
JCSI 21 (2021) 316–323

Received: 09 September 2021

Accepted: 20 September 2021

316

Examination of text's lexis using a Polish dictionary

Badanie leksyki tekstu na podstawie słownika języka polskiego

Roman Voitovych*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract
This paper presents an approach to compare and classify books written in the Polish language by comparing their lexis

fields. Books can be classified by their features, such as literature type, literary genre, style, author, etc. Using a preas-

sembled dictionary and Jaccard index, the authors managed to prove a lexical likeness for books. Further analysis with

the PAM clustering algorithm presented a lexical connection between books of the same type or author. Analysis of

values of similarities of any particular field on one side and some anomalous tendencies in other cases suggest that

recognition of other features is possible. The method presented in this article allows to draw conclusions about the con-

nection between any arbitrary books based solely on their vocabulary.

Keywords: natural language processing; lexis analysis; Jaccard similarity coefficient; Partitioning Around Medoids;

Streszczenie
Artykuł prezentuje metodę porównania i klasyfikacji książek napisanych w języku polskim na podstawie ich leksyki.
Książki można dzielić, korzystając z ich cech, np. rodzaju literatury, gatunku literackiego, stylu, autora itp. Korzystając
ze skompilowanego słownika i indeksu Jaccarda, udowodniona została hipoteza dotycząca podobieństwa książek rozpa-

trywanego pod kątem ich leksyki. Kolejna analiza za pomocą algorytmu klastrowego PAM wskazuje na związek leksy-

kalny pomiędzy książkami jednego rodzaju literatury lub autora. Analiza wartości współczynników poszczególnych
obszarów z jednej strony i anomalia w zachowaniu w niektórych przypadkach sugeruje, że wyodrębnienie kolejnych
cech jest możliwe. Metoda przedstawiona w tym artykule pozwala wyciągać wnioski o relacjach między książkami,
korzystając wyłącznie z ich słownictwa.
Słowa kluczowe: przetwarzanie języka naturalnego; analiza leksyczna; indeks Jaccarda; Partitioning Around Medoids;

*Corresponding author

Email address: voytroman@protonmail.com (R. Voitovych)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

The purpose of this article is to investigate the possibil-

ity to automatically compare different books with each

other by their lexis fields and draw conclusions regard-

ing their features, such as literature type, literary genre,

scientific field, author, etc. The hypothesis concerning

connection between lexis likeness and common charac-

teristics is studied. The target language of this study is

Polish, which has an enormous amount of morphology-

driven declensions which causes much greater difficul-

ties for any natural language processing tool. For exam-

ple, English and other, more inflectional, Germanic and

Romance languages are much more simpler than Polish

from this point of view.

This idea implies the usage of a thorough dictionary

including every possible declension, that allows to

lemmatise texts and analyse them as a set of lemmas. It

also requires a storage solution, both for the dictionary

and analysis results, a comparison algorithm such as a

similarity or difference coefficient of measures and

finally a clustering algorithm to ease the analysis of big

comparison scenarios.

Former works [1-5], some of which examine similar

literature classification problem [6-7], present a lot of

possible solutions for text differentiation yet part of

them concerns not only lexical similarity but also a

semantic one which is not in the scope of this work. The

semantic comparison allows to get a match between two

texts by their meanings without relying on the words

used. Yet long texts like novels, textbooks or legal

codes have a tendency to contain an enormous amount

of ideas, events and plots and that may render semantic

analysis’s results questionable. Other algorithms group

neighbouring words into structures like vectors but this

research treats every word independently. The primary

idea behind this research is that the choice of words in

any book is defined by their features.

The theme of this thesis falls into a domain of gen-

eral natural language processing [8], which in turn is a

comprehension approach of computational linguistics

[9]. Some elements of language morphology studies

concerning lemmas and declensions from [10] are used.

Also, the Jaccard similarity coefficient [11] and Parti-

tioning Around Medoids implementation of the k-

medoids algorithm [12] are used as research tools.

Three primary research questions of this article are:

Q1. Does the comparison between lexis fields

allow to state the overall difference in terms

of any grouping features?

Q2. Is the lexical similarity of books augmented

by the mutual author?

Q3. Is there a significant difference between

different types of non-fiction and fiction

literature?

mailto:voytroman@protonmail.com

Journal of Computer Sciences Institute 21 (2021) 316-323

317

2. Materials and methods

2.1. Dictionary

The SJP (Słownik Języka Polskiego) is a free internet

database devoted to tracking every possible Polish word

and its morphology [13]. It provides a quite reliable

index of Polish words including their declensions. This

dictionary appears to have an extremely high word cov-

erage ranging from 97% to 99% for average fiction

book’s vocabulary but its form is not fully compatible

with chosen database schema. Firstly, every word in the

database is unique in the scope of one table, thus mean-

ing that the number of declensions will be reduced to

only one instance. This rule does not exclude any possi-

ble repetition of lemmas as declensions of other lem-

mas. In such cases, all their declension forms will be

discarded with only the lemma form left. Without this

procedure, there will be exactly 2 388 or 1.13% of all

lemmas stored in the database as declensions.

Many of the words stored in this database are not

common names but proper names, abbreviations, initial-

isms, phrases, etc. Importing function separates proper

names (recognised by initial capital letters) into table

“proper” and initialisms with abbreviations (recognised
by non-initial capital letters, dots and hyphens) into

table “abbreviation” discarding all words containing
spaces and other non-letter symbols. That process al-

lows to get a refined collection of common words stored

in the table “common”, yet it does not exclude words

derived from proper nouns, foreign words and or similar

odd cases.

The newly imported SQLite lexis database with all

aforementioned corrections applied has 172 705 lemmas

from which 165 737 are mentioned as lemmas in de-

clension entries. The absolute number of all common

word entries is 3 980 250. It also includes 303 286

proper word inflexions and 11 241 abbreviation and

initialism forms. Its fragment is shown in Table 1.

Table 1: A sample slice of common word forms from the lexis data-

base.

2.2. Parser

Research purposes require a robust parser that can read

any text written in the Polish language and map every

recognised word to an individually created database file

based on the lexis database schema. It has additional

columns named “count” and “probability”, which allow
to track the number of parsed words. Such an approach

allows to keep track of every word’s properties without
the need to store the entire dictionary.

The first step is to read text files containing target

text. Popular text file formats can store all Polish letters

in several encodings like Windows-1250 or Unicode,

but the availability of many foreign words from French,

Spanish, German and other languages which use Latin

diacritics forces the use of variable-width encoding. The

chosen code page is the widespread UTF-8.

All of the tools in this article are written in Windows

10 environment. The chosen implementation language

is C due to its robust speed and efficiency. More specif-

ically it uses the MinGW-w64 compiler. This combina-

tion already causes problems concerning UTF-8 parsing

because of default wchar.h library appears to have con-

flict with a console window that misreads Unicode

input. Secondly, all of the conversion and reading func-

tions do not work with symbols that have multiple-byte

width. The first problem is omitted by using the Win-

dows-1250 code table at input while all needed read and

conversion functions are manually restored.

Figure 1: Output produced by parser reading “W pustyni i w puszczy”.

While the parser reads UTF-8 text file byte by byte

it arranges it in words, counts them and tries to find a

match in the lexis database. To find the match it rotates

the letter case of initial and other letters and breaks

Journal of Computer Sciences Institute 21 (2021) 316-323

318

down words with hyphens or dots into smaller parts

which, for example, allows to analyse hyphenated com-

pound adjectives as separate words. When a match is

found its corresponding entry is added to the text’s
database file. When the parser recognises a repeated use

of a previously added word it simply amplifies the

“count” value by one.
After reading the whole file program writes the total

number of recognised and unrecognised words and

symbols into a separate “stats” table. It allows to nor-

malise results by dividing count number by total number

and to store this value in the “probability” field.
During this process, the console window presents

the progress in the form of a plain currently parsed col-

oured text as it is presented in Figure 1, where green

colour indicates recognised symbols, red – unrecognised

and black – ignored ones.

2.3. Analyser

The current state of science presents many different

methods to compare two sets of labelled data [3,5] part

of which are purely lexical and others employ a seman-

tical analysis, yet only lexical ones are used here. To

show off the basic idea of text’s attributes strictly de-

fined by its vocabulary the most basic and widely

known Jaccard similarity coefficient [5,11] is used: J(A, B) = |A ∩ B||A| + |B| − |A ∩ B| (1)

where 𝑨 and 𝑩 are finite sets. The definition implies

that the Jaccard index receives values between and in-

cluding 0 and 1, where 0 means no similarity between

sets and 1 shows that 𝑨 and 𝑩 are identical.

Listing 1: Jaccard index implementation.

The implementation of this formula (Listing 1)

needs to take into consideration the schema of statistical

data. Every text database contains a list of words and

the probability of their occurrence. Before any compari-

son can be made analyser module converts declensions

into lemmas summarising their probability measures

and writes to a comparison database in two separate

tables from two texts’ databases correspondingly. 𝐀 ∩ 𝐁

is defined as a lesser of two probabilities for every

match between lemmas. The remainder of those opera-

tions is added to the rest of unmatched lemmas either in

set 𝑨 or 𝑩.

2.4. Partitioning Around Medoids algorithm

Using the aforementioned implementation of the Jac-

card index program compares 𝑛 books between each

other and builds 𝑛 × 𝑛 symmetrical matrix from which

every pair value (𝑎, 𝑏) hold a coefficient between books 𝑎 and 𝑏. Yet it is still hard to draw conclusions concern-

ing classification without the appropriate clustering

algorithm.

The metric in which those similarity indices are

measured does not use the standard Euclidean geometry

which is required for a k-means clustering algorithm to

compute centroids. The only measures available are

similarities which do not allow to derive any dependent

value without the metric. But similar k-medoids algo-

rithm solves this problem by using only existing points

as centroids and requires the set of distances or in this

case inverted similarities to run properly.

In this paper a Partitioning Around Medoids (PAM)

algorithm [12] which uses a greedy search to speed up

the process was implemented. It aims to find clusters

with high degree of similarity while the similarity be-

tween clusters stays low. There is no strict rule for se-

lecting the number of clusters 𝑘 so it must be manually

determined for every scenario.

PAM has two distinct phases – BUILD and SWAP.

During the BUILD phase algorithm selects initial prede-

fined number of centroids. Then in the SWAP phase, it

considers pairs of objects with an object selected as

centroids and an unselected object to swap them if it

decreases the total dissimilarities inside clusters. Every

time the algorithm changes an array of selected objects

it recalculates two values for every object 𝑝 - 𝐷𝑝, the

dissimilarity between 𝑝 and the closest selected object

and 𝐸𝑝, the dissimilarity to the second closest selected

object. 𝑑(𝑖, 𝑗) is a dissimilarity between objects 𝑖 and 𝑗.

The BUILD phase is initialised by adding a first ob-

ject for which the sum of distances to other objects is

minimal. Then it considers unselected objects to select

by computing and choosing the best total gain for every

pair of unselected objects 𝑖 and 𝑗: 𝑔𝑖 = ∑ 𝐶𝑗𝑖 (2)

where 𝐶𝑗𝑖 = max {𝐷𝑗 − 𝑑(𝑗, 𝑖), 0} (3)

It repeats this calculation 𝑘 − 1 times resulting in a set

of 𝑘 centroids.

Then during the SWAP phase, it considers every

pair of (𝑖, ℎ) where 𝑖 is a selected object and ℎ is an

unselected object and calculates the contribution: 𝑇𝑖ℎ = ∑ 𝐾𝑗𝑖ℎ (4)

Journal of Computer Sciences Institute 21 (2021) 316-323

319

where 𝐾𝑗𝑖ℎ is the contribution of swapping object 𝑖 and ℎ concerning other unselected object 𝑗. If 𝑑(𝑗, 𝑖) > 𝐷𝑗 ,

then 𝐾𝑗𝑖ℎ = min{𝑑(𝑗, ℎ) − 𝐷𝑗 , 0}, but if 𝑑(𝑗, 𝑖) = 𝐷𝑗 ,

then 𝐾𝑗𝑖ℎ = min{𝑑(𝑗, ℎ), 𝐸𝑗} − 𝐷𝑗 . After selecting the

minimal contribution 𝑇𝑖ℎ < 0 algorithm swapes the

corresponding pair (𝑖, ℎ), recalculates values 𝐷𝑝 and 𝐸𝑝

and tries again.

If total contribution 𝑇𝑖ℎ equals zero or more, then the

best combination is already found and PAM is stopped.

The values of 𝐷𝑝 determine to which cluster belongs

object 𝑝.

Unfortunately due to the unknown metric, there is no

way to visualise results from a plain list of clusters and

their objects.

3. Research and selected results

Any if not all features, can be purely a subject of

semantics and not lexis. Those two concepts are quite

related, but lexical units can have an enormous number

of semantic definitions and a lot of them are incredibly

flexible. One could argue that semantic units can use

only a limited number of lexical units unless the author

is willing to communicate using words, which are de-

tached from their original meanings. Even if it happens,

it usually distorts the denotation of complete phases and

still relies on dictionary definitions of separate words,

thus making the word’s connotations heavily dependent

on its original meaning.

Considering that analysis used in this article is pure-

ly lexical and does not use semantics or relations be-

tween parsed words, such as vectors, its proper function

is fully reliant on the connection between the text’s
dictionary and its properties.

Before concluding any further research the proof us-

ing the comparison between loosely related and abso-

lutely similar pairs of books in terms of features is

needed. If this relation and comparison by Jaccard coef-

ficient are correlating, then a further k-medoids cluster-

ing allows us to group books into clusters with some

common features.

All of the scenarios mentioned below use Polish fic-

tion and non-fiction medium-sized books as the test

subjects. Fiction books are sourced entirely from the

public domain and non-fiction books are taken either

from Lublin University of Technology Publishing

House or Journal of Laws of the Republic of Poland.

3.1. Theoretical constraints and implications

Research results require a definition of how lexis

field similarity is represented by the Jaccard similarity

coefficient works. Absolute results i.e. zero and one

correspond to absent and total similarity accordingly,

yet this is irrelevant in practical comparison. Those two

values show one major metric difference between the

two ideal states. In a case when a pair with one definite

book on the left and one arbitrary book on the right it

gets a coefficient value equal to one only when both

lexis fields are identical. But to get zero it can use an

indefinite number of different lexis fields for the second

book all of which will have an unconstrained range of

similarity between themselves.

Thus if 𝑠(𝑎, 𝑏) = 1 and 𝑠(𝑎, 𝑐) = 1 (where 𝑠 is a

function of similarity coefficient and sets 𝑎, 𝑏, 𝑐 are

dictionaries with elements which represent words) are

true then the statement 𝑠(𝑏, 𝑐) = 1 is also true, which

also means that sets 𝑎, 𝑏, 𝑐 are identical. But if 𝑠(𝑎, 𝑏) =0 and 𝑠(𝑎, 𝑐) = 0 are true then the value of 𝑠(𝑏, 𝑐) stays

unknown and can have any value between 0 and 1.

Also, those two states are probably unachievable in

any real scenario. It is highly unlikely for long texts

such as books to have an identical set of words with

alike probabilities of their individual use, even if the

contents of those books are very similar. The abundance

of so-called function words such as conjunctions, prepo-

sitions, pronouns, etc. and the overall tendency to use

high-frequency words makes zero and neighbouring

values of coefficient very unlikely. Those two con-

straints mean that practical absolute values are distanced

from their theoretical counterparts.

During the examination of one or more types of fea-

tures it has to be assured that inside every chosen group

of books there is a unique feature-based connection that

is not present neither between books from different

groups nor inside any other group. Secondly, there is a

problem with feature selection. No characteristic is

unique only to one element of one feature type. It is safe

to assume that most of the literary divisions are inter-

twined with one another. Authorship, time of writing,

publishing house, type of literature, literary style, genre

and an unknown number of other divisions are probably

connected with different but partially similar lexes. It

means that the part of the resulting book’s lexis is not
concatenated from feature lexes but rather superimposed

by their repeating parts, thus augmenting their frequen-

cy.

If the clustering algorithm successfully recreates ini-

tial grouping then there is surely a correlation between

chosen feature likeness and the lexis likeness. However,

it is essential to analyse how coefficients behave inside

and outside the aforementioned groups to prove causa-

tion.

Consequently, two basic terms concerning mean

similarities inside and outside these groups are intro-

duced to draw conclusions regarding levels of similarity

in those scenarios. Background noise similarity is a

mean of all relations for every book pair outside the

groups. In a properly build scenario it will correspond to

a practical minimum for a chosen background feature

field. Similarly, common inner similarity or separate

inner similarities for every group show how much more

similar those books are to the books of respective

groups. The foreground similarity is the difference

between common inner similarity and background

noise. Its resulting value ignores the “noise” of unomit-
table basic vocabulary (function words and most fre-

quent words) and common lexis of chosen background

features. Plain terms background and foreground in this

Journal of Computer Sciences Institute 21 (2021) 316-323

320

article represent sets of similarity indices outside the

groups and inside the groups correspondingly.

Foreground similarity can be also used as a deter-

miner for the most optimal number of clusters for a

chosen scenario. Most clustering algorithms do not have

any effective rules regarding the number of clusters and

it is advised not to impose them but rather select the

number of clusters manually. If the distinction between

background noise and inner similarity is strict enough

and their individual pair values do not deviate from

means too much, then the PAM structuring by distances

will work most efficiently with the right number of

classes. Thus it may allow to automatically select the

best number of clusters by choosing the division with

the biggest resulting foreground similarity. If the sup-

posed division number is not the optimal one, then there

is an issue either with the feature’s elements division or

there is some other unknown stronger feature in play.

3.2. Scenario 1 – Absolute similarities

The first research question of this article asks

whether the comparison between lexis fields allows

spotting differences in their features at all. It is tested by

comparing the similarity between mostly unrelated

books with the similarity between exceptionally similar

books. To do this the program chooses the best possible

conditions to reach both practical absolute coefficient

values.

To reach the practical maximum, books which have

identical features have to be selected. While it seems to

be impossible, there is a way to achieve this by breaking

up one book into two or more parts. These parts will

have the same characteristics as the whole book.

To reach the practical minimum value, a set of

books with a minimal number of common features has

to be selected. However, there is at least one common

feature in this set of books – a mutual type of literature.

Secondly, this feature may be much stronger than any

other feature and thus it has to be examined separately.

Due to an unknown number of probable divisions, it is

very hard to assure that there are no other common

characteristics between chosen books.

But even with the common type of literature and

some other unknown features this scenario still has a

small background feature similarity compared to the

highest achievable foreground feature similarity. If the

degree of lexical differences is greater or roughly equal

between two parts of one book than to a completely

unrelated book, then this method does not work, be-

cause it is probably the biggest possible feature distance

between background and foreground.

Considering how publishers and authors break up

their works into volumes and parts this scenario can use

these two division methods and analyse every volume as

a separate text. Books chosen are the two volumes of B.

Prus’s “Lalka” (99% and 98% coverage), four volumes

of Reymont’s “Chłopi” and all three entries in H. Sien-

kiewicz’s Trilogy – “Ogniem_i_mieczem” (2 vol.),
“Pan Wołodyjowski” (1 vol.) and “Potop” (3 vol.). All

of these books are fiction books and have different

styles, authors and etc.

Figure 2: The result of clustering 11 volumes taken from 2 books and

one trilogy into 3 groups.

As shown in Figure 3, PAM structuring by Jaccard

similarities acquired by dictionary comparison allows to

successfully reassemble volumes into books and book

series. Each cluster has a width between 0.42 and 0.51,

while distances between those groups range between

0.63 and 0.71. Common inner similarity equals 0.53,

while the background noise is 0.33, resulting in a 20%

index difference between background and foreground.

Figure 3: Similarity matrix and division of three groups. The yellow

part shows “Chlopi” volumes, green - “Lalka” volumes and blue -
Sienkiewicz’s Trilogy.

The symmetric similarity matrix (see Figure 4)

shows individual indices for every pair of books in this

scenario. Background sectors are uncoloured and indi-

vidual foreground groups are uniquely coloured.

Heatmap provides a visualisation of Values (see Figure

5) in both background and foreground are stable and

their mean representations show the accurate picture.

Heatmap also shows different static background intensi-

ties for every pair of classes.

Given the results, it is certain that there is a connec-

tion between features and lexis, represented by a distinct

20% difference between minimally and maximally fea-

ture-related books. Static background noise for mainly

Journal of Computer Sciences Institute 21 (2021) 316-323

321

unrelated fiction books ranges from 0.28 to 0.39 with

mean of 0.33. Foreground values are also static and

surprisingly do not range too much in different groups –

only by 8%. That implies that differences between book

volumes and entries of book series have the same de-

gree.

Figure 4: Similarity matrix heatmap.

3.3. Scenario 2 – Author differentiation

The second question is whether this tendency of

starker lexical likeness remains between the works of

one author compared to the works written by other au-

thors. This scenario targets supposedly the heaviest

factor after literature type which influences the book’s
lexis. To examine this factor three classic Polish authors

were selected – Bolesław Prus (7 books), Władysław

Reymont (9 books) and Henryk Sienkiewicz (10 books).

H. Sienkiewicz’s books include all three books of his
Trilogy as a reference to absolute levels of similarity.

W. Reymont’s books also include the “Rok 1794” trilo-

gy, which probably exhibits similar behaviour.

Clustering algorithms mainly recreated supposed di-

vision (see Figure 6) but misplaced three of Reymont’s
books and one Sienkiewicz’s book into Prus’s cluster.
While background noise remains exactly the same

(33%) the foreground equals only 40% thus 13% shorter

than the practical maximum acquired in the first scenar-

io (53%). It is obvious that the anomaly occurred inside

Reymont’s cluster, which has only 36,5% compared to

40-42% of two other clusters.

Differences shown in the heatmap (see Figure 6) are

not as distinct as in scenario 1 though the background

has similar values. An excerpt of high values inside

Sienkiewicz’s Trilogy (positions 19-21) contrasts with

his other books (17-26), which in turn is bordered by

smaller background values. Higher values also separate

Prus’s books (1-7) from the background, but it seems

that the three next books (8-10) which belong to Rey-

mont are also part of this cluster. Recreated Prus’s clus-

ter holds all these books and also one book written by

Reymont (17). All other Reymont’s books have an
anomaly causing much lower background (less than

30%) and even foreground values around them. The

only exceptions are between books from the “Rok
1794” trilogy. Background values between Prus’s and
Sienkiewicz’s clusters are higher (36%) and are harder
to separate from their inner similarities (40-42%).

Figure 5: The result of clustering 26 books into 3 classes.

Figure 6: Similarity matrix heatmap. 1 to 7 are Prus’s books, 8 to 16 –

Reymont’s books and 17 to 26 are Sienkiewicz’s books.

Overall while Prus’s and Reymont’s clusters have
predictable values, which are at least 4% higher inside

them, Reymont’s works display a much stronger dis-

tance between themselves and to every other book,

excluding his early works (8: “Komediantka”, 9: “Fer-

menty”, 10: “Ziemia obiecana”) which still obey afore-

mentioned tendencies. It may be caused by Reymont’s
ability to change his style and lexis selection according

Journal of Computer Sciences Institute 21 (2021) 316-323

322

to his needs resulting in nearly background-level like-

ness between his books or just by the use of enormous

vocabulary replacing a lot of more commonplace syno-

nyms which causes anomalously low background levels.

Anyway W. Reymont is known for his thematically,

literary and valuably diverse works.

3.4. Scenario 3 – Types of literature differentiation

The third research question reviews one of the most

popular beliefs about language reading and comprehen-

sion difficulty. Non-fiction literature, especially aca-

demic one is believed to be much more demanding to its

reader due to a great amount of subject-specific termi-

nology and more sophisticated academic or professional

writing.

Figure 7: The result of clustering fiction and two types of non-fiction

literature into three separate classes.

Figure 8: Similarity matrix heatmap. 1 to 6 are codes of law, 7 to 12 –

fiction books and 13 to 16 are textbooks.

This scenario compares three sets of books – namely

six works of legal literature, six fiction books and four

textbooks. All of these books have diversified features,

such as different authors or different fields for text-

books.

As shown in Figure 7 clustering had successfully

recreated the supposed three groups with 15% of fore-

ground similarity. Inner similarities are falling from

30% inside fiction books through 22% between legal

documents down to 18% for textbooks but stay signifi-

cantly higher than static 11% background noise. These

conclusions can be drawn also from heatmap visualisa-

tion in Figure 8.

4. Conclusions

The research concluded in this work indicates that lexi-

cal similarity can be used to state “feature” distance,

starting from the type of literature, author and ending

with genres and styles. Thus the compact hypothesis for

books’ classes and features is proved.
The first scenario analyses how the greatest and the

smallest achievable values for the similarity between

two arbitrary fiction books correlate with nonexistent

and absolute feature similarity. Background for nonex-

istent similarity is 33% when inner similarity goes

above 50%.

The second scenario that evaluates books written by

different authors shows that in most cases their works

can be recognised by more than 5% of foreground simi-

larity. This relation works unless these authors specifi-

cally use much more distinct lexis for every other work

as W. Reymont did.

The third scenario shows a successful attempt to

separate fiction books, textbooks and legal literature

apart. The practically featureless background shows an

astonishing 11% similarity which breaks the practical

minimum achieved in the first scenario by 22%. It also

displays significant differences in similarity coefficients

inside these three classes.

Fiction books appear to have a much bigger tenden-

cy to share common lexis. Also, it is possible to differ-

entiate types of further divisions inside this group.

Practical absolute similarity values found in this re-

search are 11% for absent feature similarity (including

the type of literature) and 53% for an identical set of

features. Thus there is a 42% of similarity coefficient

range available for research.

The solution presented in this article allows to do

basic analysis concerning most outstanding features, but

many steps taken in this article can be refined for better

results including a more precise dictionary with a better

lemma selection procedure and more appropriate simi-

larity coefficient. This is not limited to the Polish lan-

guage and requires only a change of dictionary complete

with declensions and respective lemmas to analyse texts

in other languages. Lexis-feature relation appears to be

a promising field for further thorough research.

References

[1] R. Singh, S. Singh, Text Similarity Measures in News

Articles by Vector Space Model Using NLP, Journal of

The Institution of Engineers (India): Series B 102 (2021)

329–338.

Journal of Computer Sciences Institute 21 (2021) 316-323

323

[2] A. Huang, Similarity Measures for Text Document

Clustering, Proceedings of the Sixth New Zealand

Computer Science Research Student Conference 4 (2008)

49–56.

[3] M. B. Magara, S. O. Ojo, T. Zuva, A Comparative

Analysis of Text Similarity Measures and Algorithms in

Research Paper Recommender Systems, 2018

Conference on Information Communications Technology

and Society (2018) 1–5.

[4] A. W. Qurashi, V. Holmes, A. P. Johnson, Document

Processing: Methods for Semantic Text Similarity

Analysis, In 2020 International Conference on

INnovations in Intelligent SysTems and Applications

(2020) 1–6.

[5] W. H. Gomaa, A. A. Fahmy, A Survey of Text Similarity

Approaches, International Journal of Computer

Applications 68 (2013) 13–18.

[6] S. Bekmirzaev, T. H. Kim, B. C. Lee, Pairwise Similarity

Analysis and Quality Estimation on Classical Chinese

Poetry of Ancient Korea in 15th Century, International

Journal of Applied Engineering Research 12 (2017)

13884–13890.

[7] D. M. Kaplan, D. M. Blei, A Computational Approach to

Style in American Poetry, In Seventh IEEE International

Conference on Data Mining (2007) 553–558.

[8] C. D. Manning, H. Schütze, Foundations of Statistical

Natural Language Processing, MIT press, 1999.

[9] R. Grishman, Computational Linguistics: An

Introduction, Cambridge University Press, 1986.

[10] R. Grzegorczykowa, R. Laskowski, H. Wróbel,
Gramatyka współczesnego języka polskiego. Morfologia,

Wydawnictwo Naukowe PWN, 1999.

[11] S. Niwattanakul, J. Singthongchai, E. Naenudorn, S.

Wanapu, Using of Jaccard Coefficient for Keywords

Similarity, In Proceedings of the International

Multiconference of Engineers and Computer Scientists 1

(2013) 380–384.

[12] L. Kaufman, P. J. Rousseeuw, Finding Groups in Data:

An Introduction to Cluster Analysis, John Wiley & Sons,

2009.

[13] Słownik języka polskiego, https://sjp.pl, [18.09.2021].

https://sjp.pl/

