
JCSI 15 (2020) 202-205

Received: 27 April 2020

Accepted: 6 May 2020

202

Analysis of typical programming mistakes made by first and second year

IT students

Analiza typowych błędów programistycznych popełnianych przez
studentów pierwszego i drugiego roku Informatyki
Monika Kaczorowska*

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The research paper contains a review and analysis of common programming mistakes made by first and second year

students of Computer Science. The data were collected during the courses entitled “Algorithmics and Data Structures”
and “Numerical Methods”, where students have to write programs in the C++ language. The article includes examples

of three selected mistake types. A comparison of mistakes made by first and second year students is presented. The

analysis carried out shows that the percentage of mistakes made decreases when the students are in the second year, but

three types of mistakes demonstrate the opposite trend. It can be concluded that those three types of mistakes are related

to the course of Numerical Methods, where students have to deal with a significant amount of mathematical expres-

sions. The results show that the students have the most significant problems with memory management.

Keywords: programming mistakes; C++; education

Streszczenie

Artykuł zawiera przegląd i analizę typowych błędów programistycznych popełnianych przez studentów pierwszego
idrugiego roku Informatyki. Dane wykorzystane podczas analizy zostały zgromadzone w trakcie zajęć z przedmiotów:
Algorytmy i Struktury Danych oraz Metody Numeryczne. Podczas zajęć studenci piszą programy w języku C++. Arty-
kuł zawiera przykłady trzech wybranych typów błędów. W artykule przedstawione zostało porównanie błędów popeł-
nianych przez studentów pierwszego oraz drugiego roku. Przeprowadzona analiza wykazała, że liczba popełnianych
błędów jest mniejsza dla studentów drugiego roku ale przy trzech rodzajach błędów można było zaobserwować od-
wrotną tendencję. Błędy te powiązane są ze specyfiką przedmiotu Metody Numeryczne. Podczas tego przedmiotu stu-

denci mają do czynienia w większym stopniu z wykonywaniem obliczeń matematycznych. Wyniki pokazują, że stu-
denci mają największe problemy z zarządzaniem pamięcią.
Słowa kluczowe: błędy programistyczne; C++, edukacja

*Corresponding author

Email address: m.kaczorowska@pollub.pl(M. Kaczorowska)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

Programming is an essential part of any Computer Sci-

ence course. IT students study several programming

languages such as: C, C++, Python and Java. They write

programs not only during classes dedicated to pro-

gramming, but also use their programming skills during

other classes, where they have to write some lines of

code. It is said that the more programs are written, the

fewer mistakes will appear, as it is obvious that every

learner makes mistakes. It can be said that making mis-

takes in programming is a part of the learning process.

One of the first topics concerning programming mis-

takes appeared during a workshop on Empirical Studies

of Programming [1]. In [2] the authors focused on the

mistakes which students made in the Java language and

how they managed them. There are papers where the

authors analyse how long it takes students to solve a

problem, for example [3]. In [4] the authors identified

the most common errors made in Java. M. Hristova at

al. made a list of common mistakes in Java and created

the software which allowed to interpret the mistakes [5].

In [6] the authors presented the software which allowed

to interpret the mistakes and enabled students to learn

Java programming as well. Neil C. C. Brown at al. in

their paper [7] presented the BlackBox project which

has been developed since 2013. The data have been

collected from users of BuleJT IDE, which is dedicated

for the Java programming language. Papers [8-9] pre-

sent the mistakes based on the data collected from

Blackbox. The authors analyse the frequency, time to

fix and the spread of errors among users and their de-

velopment during a year. In [10] and [11] the authors

compared the ranking of Java programming mistakes

made by educators and the ranking of programming

mistakes made on the basis of data collected from

BlackBox. S. Hubalovsky and J. Sediy wrote about

mistakes in object oriented programming [12]. The

authors mention that mistakes which do not cause syn-

tax errors are not recognised by programmers, because

programs containing them seem to work properly. In

[13] the authors present common mistakes in OpenMP

in C/C++. Interestingly, they also point out the good

practices of using OpenMP. In paper [14] S. Júnior at al.

analyse a class of mistakes which may prevent students

mailto:m.kaczorowska@pollub.pl

Journal of Computer Sciences Institute JCSI 15 (2020) 202-205

203

from obtaining a proper solution. The authors write that

students do not often inform the teacher about their

difficulties, and if they do it – they have a difficulty in

defining their problem. The problem, it is argued, might

be caused by the fact that students often do not under-

stand the programming vocabulary. A. Stefik and

S. Siebert found that the languages, that are closer to

English may be more intuitive to beginner programmers

[15]. In [16] the authors draw attention to the fact that

the feedback focuses more on identifying mistakes and

less on fixing the problems. To the best of the author’s
knowledge, research papers dedicated to mistakes in the

C/C++ language are not numerous. Owing to this fact,

the present analysis of the issue was conducted.

The purpose of the present paper is to review and

analyse the common programming mistakes made by IT

students. The analysis addressed programs of students

of the Lublin University of Technology (LUT). Com-

puter Science studies at the LUT include the following

courses: “Programming in C” in the first semester, “Al-
gorithms and Data Structures” in the second, and “Nu-

merical Methods” in the third one. Students write pro-

grams in C/C++ during the courses “Algorithms and
Data Structures” and “Numerical Methods”. The meth-
odology applied is discussed in section 2. The section

includes a description of the data and a review of com-

mon programming mistakes. Section 3 contains the

results and Section 4 concludes the paper.

2. Methodology

The programs of first and second year students were

considered to analyse the programming mistakes in C++

language. Students wrote programs in C++ in a structur-

al way. Students had the course of Algorithmics and

Data Structures during the first year, and they had a

course Numerical Methods during the second year. The

students had to wrote the programs in C++ during both

of courses. They had to send their programs via a dedi-

cated platform or present their programs at the end of

the classes. The mistakes which students made during

the classes were also collected. The programs of the two

courses mentioned of the same 43 students were ana-

lysed and their mistakes were collected.

2.1. Data

Eight programs were collected from each student during

the Algorithms and Data Structures course and six pro-

grams during the Numerical Methods course. The total

number of analysed files was 602.

The data which were collected during Algorithms and

Data Structures concerned the following topics:

• finding array min/max,

• sorting,

• searching information in an array,

• data structures (implementing stack, queue, list or

binary tree).

The data which were collected during Numerical

Methods concerned the following topics:

• Newton and Lagrange interpolation,

• mean square approximation,

• searching for zero in nonlinear equations,

• numerical integration,

• solving systems of linear equations.

Students had to write a program where they had to cre-

ate, for example, an array, implement an algorithm and

test it.

2.2. Common programming mistakes

The classification of programming mistakes in structural

C++ was defined and the programming mistakes were

divided into three groups: syntax errors, memory man-

agement errors and logic errors. The first group includes

errors which do not allow the program to compile.

Memory management errors are related to the situations

when the program wants to use a memory area which is

not accessible. The third group contains logical errors

which can sometimes be difficult to find, and some of

them appear when somebody starts to learn program-

ming and is not experienced enough. Each group is

discussed in details below. The following list presents

the most typical mistakes made in C/C++.

The first group, syntax errors:

1. No semicolon.

2. Invalid number of parameters passed to function.

3. No brackets or odd number of brackets, for example

in expressions.

4. Variable names containing the space.

5. No library attached to file.

6. Visibility of variables in switch case section. Stu-

dents tend to declare the variable in the case section

and the program cannot be complied.

The second group contains memory management mis-

takes:

7. Out of array range. Students use an array and some-

times they do not remember that the first index of it

is 0 and the last one is the length of array minus one.

They try to refer to the element, which is out of ar-

ray.

8. Trying to access the memory which was not allocat-

ed. Students declare a pointer and, for example, try

to read elements and write them into an array. If a

student uses the pointer variable to access an array,

he/she has to allocate the memory before using it.

9. Memory leak. Students do not delete the allocated

memory for example when they use the pointers, de-

fine a queue, stack or list. This kind of errors can al-

so appear when students dynamically allocate

memory in functions and do not deallocate before

end of function.

10. No passing variable by reference. Students create

a function where they want to change the variable

value and pass this variable into the function without

reference.

The third group includes logical mistakes:

11. Shadowing variable. Students create a variable, for

example, in the main function and they also create

a variable with the same name and type in a loop,

causing the first variable to be shadowed by the sec-

ond one.

Journal of Computer Sciences Institute JCSI 15 (2020) 202-205

204

12. Incorrect condition in the conditional statement or

loop. Students place only one ‘=’ sign in a condition.

The incorrect condition in the conditional statement

and loop as well causes the wrong operation of

a program. Sometimes students also do not know

when the algorithm should be ended, and they do not

define the correct condition which ends the algo-

rithm.

13. Incorrect initial value of variable. Students do not

remember that the neutral element of multiplication

is 1 and the neutral element of addition is 0. When

searching for a min value of an array they incorrect-

ly assume that it is sufficient to put in the initial val-

ue of min equal to some big number. They do not

understand that such an idea is not flexible and it is

better to assume that the first element is the min and

then start comparing it with other elements.

14. Uninitialised variable. For example, when students

create an array, they forget that the variable defining

the length of the array has first to be initialised and

only then used.

15. Dividing two integers. The results of division of two

integers is not necessarily an integer.

16. No brackets in condition statement or loop. Students

do not remember that if they want to place more

than one instruction in a condition statement or

a loop, they need to use brackets, otherwise only the

first instruction will be assigned to the condition

statement or loop.

17. Use of magic numbers. Use of unnamed constants

the sense of which is not clear.

Listings 1, 2 and 3 show examples of mistakes made

by students. Listing 1 presents the mistake of using

a dynamic array without memory allocation. Listing 2

shows an incorrect condition in a conditional statement

or loop. Listing 3 illustrates a mistake in finding the min

or max value in an array.

Listing 1: Using an array without memory allocation

int* tab;

for(int i=0;i<10;i++){

 cin>>tab[i];

}

Listing 2: Incorrect condition in a conditional statement or loop

int i=5;

if(i%2=1)

 cout<<”Odd number”;
else

 cout<<”Even number”;

Listing 3: Finding min value

int min=999;

for(int i=0; i<5;i++){

 if(tab[i]<min){

 min=tab[i];

 }

}

3. Results

The results of the research are presented below. If the

same mistakes appeared several times during one class,

it was calculated only one time. The numbers assigned

to the specific mistake types in section 2.2 were used for

the annotation of the figures presented below. Number

18 on the charts is related to other mistakes which are

not specified in the classification. Figure 1 presents the

number of mistakes made by first year students during

the “Algorithms and Data Structures” course. The max-
imum possible number of mistakes amounts to 344, due

to the fact that 43 programs were analysed during each

of the 8 classes. The most common programming mis-

takes are related to memory management: out of the

array range, trying to access the memory which was not

allocated, memory leak or no passing variable by refer-

ence. The mistake related to initialising a variable with

specific value appeared often as well.

Figure 1: Number of mistakes made by first year students during

the “Algorithm and Data Structures” course.

Figure 2. presents the number of mistakes made by

second year students during the “Numerical Methods”
course. The maximum possible number of mistakes

equals 258, due to the fact that 43 programs were ana-

lyzed during each of the 6 classes. The most common

programming mistakes are related to no passing variable

by reference and performing calculations: no brackets or

odd number of brackets, dividing two integers.

Figure 2: Number of mistakes made by second year students during

the “Numerical methods” course.

Figure 3 shows a comparision between the mistakes

made by first year students and the second year students

during the “Algorithms and Data Structures” and “Nu-
merical Methods” courses. It can be observed that the
percent of mistakes decreased in most cases. The oppo-

site situation was observed in the case of the following

Journal of Computer Sciences Institute JCSI 15 (2020) 202-205

205

mistakes: no brackets or odd number of brackets, incor-

rect initial value of variable and dividing two integers.

A similar percentage is noticeable for mistakes related

to an incorrect condition in a conditional statement or

loop for first and second year students.

Figure 3: Comparison of percent of mistakes made by first and second

year students during the “Algorithms and data structured” and” Nu-
merical Methods” courses.

4. Conclusions

A classification of common programming mistakes in

C++ and analysis of these mistakes were conducted.

The obtained results show that a higher number of mis-

takes is made during the first year. Students have prob-

lems with syntactic errors, which are revealed during

program compilation. The most problematic for students

are mistakes related to memory management. This kind

of mistakes could be difficult to detect for beginners.

They may not be observed during each execution of

a program and may require analysis of the code line by

line. Second year students also have a problem with

pointers. There are some mistakes which are made by

second year students more often. This is caused by the

situation that during the “Numerical Methods” course

the students write more programs related to mathemati-

cal expressions and numbers. The mistakes related to

“no brackets or odd number of brackets”, “incorrect
initial value of variable” or “dividing two integers” were
made mostly by students of the second year. It can be

observed that only one mistake related to dividing two

integers constitutes about 20% of all of students errors.

The obtained results may help to adjust the design of

the course and textbooks. The results also show which

topics the teacher should focus on more. The article

seems to be useful not only for academic teachers and

students, but also for school teachers and learners. Fur-

ther research will focus on a bigger group of students

and the object oriented approach to programming in

C++.

Literature

[1] E. Soloway, S. Iyengar, editors, Empirical Studies of

Programmers: Papers Presented at the First Workshop on

Empirical Studies of Programmers, Intellect Books

(1986).

[2] M. C. Jadud. Methods and tools for exploring novice

compilation behaviour. In Proceedings of the Second

International Workshop on Computing Education

Research, ICER ’06, New York, NY, USA (2006) 73-84.

[3] P. Denny, A. Luxton-Reilly, E. Tempero, All syntax

errors are not equal, In Proceedings of the 17th ACM

Annual Conference on Innovation and Technology in

Computer Science Education, ITiCSE’12, New York,
NY, USA (2012) 75-80.

[4] J. Jackson, M. Cobb, C. Carver, Identifying top Java

errors for novice programmers, In Frontiers in Education,

2005. FIE ’05. Proceedings 35th Annual Conference

(2005).

[5] M. Hristova, A. Misra, M. Rutter, R. Mercuri, Identifying

and correcting Java programming errors for introductory

computer science students, In Proceedings of the 34th

SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’03, New York, NY, USA (2003)

153-156.

[6] T. Sirkiä, J. Sorva, Exploring programming

misconceptions: an analysis of student mistakes in visual

program simulation exercises, In Proceedings of the 12th

Koli Calling International Conference on Computing

Education Research (2012) 19-28.

[7] N. C. C. Brown, M. Kölling, D. McCall, I. Utting.

Blackbox, A large scale repository of novice

programmers’ activity, In Proceedings of the 45thACM

Technical Symposium on Computer Science Education,

SIGCSE ’14, New York, NY, USA (2014) 223-228.

[8] A. Altadmri, N. C. Brown, 37 million compilations:

Investigating novice programming mistakes in large-scale

student data, In Proceedings of the 46th ACM Technical

Symposium on Computer Science Education (2015)

522-527.

[9] N. C. Brown, A. Altadmri, Investigating novice

programming mistakes: educator beliefs vs. student data,

In Proceedings of the tenth annual conference on

International computing education research (2014) 43-50.

[10] A. Ahadi, R. Lister, S. Lal, A. Hellas, Learning

programming, syntax errors and institution-specific

factors, In Proceedings of the 20th Australasian

computing education conference (2018) 90-96.

[11] N. C. Brown, A. Altadmri, Novice Java programming

mistakes: Large-scale data vs. educator beliefs, ACM

Transactions on Computing Education (TOCE), 17(2)

(2017) 1-21.

[12] Š. Hubálovský, J. Šedivý, Mistakes in object oriented

programming, Zeszyty Naukowe Wydziału ETI
Politechniki Gdańskiej, Technologie Informacyjne, 18,

(2010) 205-210.

[13] M. Süß, C. Leopold, Common mistakes in OpenMP and

how to avoid them, In International Workshop on

OpenMP, Springer, Berlin, Heidelberg (2005) 312-323.

[14] A. S. Júnior, J. C. A. de Figueiredo, D. Serey, Analyzing

the Impact of Programming Mistakes on Students'

Programming Abilities, In Brazilian Symposium on

Computers in Education, vol. 30, No. 1, (2019) 369.

[15] S. Andreas, S. Susanna, An Empirical Investigation into

Programming Language Syntax. Trans. Comput. Educ.

13, 4, Article 19 (2013).

[16] H. Keuning, J. Jeuring, B. Heeren, A systematic literature

review of automated feedback generation for

programming exercises. ACM Transactions on

Computing Education (TOCE), 19(1) (2018) 1-43.

