do pomiaru wybranych wielkości nieelektrycznych. Politechnika Lubelska, 2012.
  Google Scholar

Laming R.I., Ibsen M., Durkin M., Cole M.J., Zervas M.N., Ennser K.E., Gusmeroli V.: Dispersion compensation gratings. Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides, Applications and Fundamentals. OSA Technical Digest Series (Optical Society of America, Washington, DC) 17, Paper BTuA7, 1997, 271–273.
  Google Scholar

Lazaro J.M., Quintela A., Tarnowski K., Wojcik J., Urbanczyk W., Lopez-Higuera J.M.: Experimental characterization of the spectral effective index dependence of index-guided photonic crystal fibers. Meas. Sci. Technol. 21, Paper 055111, 2010.
  Google Scholar

Li Y., Yang M., Wang D.N., Lu J., Sun T., Grattan, K.T.: Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Optics express 17(22), 2009, 19785–19790.
  Google Scholar

Liao C., Li Y., Wan, D.N., Sun T., Grattan K.T.V.: Morphology and Thermal Stability of Fiber Bragg Gratings for Sensor Applications Written in H_2-Free and H_2-Loaded Fibers by Femtosecond Laser. IEEE Sensors Journal 10(11), 2010, 1675–1681.
  Google Scholar

Lima H.F., Antunes P.F., de Lemos Pinto J., Nogueira R.N.: Simultaneous measurement of strain and temperature with a single fiber Bragg grating written in a tapered optical fiber. IEEE Sensors Journal 10(2), 2010, 269–273.
  Google Scholar

Liu Y., Williams J.A.R., Zhang L., Bennion, I.: Abnormal spectral evolution of fiber Bragg gratings in hydrogenated fibers. Optics letters 27(8), 2002, 586–588.
  Google Scholar

Loh W.H., Laming R.I., Robinson N., Cavaciuti A., Vaninetti, Anderson C.J., Zervas M.N., Cole M.J.: Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings. IEEE Photon. Technol. Lett. 8, 1996, 944.
  Google Scholar

Maheshwari M., Tjin S.C., Yang Y., Asundi A.: Wavelength-shifted chirped FBGs for temperature compensated strain measurement. Sensors and Actuators A: Physical. 2017.
  Google Scholar

Majumder M., Gangopadhyay T.K., Chakraborty A.K., Dasgupta K., Bhattacharya D.K.: Fiber Bragg gratings in structural health monitoring–prezent status and applications. Sensors and Actuators 147, 2008, 150–164.
  Google Scholar

Malo B., Hill K.O., Bilodeau, F., Johnson D.C., Albert J.: Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive-index modification techniques. Electron. Lett. 29, 1993, 1668–1669.
  Google Scholar

Malo B., Theriault S., Johnson D.C., Bilodeau F., Albert J., Hill K.O.: Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask. Electron. Lett. 31, 1995, 223–224.
  Google Scholar

Martinez A., Khrushchev I.Y., Bennion I.: Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electron. Lett. 41, 2005, 176–178.
  Google Scholar

Meltz G., Morey W.W., Glenn W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 1989, 823–825.
  Google Scholar

Ouellette F., Krug P.A., Stephens T., Dhosi G., Eggleton B.J.: Dispersion compensation using chirped sampled fibre Bragg gratings. Electronics Lett. 31, 1995, 899–901.
  Google Scholar

Prakash O., Kumar J., Mahakud R., Agrawal S.K., Dixit S.K., Nakhe S.V.: Enhanced Temperature (~800°C) Stability of Type-IIa FBG Written by 255 nm Beam. IEEE Photonics Technology Letters 26(1), 2014, 93–95.
  Google Scholar

Putnam M.A., Williams G.M., Friebele E.J.: Fabrication of tapered, strain-gradient chirped fibre Bragg gratings. Electronics Letters 31.4, 1995, 309–310.
  Google Scholar

Shi Ch.X.: Optical Bistability in Reflective Fiber Gratings. IEEE Journal of Quantum Electronics 31, 1995, 2037–2043.
  Google Scholar

Takubo Y., Yamashita S.: High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. Optics express 21(4), 2013, 5130–5139.
  Google Scholar

Tanaka N., Okabe Y., Takeda N.: Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates. Smart materials and structures 12(6), 2003, 940.
  Google Scholar

Williams R.J., Voigtländerv C., Marshall G.D., Tünnermann A., Nolte S., Steel M.J., Withford M.J.: Pointby-point inscription of apodized fiber Bragg gratings. Opt. Lett. 36(15), 2011, 2988–2990.
  Google Scholar

Yoffe G.W., Krug P.A., Ouellette F., Thorncraft D.A.: Passive temperature-compensating package for optical fiber gratings. Applied Optics 34(30), 1995, 6859–6861.
  Google Scholar

Zhu HH., Yin JH., Zhang L., Jin W., Dong JH.: Monitoring internal displacements of a model dam using FBG sensing bars. Advances in Structural Engineering 13(2), 2010, 249–262.
  Google Scholar

Download


Published
2018-05-30

Cited by

Zieliński, T., & Kisała, P. (2018). ANALYSIS OF METROLOGICAL PROPERTIES FIBER BRAGG GRATINGS WITH A CONSTANT AND VARIABLE PERIOD. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(2), 62–67. https://doi.org/10.5604/01.3001.0012.0714

Authors

Tomasz Zieliński 
tomasz.zielinski.1992@gmail.com
Lublin University of Technology, Institute of Electronics and Information Technology Poland

Authors

Piotr Kisała 

Lublin University of Technology, Institute of Electronics and Information Technology Poland

Statistics

Abstract views: 191
PDF downloads: 130