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Abstract 

Empirical data of sigmoidal-shaped y(t) growth behavior of different types of items, such as papers and citations earned by individual 

and all successively published papers of selected top-cited authors, germination of tomato seeds and three different bacteria, are 

analyzed and compared by AvramiWeibull, Verhulst (logistic) and Gompertz functions. It was found that: (1) AvramiWeibull 

function describes different types of the data better than Gompertz and Verhulst funtions, and (2), in comparison with Verhulst and 

Gompertz functions, AvramiWeibull function, expressed in the form: y(t)/ymax = 1exp[(t/)q] (where ymax is the maximum value of 

y(t) when t  , and  and q are constants), is equally very versatile in explaining the generation rate dy(t)/dt of items in terms of its 

parameters  and q. Using the basic concepts involved in the derivation of AvramiWeibull function for overall crystallization from 

melt and supersaturated solution, the growth behavior of cumulative number y(t) of items produced at time t by individual (simple) 

sources and collectives or groups of simple sources (i.e. complex or composite sources) is presented. Comparison of the process of 

receiving of citations by papers with the processes of occurrence of chemical reactions and crystallization of solid phases from melts 

and supersaturated solutions shows that this process is similar to that of overall crystallization of solid phases from melts and solu-

tions. Analysis of growth of citations using AvramiWeibull function to individual papers published by different authors shows that 

1 < q < 4 for most cases. This suggests that the process of citations to individual articles is mainly determined by progressive nuclea-

tion mode involving both diffusion and integration of published knowledge. 

Keywords: AvramiWeibull function; Gompertz and Verhulst functions; Growth behavior of items; Citation analysis 

Streszczenie 

Przeanalizowano i porównano stosowalność funkcji Avrami’egoWeibulla, Verhulsta (logistycznej) i Gompertza do empirycznych 

danych sygmoidalnego przebiegu wzrostu y(t) takich różnorodnych podmiotów jak: liczba artykułów i cytowań otrzymywanych 
przez pojedyncze i wszystkie kolejne artykuły publikowane przez wybranych wysoko cytowanych autorów, liczba kiełkowań nasion 
pomidorów i liczba trzech różnych bakterii. Zaobserwowano, że: 1) funkcja Avrami’egoWeibulla opisuje różne dane lepiej niż 
funkcje Gompertza i Verhulsta, oraz 2) w porównaniu z funkcjami Verhulsta i Gompertza, funkcja Avrami’egoWeibulla, wyrażona 
w postaci: y(t)/ymax = 1exp[(t/)q] (gdzie: ymax jest maksymalną wartością y(t) gdy t  , oraz  i q są stałymi), jest równie 
wszechstronna w wyjaśnieniu szybkości wytwarzania dy(t)/dt wyżej wymienionych podmiotów przy pomocy parametrów  i q. 

Korzystając z podstawowych pojęć zawartych w wyprowadzeniu równania  Avrami’egoWeibulla do opisania całkowitej krystaliza-

cji z fazy roztopionej i z roztworu przesyconego, przedstawiono przebieg wzrostu kumulacyjnej liczby y(t) podmiotów wytwarza-

nych w czasie t poprzez pojedyncze (proste) źródła i zbiory lub grupy pojedynczych źródeł (tj. złożonych źródeł). Porównanie proce-

su otrzymywania cytowań przez artykuły z procesami występowania reakcji chemicznych i krystalizacji ciał stałych ze stopów i 
roztworów przesyconych pokazuje, iż proces ten jest podobny do całkowitej krystalizacji ciał stałych ze stopów i roztworów. Analiza 

wzrostu cytowań według równania Avrami’egoWeibulla pojedynczych artykułów publikowanych przez różnych autorów pokazuje, 
że w większości przypadków 1 < q < 4. Z powyższego można wnioskować, że proces cytowania pojedynczych artykułów zachodzi w 
głównej mierze przez zarodkowanie progresywne oparte na dyfuzji i integracji opublikowanej wiedzy. 

Słowa kluczowe: Funkcja Avrami’egoWeibulla; Funkcje Gompertza i Verhulsta; Przebieg wzrostu podmiotów; Anali-

za cytowań 

*Corresponding author (Emeritus Professor). 

Email address: k.sangwal@pollub.pl (K. Sangwal) 

©Published under Creative Common License (CC BY-SA v4.0) 

 

1. Introduction 

Since the World War II the scientific literature has wit-

nessed steady growth of scientific research due to its 

increasing scope and volume. As measures of growth of 

the scientific literature one can mention the number of 

authors working in different scientific fields, the number 

of articles published in different fields, the number of 

journals published in different scientific disciplines, the 

number of papers published in individual journals, and 

the number of journals published in individual count-

ries. Three types of growth of cumulative number y(t) of 

items with time t are observed: (1) normal S-shaped 

plots with initial convex curvature followed by concave 

curvature, (2) inverse S-shaped plots with initial con-

cave curvature followed by convex curvature, and (3) 

linear plots of y(t) data. In order to describe the growth 

behavior of the above type of plots a variety of mathe-
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matical functions involving empirical parameters have 

been developed and applied over years [18]. Among 

the different equations to describe the growth behavior 

of various phenomena, power-law, exponential and 

logistic (also called Verhulst’s) functions are commonly 
used but Gompertz’ function has also been reported [2]. 

In his classic work, Price [1] observed that in many 

cases the growth of science follows exponential depen-

dence. In a detailed study devoted to the analysis of 20 

different databases in humanities, social sciences, and 

science and technology (Sci-Tech), Egghe and Ravi-

chandra Rao [2] found that the power-law function with 

an exponent greater than 1 is the best for Sci-Tech data-

bases, whereas Gompertz’ function, which is a generali-
zation of exponential function, is the best to describe the 

growth of social sciences and humanities databases. 

Gupta et al. [4] applied selected functions to the data of 

cumulative growth of publications in six sub-disciplines 

of social sciences in the world and found that the power-

law and logistic functions are the best to describe the 

growth of publications in the above sub-disciplines. 

Ravichandra Rao and Srivastava [5] analyzed the 

growth of journals, articles and authors in malaria re-

search for the period 1955–2005 and found that the 

exponential function best fits the data. Wong and Goh 

[6] applied three competing growth functions, namely, 

simple logistic growth function, bi-logistic growth func-

tion and logistic function within a dynamic carrying 

capacity (LGDCC) to explain the growth behavior of 

the number of publications and patents of South Korea, 

Taiwan, Japan and Malaysia. These authors found that 

the bi-logistic growth function is the best for the number 

of publications as well as the number of patents of 

South Korea and Taiwan, the LGDCC function for the 

number of publications and the bi-logistic growth func-

tion for the number of patents of Japan, whereas the 

LGDCC for the number of publications and simple 

growth function for the number of patents of Malaysia. 

Description of growth of a scientific phenomenon 

using mathematical functions is important for under-

standing their course in terms of the parameters of the 

functions and for predicting future trends. The values of 

the parameters of different functions are especially 

important for understanding the cause-and-effect rela-

tionship of the course of the phenomena. However, 

apart from fitting empirical data using various mathe-

matical functions, sometimes erroneously called model-

ing [3,4], in the informetric literature there are several 

studies devoted to the statistical modeling of citation 

behavior of publications of individual authors [9-15] 

and to the theoretical development of statistical formu-

las for citation distribution [16,17]. In these models, the 

papers published by an author and the citations received 

by the papers are generated according to some statistical 

function. For example, in his stochastic model, Burrell 

[9-12] assumed that: (1) papers are published by an 

author according to a Poisson process at a constant rate, 

(2) citations to a paper are received according to a Pois-

son process at a constant rate, and (3) citation rate of the 

papers for the author varies according to gamma distri-

bution. In order to describe the time dependence of 

growth of cumulative citations of papers published by 

an author, Hirsch [18] proposed a deterministic model 

based on stretched exponential with exponent q  1 (see 

Eq. (13)). In the case of a researcher publishing a con-

stant number of papers and each paper fetching a fixed 

number of citations per year every subsequent year, 

stochastic and deterministic models predict approxi-

mately quadratic growth of the total number of his/her 

citations with publication time [11,18]. 

Application of various mathematical functions is 

not confined to describe growth of scientific literature 

alone. For example, logistic function and its modifica-

tions, Gompertz function and its modifications, and 

standard AvramiWeibull function have been used in 

diverse areas such as various bacterial growth in differ-

ent media (for example, see: refs. [19-30]), population 

growth of individual biological species (for example, 

see: ref. [31]), growth of Tumor cells [32,33], germina-

tion of seeds [34], and overall crystallization of various 

compounds (for example, see: [35-37]). However, 

among these functions, AvramiWeibull function has 

been applied for the data analysis in relatively few stud-

ies [19,24,27,36,38]. In these studies this function is 

referred to as Weibull function.  

The aim of the present study is two-fold: (1) to 

compare best fits of data of the growth behavior of dif-

ferent types of items by AvramiWeibull, Verhulst and 

Gompertz functions, and (2) to analyze the growth of 

cumulative papers N(t) by an author and cumulative 

citations L(t) of his/her individual as well as progres-

sively published papers, with special emphasis on their 

sigmoidal-shaped growth, as a function of time t using 

AvramiWeibull function. Since the two fitting parame-

ters of the AvramiWeibull function as used in overall 

crystallization have well-defined physical interpretation, 

an additional aim of the study is to demonstrate that the 

process of growth of scientific literature is similar to 

overall crystallization from melts and solutions but 

differs fundamentally from chemical reactions described 

by chemical kinetics. The general concepts of occur-

rence of chemical reactions and formation of crystalliza-

tion nuclei are briefly presented.   

In the paper the following topics are discussed: (1) 

presentation of standard AvramiWeibull, Verholst and 

Gompertz equations for the growth of items with time, 

(2) analysis of growth of different phenomena using 

AvramiWeibull, Verholst and Gompertz functions in 

order to compare best fit of the data and then using 

AvramiWeibull function examination of the effect of 

external factors on the growth of these phenomena, (3) 

description of basic concepts involved in the generation 

of items and their growth as a function of time in the 

form of AvramiWeibull function, (4) predictions of 

AvramiWeibull function on the growth and growth 

rate behavior of citations of papers in relation to chang-

es in its parameters  and q and their confrontation with 

the empirical data of the dependence of yearly citations 

of all successively published papers and four individual 

top-cited papers of two highly-cited authors, and (5) 
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summary of the main findings of the study. Moreover, 

in order to introduce the reader to the topics discussed in 

the paper rudiments of occurrence of chemical reactions 

and crystallization, basic concepts of overall crystalliza-

tion and comparison of predictions of different func-

tions are briefly described in Appendices A, B and C, 

respectively.  

2. Relevant mathematical functions 

In order to describe the S-shaped curves observed for 

different phenomena we selected AvramiWeibull, 

Verhulst (logistic) and Gompertz functions relating the 

growth of cumulative number y(t) of items with time t. 

According to the AvramiWeibull function the relation-

ship between y(t) and t is given by (for example, see: 

refs. [27,39,40])    
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where ymax is the value of y(t) when t  , and  and q 

are constants. The constants  and q are called the loca-

tion and shape factors, respectively [27]. 

According to the Verhulst (logistic) function the 

cumulative number y(t) of items is of the form (for ex-

ample, see: refs. [2,22,23,25,41,42]) 
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where y0 is the number of items at t = 0, the maximum 

number of items ymax is the so-called carrying capacity, 

and  is the so-called Malthusian instantaneous growth 

rate parameter. According to the Gompertz function the 

relationship between y(t) and t is given by (for example, 

see: [2,42-44]) 
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where  and c are fitting parameters.  

For situations when t « , AvramiWeibull equa-

tion (1) takes the power-law form: 

q
t
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 max)( ,             (4) 

which takes a linear form when q = 1. The notation “«” 
denotes that the time t is much smaller than the time 

constant . Note that, for ct « 1, Gompertz function (3) 

reduces to the form of AvramiWeibull function (1), i.e.  

 )exp(1)( max tyty  .    (5) 

when q = 1 and  = 1/. For t « 1, Eq. (5) reduces to 

the linear form of Eq. (4).  

The above functions (1), (2) and (3) of growth of 

cumulative number y(t) of items with time t describe 

cumulative distribution function F(t) = y(t)/ymax and 

frequency density function f(t) = dF(t)/dt = 

[dy(t)/dt]/ymax, where ymax is the maximum number (sat-

uration limit) of items. These functions represent origi-

nal versions of the three models and the differential 

dy(t)/dt may be considered as rate of growth of y(t) 

items whereas [dy(t)/dt]/ymax as dimensionless rate. As 

mentioned in the Introduction, various modified ver-

sions of Verhulst (logistic) and Gompertz models have 

been proposed in the literature to explain real y(t) data 

satisfactorily but until now the AvramiWeibull func-

tion has been used in its original version. It is beyond 

the scope of this paper to discuss the modified versions 

of different models.  

3. Analysis of growth behavior of different items 

The growth data were analyzed using commercially 

available “Origin 9.1” package. This package employs 
nonlinear least-squares fitting of the data and yields 

values of the fitting parameters of an equation, their 

standard deviations, chi-square (2
) residual and the 

corresponding goodness-of-the-fit parameter Ry
2
. 

For the analysis we used typical examples of data 

on the cumulative growth of papers and citations earned 

by individual and all successively published papers, up 

to 2013, of selected top-cited authors reported by 

Chuang and Ho [45] and data on the growth behavior of 

different phenomena such as germination of seeds, three 

different bacteria, and overall crystallization of poly-

propylene. The basic bibliometric data of the selected 

authors comprised cumulative number N(t) of papers of 

J. Felsenstein, cumulative number L(t) of citations re-

ceived by two top-cited papers of D.R. Cox and cumula-

tive number L(t) of citations received by four top-cited 

papers and by all papers published by U.K. Laemmli, 

taking publication and citation duration t = YY0, with Y 

and Y0, as the years corresponding, respectively, to t and 

t = 0. The data were collected during 20-25 October 

2014 from the Thomson Reuters’ Web of Knowledge 
database. The growth data on the other phenomena were 

collected from the published literature.   

3.1. Some specific examples of growth behavior of items 

and their analysis by different functions 

Figures 1a and 1b show examples of the plots of cumu-

lative number N(t) of papers of Felsenstein and cumula-

tive number L(t) citations of top-cited papers of Cox 

with time t, respectively, exhibiting S-shaped curves. In 

the figures solid, dashed and dotted curves are drawn 

according to AvramiWeibull, Verhulst and Gompertz 

functions, respectively, with the best-fit values of pa-

rameters given in Tables 13.  

From the values of goodness-of-the-fit parameter Ry
2
 

listed in these tables it may be noted that Avrami 
Weibull function fits the data better than Verhulst and 

Gompertz functions. As seen from the best-fit plots of 

the data according to Verhulst function (2), noticeable 

deviations in the fit of the data are encountered in the 

initial and later stages.  However, the fit improved when  
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Figure 1: Example of evolution of (a) cumulative number N(t) of 

papers of Felsenstein and (b) cumulative number L(t) citations of top-

cited papers of Cox with time t showing S-shaped curves. Solid, 

dashed and dotted curves represent plots according to Av-

ramiWeibull, Verhulst and Gompertz functions, respectively, with 

the best-fit values of parameters given in Tables 13.  

 

the initial y(t) corresponding to Y0 was taken as C > 0 

(see Tables 2 and 3). 
Figure 2 illustrates a typical example of the plots of 

cumulative number L(t) of citations of all progressively 

published papers and the top-cited paper of Laemmli 

with time t showing S-shaped curves. As in Figure 1, 

solid, dashed and dotted curves represent plots accord-

ing to AvramiWeibull, Verhulst and Gompertz func-

tions, respectively, with the best-fit values of parameters 

given in Tables 13. The last three steeply rising points 

of the data beyond the arrow were excluded from analy-

sis. 

The values of the goodness-of-the-fit parameter Ry
2
 

given in Tables 13 again show that AvramiWeibull 

function fits the data better than Verhulst and Gompertz 

functions which show similar Ry
2
 parameter. As in the 

plots of Figure 1, noticeable deviations in the plots are 

encountered in the initial and later stages of the data. 

Figure 3 shows the evolution of germination of cu-

mulative number N(t) of unirradiated and irradiated 

tomato seeds at 15 
o
C with time t. Solid, dashed and 

dotted curves represent plots according to AvramiWei-

bull, Verhulst and Gompertz functions, respectively, 

with the best-fit values of parameters given in Tables 

13. As seen from the values of the Ry
2
 parameter, the 

N(t) data are best described by AvramiWeibull func-

tion but worst by Verhulst function. This poor fit is 

mainly due to the fact that, apart from large deviations 

from the fit at t > 200 h, according to this relation N0 > 0 

at t = 0 but according to the original N(t) data N0 = 0.  
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Figure 2: Example of evolution of cumulative number L(t) of citations 

of all progressively published papers and the top-cited paper of 

Laemmli with time t showing S-shaped curves. Solid, dashed and 

dotted curves represent plots according to AvramiWeibull, Verhulst 

and Gompertz functions, respectively, with the best-fit values of 

parameters given in Table 1. The last three points of the data were 

excluded from analysis. 
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Figure 3: Evolution of germination of cumulative number N(t) of 

unirradiated and irradiated tomato seeds at germination temperature T 

= 15 oC with time t showing S-shaped curves. Solid, dashed and 

dotted curves represent plots according to AvramiWeibull, Verhulst 

and Gompertz functions, respectively, with the best-fit values of 

parameters given in Table 1. Original data from Gładyszewska [34].  
 

The above examples show that AvramiWeibull 

function (1), in general, describes different types of the 

data better than Gompertz and Verhulst functions. 

Keeping in view the fact that AvramiWeibull relation 

(1) describes the time dependence of cumulative cita-

tions L(t) received by individual papers better than the 

other two functions, the L(t) data of three subsequently 
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Table 1: Values of parameters of Verhulst equation (2) 

Data Source ymax y0  t0   2 Ry2 
 

N(t) Felsenstein, papers 106.8 6.62 0.1459 1965 yr 7.163 0.9947 

L(t) Cox, paper 2 7461 414.1 0.1963 1977 yr 35809 0.9947 

 Cox, paper 1 29798 314.6 0.1700 1973 yr 151915 0.9983 

 Laemmli, paper 1 204971 1662 0.2134 1970 yr 7.3730106 0.9987 

 Laemmli, all papers 227048 1680 0.2096 1969 yr 1.0013107 0.9986 

N(t) Tomato, 15oC, unirra 644.8 34.63 0.0577 90 h 494.41 0.9909 

 Tomato, 15oC, irra 653.0 43.73 0.0609 90 h 566.76 0.9892 
  

a Abbreviations: unirr – unirradiated; irr – irradiated; Tomato – tomato seed germination. 

 

Table 2: Values of parameters of Gompertz equation (3) 
 

Data Source C ymax 103 102c t0   2 Ry2 
 

N(t) Felsenstein, papers 2 103.6 17.23 6.87  1965 yr 5.595 0.9958 

L(t) Cox, paper 2 23 7391 24.23 8.73  1977 yr 14515 0.9978 

 Cox, paper 1 9 27189 3.53 12.49 1973 yr 229894 0.9975 

 Laemmli, paper 1 4 195749 3.88 14.72 1970 yr 2.282107  0.9962 

 Laemmli, all papers 2 216577 3.50 14.57 1969 yr 3.021107  0.9959 

N(t) Tomato, 15oC, unirra 0 646.6 7.14 2.46  90 h  432.75  0.9920 

 Tomato, 15oC, irra 0 658.8 9.69 2.20  90 h  482.23  0.9908 
 

a Abbreviations: unirr – unirradiated; irr – irradiated; Tomato – tomato seed germination. 

 

Table 3: Values of parameters of AvramiWeibull equation (1) 
 

Data Source C ymax   q t0   2 Ry2 
 

N(t) Felsenstein, papers 2 109.7 24.2 yr 1.766 1965 yr 1.591 0.9988 

L(t) Cox, paper 2 23 7864 18.2 yr 1.706 1977 yr 607.2 0.9999 

 Cox, paper 1 9 31655 31.3 yr 2.888 1973 yr 16960 0.9998 

 Laemmli, paper 4  1 963.5 16.4 yr 2.083 1971 yr -- 0.9997 

 Laemmli, paper 3  16 3743 17.4 yr 1.784 1974 yr -- 0.9983 

 Laemmli, paper 2  16 5670 11.2 yr 1.667 1977 yr -- 0.9996 

 Laemmli, paper 1  4 203935 25.2 yr 3.193 1970 yr 8.7679105 0.9998 

 Laemmli, all papers  2 225782 26.0 yr 3.258 1969 yr 1.5617106 0.9998 

N(t) Tomato, 15oC, unirra  0 658.5 60.0 h 1.758 90 h 91.20 0.9983 

 Tomato, 15oC, irra  0 669.1 53.2 h 1.614 90 h 157.35 0.9970 
 

a Abbreviations: unirr – unirradiated; irr – irradiated; Tomato – tomato seed germination. 

 
 

top-cited papers (i.e. papers 2, 3 and 4) were analyzed 

by using Eq. (1). The best-fit parameters for these data 

are included in Table 3. It is interesting to note that the 

values of the time constant  and the exponent q differ 

widely among the individual papers but their values for 

the combined cumulative L(t) citations of all papers are 

higher than those for the citations of individual papers. 

This observation is consistent with the modeling of 

items in a previous paper [39]. 

     The above analysis shows that AvramiWeibull 

function (1) can be used to describe the data of growth 

behavior of both abstract (imaginary) items such as 

papers published by an author and citations received by 

his/her individual and all successively published papers 

as well as material (real) items such as germination of 

seeds and bacteria. 

3.2. Effect of temperature on the growth behavior of 

material items 

Every plot of the growth of cumulative number y(t) of 

items against time t is characterized by three parame-

ters: dimensionless growth rate R = dy/ymaxdt deter-

mined from the linear part of a y(t)/ymax plot, time lag t0 

corresponding to the onset of initial growth, and time 

constant  when the rate R reaches a maximum value. 

In the case of growth of material items such as bacteria, 

it is usually observed that the growth rate R increases 

whereas the time lag t0 and the time constant  decrease 

with increasing temperature T. Some typical examples 

of the effect of temperature on these parameters are 

presented below.  
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Figure 4: Evolution of germination of cumulative number N(t) of 

unirradiated tomato seeds at different T with time t showing S-shaped 

curves. Curves represent plots according to AvramiWeibull function 

with the best-fit values of parameters given in Table 1. Original data 

from Gładyszewska [34]. 
 

Figure 4 shows, as an example, the evolution of 

germination of cumulative number N(t) of unirradiated 

tomato seeds at different temperature T with time t 
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showing S-shaped curves. Germination temperature T 

given in the figure is in 
o
C. Curves represent plots ac-

cording to AvramiWeibull function (1) with the best-

fit values of parameters given in Table 4. A similar 

behavior was observed in the case of germination of 

irradiated seeds by specific dose of  radiation. The 

best-fit parameters for these data are included in Table 

4. 

It may be seen from Table 4 that, irrespective of the 

initial irradiation treatment, at every germination tempe-

rature there is a time lag t0 for germination. With an 

increase in temperature, this time lag t0 shows a general 

decreasing trend. The time constant  also shows a 

similar decreasing trend up to 30 
o
C and then it increas-

es to a high value at 35 
o
C. In contrast to the trends of 

time lag t0 and time constant , the exponent q initially 

increases from a relatively low value at 15 
o
C, then 

attains a maximum at 25 
o
C and subsequently at 35 

o
C 

decreases to a value even lower than that at 15 
o
C.     

 

 

Table 4: Values of parameters Nmax, , q and t0 of AvramiWeibull 

equation for N(t) data of tomato seed germination  
 

Samplea T (oC) Nmax  (h) q t0 (h) 

Unirradiated 15 658.5 60.06 1.758 90  

  20 635.6 25.03 2.291 50 

  25 629.5 24.66 3.611 15 

  30 557.5 21.80 1.874 26   

  35 37.8 57.07 1.720 15  

Irradiated 15 669.1 53.17 1.614 90  

  20 682.1 23.17 1.626 50  

  25 660.9 22.90 3.448 15  

  30 559.4 27.00 2.328 20  

  35 73.6 61.29 1.103 5  

 
Examination of the plots of the germination of both 

unirradiated and irradiated cumulative number N(t) of 

seeds as a function of germination time t reveals that the 

seed germination rate R = dN/Nmaxdt, determined from 

the linear parts of the N(t) plots, initially increases from 

a relatively low value at 15 
o
C, then attains a maximum 

at 25 
o
C and subsequently at 35 

o
C decreases to a value 

even lower than that at 15 
o
C. This trend is similar to 

that followed by the temperature dependence of the 

exponent q. 

The effect of temperature on time lag t0 and time 

constant  is not confined to germination of tomato 

seeds alone. The effect of temperature is observed, 

among others, on various bacterial growth in different 

media (for example, see: refs. [19-23, 25-30]), and pop-

ulation growth of individual biological species (for 

example, see: ref. [31]).  

Data on the parameters  and q of AvramiWeibull 

function for two toxin-producing Bacillus cereus (BC) 

and Escherichia coli (EC) microorganisms in carrot 

broth obtained at different temperatures have been re-

ported by Fernandez et al. [19] and Aragao et al. [27], 

respectively. From these studies one observes that  

decreases with an increase in temperature in the temper-

ature range investigated in the growth of the micro-

organisms. However, the values of q suggest that it is 

independent of temperature. These trends of  and q are 

somewhat different from those observed in the case of 

germination of tomato seeds.  

Growth behavior of various bacteria in different 

media under different experimental conditions such as 

temperature and pH has been analyzed in several studies 

using different functions [21,23,29,30]. In these studies 

microorganism cell concentration at time t, concentra-

tion at t = 0, and their maximum concentration, denoted 

by y(t), y0 and ymax, respectively, in Eqs. (1)-(3), are 

customarily expressed in log(cfu mL
1

). Examination of 

the data of the growth rates R = dy/ymaxdt of various 

microorganisms grown at different temperatures shows 

that their value increases with increasing temperature 

and that, at a particular temperature, the rate R is fre-

quently inversely related to the time lag t0, with a pro-

portionality constant K characteristic of the bacte-

riamedium system, which lies between 1 and 3 (cf. 

refs. [21,29]). In the case of tomato seeds this inverse 

relationship between time lag t0 for germination and 

growth rate R is observed up to 25 
o
C. Obviously, here 

the trend at temperatures of 30 and 35 
o
C is anomalous. 

A possible explanation of this anomalous trend in the 

germination of tomato seeds is associated with differ-

ences in the kinetics of testa and endosperm ruptures 

during germination [46,47].  

We assume that the dependence of germination rate 

R of tomato seeds in the sand and growth rates R of 

microorganisms in different media are instances of 

chemical reactions with reaction rate constants k de-

scribed by Arrhenius-type relation (A3) and that the 

time lag t0 and time constant  for germination of toma-

to seeds and growth of microorganisms are inversely 

proportional to the reaction rate constant k with a pro-

portionality constant K. Then from Eq. (A3) the de-

pendence of rate constant k, and time lag t0 and time 

constant  on temperature T, taken in Kelvin, may be 

described by  

TR

G
Ak

G

0

Rlnln


 ,    (6) 

TR

G

A

K
t

G

0

R
0 ln,ln








 ,    (7) 

respectively. Here GR
0
 is the energy difference be-

tween reactants and products, all in their respective 

ground states, A is the frequency factor, and RG is the 

gas constant. These relations predict linear dependences 

between lnk or lnt0, and 1/T, with intercept lnk or 

ln(K/A) and slope GR
0
/RG, which enables to calculate 

frequency factor A or relative frequency factor A/K and 

activation energy GR
0
 for the reaction. 

Figure 5a shows the dependence of growth rate R, 

taken as a measure of rate constant k, of different bacte-

ria on temperature T according to relation (6). To facili-

tate a comparison of the trends of the dependence ac-

cording to Eq. (6) with those of the dependence of lnt0 

and ln on 1/T according to Eq. (7), the R(T) data are 

shown as plots of lnR against 1/T. The original data for 

Listeria monocytogenes (LMC) in 2% milk and 12 and 
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30% milk creams are from Lobacz and Kowalik [30], 

for Yersinia enetrocolitica in Camembert-type cheese 

from Kowalik and Lobacz [29], for Bacillus cereus 

AVTZ415 (BC 415) and AVZ421 (BC 421) in nutrient 

carrot broth and for Bacillus cereus AVTZ415 (BC 415) 

in natural carrot broth from Valero et al. [21], and for 

Escherichis coli (EC) in nutrient broth from Fujikawa et 

al. [23]. In view of large scatter in the values of R for 

LMC in different samples of milk cream and for BC in 

different broths the data for LMC in 12% milk cream 

and BC 415 in neutral carrot broth were fitted according 

to Eq. (6) with the best-fit values of intercept lnA and 

slope GR
0
/RG listed in Table 5. The values of A and 

GR
0
 calculated from the above parameters are included 

in the table. 
Figure 5b illustrates the plots of lnt0 for germination 

of unirradiated and irradiated tomato seeds and for 

growth of different bacteria as a function of 1/T accord-

ing to Eq. (7). The data of time lag t0 for the germina-

tion of tomato seeds were obtained from the original 

cumulative N(t) data reported by Gładyszewska [34] 
using AvramiWeibull (AW) function (present author) 

and Verhulst/logistic) (V/log) function by 

Gładyszewska [34], whereas those for the growth of 
Listeria mono-cytogenes (LMC) in milk are from Lo-

bacz and Kowalik [30], for Yersinia enetrocolitica (YE) 

in Camembert-type cheese from Kowalik and Lobacz 

[29], and for Bacillus cereus AVTZ415 (BC 415) and 

AVZ421 (BC 421) in nutrient carrot broth and for Ba-

cillus cereus AVTZ 415 (BC 415) in natural carrot 

broth from Valero et al. [21]. For tomato germination 

and bacteria growth in carrot broth linear plots are 

drawn for the data obtained by AvramiWeibull func-

tion of unirradiated tomato seeds and for Bacillus cereus 

AVTZ415 with the best-fit values of intercept ln(K/A) 

and slope GR
0
/RG given in Table 5. The calculated 

values of A/K and GR
0
 for different growths are also 

listed in Table 5. 

Figure 5c shows the dependence of time constant  

for growth of three different bacteria on temperature T 

according to Eq. (7). The original data for Bacillus ce-

reus AVTZ415 (BC 415) and AVZ421 (BC 421) in 

neutral carrot broth are taken from Fernandez et al. [19] 

and for Escherichis coli (EC) in nutrient broth are from 

Aragao et al. [27]. The best-fit plots of the data accord-

ing to relation (7) are drawn with the values of intercept 

ln(K/A) and slope GR
0
/RG listed in Table 5. From these 

best-fit parameters the calculated values of A/K and 

GR
0
 are included in Table 5. 

From Table 5 it may be noted that the value of GR
0
 

for bacteria like Bacillus cereus AVTZ415 and BC 

AVZ421 in carrot broth, Listeria monocytogenes in milk 

and Yersinia enerocolitica in Camembert-type cheese 

increases in the sequence: R(t), t0(T) and (T) data, 

whereas the value of A and A/K for them increases in 

the sequence: t0(T), R(t) and (T) data. The values of 

GR
0
 and A (or A/K) corresponding to a particular 

growth parameter such as growth rate R or time lag t0 

vary enormously among different samples. For example,  
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Figure 5: Dependence of (a) dimensionless growth rate R of different 

bacteria on temperature T according to relation (6), and (b) time lag t0 

for growth of different items and (c) time constant  for the growth of 

three different bacteria in carrot broth on temperature T according to 

relation (7). For the purpose of comparison with the t0(T) and (T) 

data according to Eq. (8), in (a) data of growth rate R(T) are presented 

as lnR. See text for details. 

 

the values of GR
0
 obtained from the R(T) data are rela-

tively low for the growth of Escherichis coli in nutrient 

broth and Yersinia enerocolitica bacteria in Camembert-

type cheese and in comparison with that for the growth 

of Listeria monocytogenes in milk products. Similarly, 

the value of GR
0
 obtained from t0(T) data is relatively  
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Table 5: Parameters of Eqs. (6) and (7) from R(T), t0(T) and (T) data   

Data Sample  Medium lnA, ln(K/A) 103GR
0/RG  A, A/K GR

0 Ry2  Ref.  

     (K) (s1)  (kJ/mol) 

R(T) BC AVT415, AVTZ421  Nutrient c-broth  43.25 10.69 6.11018 88.9 0.9754 [21] 

 BC AVT415  Natural c-broth  43.25 10.69 6.11018 88.9 0.9754 [21] 

 E Coli  Nutrient c-broth 29.18 6.22 4.71012 51.7 0.9974 [23] 

 L-monocytogenes UHT milk 2% 45.82 11.58 7.91019 96.3 0.9473 [30] 

  UHT cream12% 58.65 15.15 3.01025 126.0 0.9744 [30] 

 Y-enterocoloticaa  Cheese 28.57 6.96 2.61012 57.9 0.9249 [29] 

t0(T) Tomato seeds Soil 14.0 7.64 1.2106 61.3 0.7715 [34]

 BC AVT415, AVTZ421  Nutrient c-broth 36.53 13.72 7.31015 114.1 0.9744 [21] 

 L-monocytogenes UHT Milk 58.37 19.74 2.21025 164.1 0.8829 [30] 

 Y-enterocoloticaa  Cheese 17.65 8.54 4.6107 71.0 0.6938 [29] 

(T) BC AVTZ421 Nutrient c-broth 89.06 35.07 4.81038 291.1 0.9937 [19]

 BC AVT415 Nutrient c-broth 95.01 36.30 1.81041 301.8 0.9808 [19]

 E Coli  Culture c-media 146.05 50.18 2.71063 417.2 0.9846 [27] 

 

 

low for the germination of tomato seeds and for the 

growth of Yersinia enerocolitica bacteria in Camem-

bert-type cheese in comparison with that for the growth 

of Listeria monocytogenes in milk products. From these 

results it may be concluded that, for a particular bacteri-

al growth, the differences in the values of GR
0
 and A 

obtained from R(T) data from those of GR
0
 and A/K 

from t0(T) and (T) data are due to different processes 

associated with them. 

3.3. Overall crystallization of various compounds  

Overall crystallization of compounds from melts and 

solutions also exhibits features similar to those of 

growth of material items discussed above. However, in 

this case, the plots of growth of overall crystallization 

are presented in terms of cumulative mass y(t) of the 

crystallized compound instead of cumulative number 

y(t) of material items against time t. These y(t) plots are 

also characterized by three parameters: dimensionless 

growth rate R = dy/ymaxdt, time lag t0, and time constant 

.  

The process of overall crystallization of a com-

pound involves the formation of stable nuclei and their 

subsequent development to visible dimensions in the 

bulk medium (see Appendix B). Both of these processes 

depend, among others, on crystallization temperature 

(for example, see: refs. [35-37]). Figure 6 illustrates a 

typical example of the dependence of overall crystalli-

zation fraction y(t)/ymax of polypropylene on time t at 

different crystallization temperatures. Original data of 

the figure are from Lopez-Manchado et al. [48] but best-

fit curves are drawn by Padar et al. [36], according to 

AvramiWeibull function (1) assuming the initial time 

t0 = 0 for the onset of overall crystallization. It may be 

noted that the best-fit plots somewhat deviate from the 

experimental data points at low and high crystallization 

times. These deviations are mainly associated with the 

assumption that t0 = 0 [37]. The experimental data re-

veal that the initial time t0 when crystallization fraction 

begins to increase is not zero and increases with increas-

ing crystallization temperature.  

The crystallization rate R = dy/ymaxdt of polypropyl-

ene, determined from the linear part of the y(t)/ymax plots 

at a particular temperature, decreases with an increase in 

crystallization temperature T. According to Arrhenius-

type relation (A3), the higher the reaction temperature 

T, the higher is the value of the reaction rate constant k. 

This inference is contrary to the dependence of crystal-

lization rate R = dy/ymaxdt of polypropylene on crystalli-

zation temperature T (Figure 6). Therefore, unlike the 

cases of temperature dependence of cumulative growth 

of germination of tomato seeds and growth of microor-

ganisms discussed above, Arrhenius-type relation (A3) 

does not describe the dependence of time lag t0 for crys-

tallization from melts on T.  
 

 

 
Figure 6: Example of dependence of overall crystallization fraction 

y(t)/ymax of polypropylene on time t at different crystallization temper-

ature. Solid curves represent plots according to AvramiWeibull 

function. Original data from Lopez-Manchado et al. [48] but best-fit 

plots are drawn by Padar et al. [36]. Adapted from Padar et al. [36].  

 

Figure 6 shows that the crystallization rate R is re-

lated to the corresponding time lag t0 in the plots. The 

lower the crystallization rate at a particular temperature 

T, the higher is the value of the time lag t0 for detectable 

crystallization. There is also a similar relationship be-

tween R and time constant . In order to explain the 

temperature dependence of crystallization rate R, time 

lag t0 and time constant  for crystallization from melts 

on T, one uses Eq. (A10) and assumes that R = K1J, and 

t0 and  = K2/J, where K1 and K2 are new proportionali-

ty constants different from K. Then from Eq. (A10) one 

obtains 
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where B’ is given by Eq. (A11), and the temperature 

difference T = (TmT), with Tm as the melting point of 

the crystallizing compound. Eqs. (8) and (9) predict B’ 
> 0 because the main contribution to R and t0 or  

comes from T rather than from T.  
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Figure 7: Plots of lnR, ln and lnt0 against 1/T(T)2 for crystaliza-

tion of polypropylene according to Eqs. (8) and (9). For the purpose of 

comparison with the t0(T) and (T) data according to Eq. (8), data of 

crystallization rate R(T) are presented as lnR. See text for detail.  

 

Table 6: Parameters of relation  (A10) from R(T), t0(T) and (T) data 

of crystallization of polypropylene 
  

Data lnJ0, ln(K’/J0) 105B’ (K3) J0, J0/K’ (s1) Ry2   

R(T) 0.168 36.1 1.18 0.9955  

t0(T) 0.684 33.0 1.98 0.9572  

(T) 0.257 35.0 0.77 0.9980  

 

Figure 7 presents the R(T), t0(T) and (T) data of 

crystallization of polypropylene (Tm = 170 
o
C) from the 

melt according to relation (8) whereas the linear plots 

are drawn with the values of the parameters listed in 

Table 6. The t0(T) data were visually determined from 

the original plots of evolution of crystallization at dif-

ferent temperatures. The R(T) data were recovered from 

the figure in the paper of Padar et al. [36] but the (T) 

data were calculated from the values of best-fit con-

stants q and q
 reported in that paper. It may be noted 

from the table that the value of B’ for the R(T), t0(T) and 

(T) data is essentially constant but the value of 

ln(K2/J0) for the (T) data is higher than that for the 

t0(T) data. The constancy of B’ is associated with the 

interfacial energy  of the crystallites (see Eq. (A11)) 

but the different values of J0/K2 are associated with 

different sizes of the crystallites corresponding to t0 and 

. Obviously, the process of overall crystallization is 

entirely different from the processes involved in bacte-

rial growth discussed above.  

3.4. Distinction between processes of chemical react-

ions and overall crystallization 

The plots of the growth of cumulative number N(t) of 

material items such as seeds (Figures 3 and 4) and the 

fraction of cumulative mass y(t)/ymax of crystallized 

compounds (Figure 6) are similar and can be described 

reliably by AvramiWeibull relation (1). However, the 

temperature dependence of rate R, time lag t0 and time 

constants  for the growth of material items and overall 

crystallization of compounds differs fundamentally 

from each other. In the former cases the temperature 

dependence of these parameters can be described by 

Eqs. (6) and (7). These equations follow from the Ar-

rhenius relation (A3) where the three parameters are 

related to the activation energy GR
0
 involved in a reac-

tion. However, in the latter case the temperature de-

pendence of these parameters can be described by Eqs. 

(8) and (9). These relations follow from Eq. (A8) where 

the three parameters of crystallization are associated 

with the driving force GR. Obviously, the time lag t0 

for a phenomenon corresponds to an initial time period 

in which an equilibrium is attained in the system from 

the standpoint of occurrence of chemical reactions with 

rate k (see Eq. (A3)) or crystallization with nucleation 

rate J (see Eq. (A8)).  

As discussed in Appendix B, the reaction rate con-

stant k of a qth order chemical reaction and the time 

constant  of overall crystallization are mutually related 

by: k = q
. Therefore, for overall crystallization occur-

ing by instantaneous and progressive nucleation modes 

the relationships may be given by (see Appendix B)  

mN
V

g
k
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q 
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q
q
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
, (11) 

which hold when q  0 and q  1, respectively.  

From the above considerations it may be concluded 

that the processes associated with chemical reactions 

follow simple Arrhenius-type relation (A3) of the de-

pendence of parameters R, t0 and  on T with an activa-

tion energy GR
0
, but those of overall crystallization 

follow relation (A8) in which the parameters R, t0 and  

are related to dependence of the number Nm of nuclei 

formed or the nucleation rate J on driving force GR.  

4. Basic concepts about generation of abstract items 

4.1. Motivation threshold for nucleation/growth of ab-

stract items  

The generation of abstract or imaginary items such as 

the number of papers and their citations is, by its nature, 

similar to a chemical reaction between the initial react-

ants involving the formation of an activated complex 
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followed by its dissociation into reaction products (for 

example, see [49]). It also has its analog in behavioral 

psychology as stipulated in the stimulusresponse be-

havior theory involving attainment of a goal by human 

beings and animals through generation of inner tenden-

cy (i.e. restless or transition state) of the behaving or-

ganism, aroused by the external stimulus (see ref. [50]; 

Chapters 5 and 6). In this case, the ultimate goal is a 

consequence of decision making and is associated with 

the problem of motivation, a term “often used in refer-

ence to the conscious feeling of desire and the whole 

complex of ideas and feelings which together seem to 

constitute the conscious antecedents of behavior accord-

ing to traditional wisdom” (ref.  [50]; page 273).  
It should be noted that the processes of chemical re-

actions and decision making differ from each other. The 

occurrence of chemical reactions is described in terms 

of thermodynamics but it is difficult to give a thermo-

dynamic interpretation for the transition state involved 

in decision making. However, results of motivations of 

authors to cite published papers indeed reveal that there 

is always a cognitive pressure on authors towards citing 

a given paper and there is a threshold value of this cog-

nitive pressure for the citation of a paper [51]. Thresh-

old cognitive pressure on an author in citing previously 

published papers is equivalent to the free energy change 

Ga involved in the formation of an activated complex 

X
*
 whereas cognitive pressure in citing is analogous to 

the total free energy change Ga’ associated with the 
dissociation of the activated complex X

*
 into the for-

mation of reaction products (see Figure A1). Intuitional-

ly, the process of citation of a paper PW1 of an author 

W1 by the citing author W2 in his/her paper PW2 bearing 

citation CW1 to the paper PW1 of author W1 may be 

represented in the form of the reaction (cf. Eq. (A1)) 

PW1 + W2  X
*
  PW2 + CW1 + GR, (12) 

with Ga’ = Ga+GR. Here Ga’, Ga and GR of Fig. 

A1 now represent the overall, the threshold and the 

resulting cognitive citation pressures, respectively. The 

threshold cognitive pressure is the so-called motivation 

threshold for the citation of an article. Note that the 

resulting cognitive citation pressure GR is essentially 

associated with the attractiveness of the cited paper PW1. 

The higher the attractiveness of this paper, the higher is 

its citability.      

With the above information on the resulting cogni-

tive citation pressure GR as the driving force for the 

citations received by a paper, we may apply the con-

cepts of occurrence of chemical reactions and crystalli-

zation of solid phases from melts and supersaturated 

solutions to understand the process of citations of papers 

(see Appendix A). While applying Eq. (A3) to describe 

the occurrence of chemical reactions and Eq. (A8) to 

describe the process of nucleation of solid phase we 

ignore the role of temperature and assume it as a con-

stant parameter. As seen from Eq. (A3), in the case of 

chemical reactions, the value of cumulative volume 

(reactant concentration), determined by reaction rate 

constant k, decreases with an increase in GR. In con-

trast to this, Eq. (A8) shows that, in the case of for-

mation and growth of nuclei, the cumulative volume, 

determined by nucleation rate J, increases with an in-

crease in GR. Therefore, it may be argued that the 

process of citations of papers is similar to that of overall 

crystallization of solid phases from melts and solutions 

and differs fundamentally from chemical reactions.   

Citations to individual published articles of authors 

with time is a typical example of information production 

process. We use below the concepts of the occurrence of 

overall crystallization of solid phase to understand these 

processes of growth of abstract items. 

4.2. Growth behavior of cumulative volume of abstract 

items 

The time dependence of cumulative number of abstract 

items such as journals, articles and authors in a scientific 

field is a continuous information production process in 

which new items are produced progressively. An author 

publishing N papers in his research career and a research 

paper published by a given author receiving a total of L 

citations during its citation life are typical examples of 

closed systems. Here the author publishing N papers in 

his/her academic career and each ith paper receiving Li 

citations are primary sources producing primary items 

(i.e. papers and citations, respectively). These source
items isolated systems are simple in nature because the 

source is an individual entity. However, when a group of 

primary items (for example, N(t) papers published by the 

author in time t) act as secondary sources which produce 

cumulative secondary items (for example, cumulative 

number L(t) of citations such that L(t) = Li(t)), one 

deals with complex or composite systems.  

The processes of generation of primary items A from a 

source S and of secondary items B from primary items 

A acting as secondary sources of (secondary) items are 

schematically shown in Figure 8. In the figure cumula-

tive number of primary and secondary items from indi-

vidual primary and secondary sources are indicated by 

N and n, respectively. However, in general, when an 

individual source is not distinguished as primary or 

secondary source, the cumulative number of items is 

denoted by y. 

In order to describe the time dependence of cumula-

tive number y of primary items (e.g. papers) produced 

by a primary source (e.g. by an author) we may follow 

the concepts of overall crystallization of a solid phase 

occurring in a closed liquid system of fixed volume V. 

We make the following assumptions:  

(1) Every sourceitems system is confined to its own 

production space (i.e. volume V) and is  analogous 

to the fixed crystallization volume in the case of 

overall crystallization. This abstract (imaginary) 

space available for the production of items by a 

source (i.e. in a system) is fixed.  

(2) The process of production of items is similar to a 

chemical reaction and involves the formation of an 

activated complex and its dissociation into products. 

This means that there are threshold free energy 
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changes Ga and overall free energy changes 

Ga+GR for the generation of items. In the case of 

citing of published papers by authors, Vinkler [52] 

calls Ga and GR cognitive pressure and threshold 

cognitive pressure, respectively.   

 (3) Items are produced at active centers in the available 

space by the formation and growth of 3D clusters or 

nuclei such that the time dependence of the volume 

Vc(t) of items produced at time t occurs in the avail-

able volume VVc(t).  

(4) Items can be generated both by instantaneous and 

progressive nucleation (cf. Fig. B1).  

(5) As in the solid nuclei composed of n growth units, 

nuclei of items are composed of n information units. 

This assumption allows the application of basic 

concepts and equations of 3D nucleation (see Ap-

pendix A).      

(6) The fraction  of items is given as y(t)/ymax, where 

y(t) is the cumulative number of items at time t and 

ymax is the maximum number of items.  
 

 
Fig. 8: Schematic illustration of processes of generation of primary 

items A from a source S and of secondary items B from primary items 

A acting as secondary sources of (secondary) items. Adapted from 

Sangwal [54].  

 

 

In view of the above, upon replacing the fraction  

= Vc(t)/V by y(t)/ymax, the cumulative fraction of items 

generated at time t from an individual source such as S 

in Figure 8, from Eq. (B1) of Appendix B one obtains 

Eq. (1), called hereafter AvramiWeibull equation, with 

the time constant  and the exponent q given by Eqs. 

(B2) and (B3) for items generated by instantaneous and 

progressive nucleation modes. When q is given by Eq. 

(B3), Eq. (1) represents the progressive nucleation 

mechanism for the production of items [7,8.54].    

It is usually observed that the cumulative fraction 

(t) of secondary items such as citations produced by a 

complex system composed of successively appearing 

primary items (e.g. papers) from the primary source 

(e.g. an author) also follows a relation similar to that of 

Eq. (B1) with new time constant  and exponent q. In 

fact, a modeling experiment, carried out by the present 

author [39,53] of secondary items such as citations 

produced by progressive nucleation from a complex 

system composed of successively appearing primary 

items (e.g. papers) from a primary source (e.g. author) 

at equal intervals of time , characterized by different 

values of time constant  and exponent q, showed that 

Eq. (1) describes equally well the time dependence of 

cumulative fraction y(t)/ymax of secondary items. How-

ever, it was observed that the values of both  and q 

increase with increasing duration t of generation of 

secondary sources of items.   

It should be mentioned that during 1939-1941 M. 

Avrami proposed and popularized Eq. (1). It is known 

as Weibull function in the literature on microbial growth 

and provides a physical interpretation of its parameters. 

It has the form of Weibull distribution function [55]. As 

in a previous paper [40], in this paper Eq. (1) is referred 

to as AvramiWeibull equation to honor its proponents.  

From Eq. (1) one may define fraction of generated 

fraction of items as  






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
















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t

y

tyy
x exp

)(

max

max .             (13) 

This is the so-called extended exponential used by 

Hirsch [18] to discuss the relationships of the maximally 

cited papers Nmax and the total number N(tm) = 1 of 

papers with at least one citation with the Hirsch index h. 

However, in the above function the exponent q  1. In 

contrast, depending on the nucleation mode in Eq. (B1), 

the exponent q can take values both less than and great-

er than unity. 

5. Predictions of AvramiWeibull function 

From analysis of data on the growth behavior of a wide 

range of material items, such as germination of tomato 

seeds, growth of bacteria in different media, and overall 

crystallization from melts, discussed in the preceding 

sections it may be concluded that AvramiWeibull 

function (1) with its two parameters  and q explains 

the data much better than Verhulst (logistic) function (2) 

and Gompertz function (3) and the temperature depend-

ence of its time constant  may be interpreted in terms 

of the dependence of rate constant k of chemical reac-

tions and nucleation rate J on temperature T according 

to relations (A3) and (A6), respectively.  

Relation (1) also explains the dependence of nuclea-

tion rate J on driving force GR involved in overall 

crystallization. Although the effect of temperature on 

the growth behavior of abstract items, such as papers 

and their citations, is not expected, one finds that the 

growth behavior of the cumulative number y(t) of ab-

stract items with time t by individual (simple) sources 

and collectives or groups of sources (complex sources) 

also follows AvramiWeibull function (1). Moreover, 

as discussed in Appendix C, AvramiWeibull function 

(1) is superior to Verhulst (logistic) and Gompertz func-

tions in explaining the generation rate dy(t)/dt of items 

in terms of the parameters  and q. In view of these 
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features, the predictions of AvramiWeibull function 

are described below.  

5.1. Behavior of growth curves  

Figures 9a and 9b illustrate the cumulative fraction F(t) 

= y(t)/ymax of items, produced by individual sources, 

characterized by different q at  = 20 arbitrary units 

(a.u.) and by different  at q = 2, respectively, using Eq. 

(1). As seen from the plots of Figure 9a, irrespective of 

the value of , curvatures of the curves are concave and 

convex for q  1 and q > 1, respectively, but for all q the 

curves attain F(t) = 1 at sufficiently high values of  

such that the S-shaped curves are obtained only in the 

latter case of q > 1. However, the plots show that their 

convex curvature increases with increasing values of  

for a given value of q > 1 (Figure 9b) whereas their 

concave curvature increases with decreasing q < 1 for a 

given value of  (Figure 9a). It may be demonstrated 

easily that a linear dependence is obtained when t/ « 1 
and q = 1 in Eq. (1); see Appendix C. 
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Figure 9: Cumulative fraction F(t) = y(t)/ymax of items produced ac-

cording to AvramiWeibull function (1) by individual sources charac-

terized by (a) different q at  = 20 arbitrary units (a.u.) and (b) differ-

ent  at q = 2. Values of  and q are indicated as (,q) alongside the 

plots. 

Using citation data of articles written by selected 

Chinese American Nobel prize winners in physics, Liu 

and Rousseau [56] reported three types of cumulative 

citation L(t) plots: (1) normal S-shaped plots with initial 

convex curvature followed by concave curvature, (2) 

inverse S-shaped plots with initial concave curvature 

followed by convex curvature, and (3) linear plots of 

L(t) data. AvramiWeibull function (1) satisfactorily 

describes the nature of the above curves [40]. 

5.2. Behavior of growth rate curves 

It is frequently observed that the absolute number of 

items per unit time (e.g. citations per year of an author; 

also called citation frequency and citation rate), usually 

defined as L = [L(t)L(t1)] when t is taken in years Y, 

initially increases, then, after going through a maximum 

value, slowly decreases and finally attains a zero value 

with increasing time (for example, see: [8,39,45,57-

59]). This phenomenon of slowly decreasing growth of 

items with time is usually called obsolescence [60-64], 

aging [63] or decay. In the case of citations of individu-

al articles, typical curves of L against citation time t 

are of the following types [62]: (a) initially much-

praised articles, (b) recognized basic work, (c) scarcely 

reflected work, (d) well received but later erroneously 

qualified work, and (e) general work. According to this 

classification, citation rate curves with steep positive 

slope are characteristic of initially much-praised articles 

or articles that recognized basic work. This classifica-

tion of growth of citation rate curves has been used 

recently by Ho and Kahn [59] in the discussion of top-

cited single-author papers.    

The above trends of citation frequency are usually 

explained by using empirical exponential functions 

[7,61,63,64]. The main criticism of using these empiri-

cal exponential functions to describe their decaying 

behavior is that they contain parameters to which it is 

difficult to assign any physical significance. However, 

as shown in Appendix C, the fitting parameters  and q 

of the AvramiWeibull function have well-defined 

meaning. 

Figures 10a and 10b show the plots of growth rate 

f(t) = dF(t)/dt of items corresponding to the cumulative 

fraction F(t) = y(t)/ymax of items of Figure 9. From these 

plots the following features may be noted:  

(1)  For a given value of the time constant , with an 

increase in the value of the exponent q the maxi-

mum value of fc for the items shifts to a higher t 

such that the value of tc corresponding to the peak 

approaches the value of the time constant ; see 

Figure 10a.  

(2)  For a given value of the exponent q, with an in-

crease in the value of the time constant  the max-

imum value of fc for the generation of items shifts to 

a higher t such that the value of tc corresponding to 

the peak is lower than the value of the correspond-

ing time constant ; see Figure 10b.  

(3)  For a given set of  and q, the area under the plot of 

f(t) for the items over the entire generation period t 
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represents the maximum cumulative fraction Fmax = 

1 of the items.  

 

It may be seen from Figure 10 that the distribution 

of items generated by a source usually has a skew to the 

right for different sets of  and q. However, for a parti 

cular value of , there is a value of q when the distribu-

tion is symmetrical. Conversely, for a particular value of 

q, there is a value of  when the distribution of items is 

symmetrical. Corresponding to  = 20 in Figure 10a, 

the value of q is about 4 when the distribution of cita-

tions is symmetrical. One also expects that the distribu-

tion has a skew to the left for q exceeding about 4.  
 

 

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

20,1

20,0.5 20,5

20,3

20,2

f 
(-

)

t (a.u.)

(a)

   

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1,2

5,2

10,2
20,2

(b)

f 
(-

)

t (a.u.)  
Figure 10: Plots of growth rate f(t) = dF(t)/dt of items produced ac-

cording to AvramiWeibull function (1) by individual sources charac-

terized by (a) different q at  = 20 arbitrary units (a.u.) and (b) differ-

ent  at q = 2. Values of  and q are indicated as (,q) alongside the 

plots. 

 

Figure 11 shows some typical examples of evolu-

tion of yearly citations L of papers published by 

Laemmli and Cox with time t. In Figure 11a yearly 

citations of all subsequently papers published by 

Laemmli are compared with his top-cited paper 1 

whereas in Figure 11b yearly citations to his next three 

top-cited papers are presented. Figure 11c shows yearly 

citations received by the top-cited two papers of Cox. In 

these figures the curves are drawn with the values of the  
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Figure 11: Typical examples of evolution of yearly citations L of 

papers published by different authors: (a,b) Laemmli and (c) Cox. In 

(a) citations of all subequently papers published by Laemmli are 

compared with his top-cited paper 1. Curves are drawn with best-fit 

parameters given in Table 4. 

 

parameters of Eq. (1) given in Table 3. It may be seen 

from this table that the total yearly citations of all suc-

cessively papers mainly come from the top-cited paper 1 

and that the exponent q lies between 1 and 4 for all 

individual papers. 
Analysis of growth of citations using AvramiWei-

bull function to individual papers published by different 

authors indeed shows that 1 < q < 4 for most cases. For 

example, the values of q lies between 1 and 2.7 for 
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citations to individual 27 top-cited papers of 4 selected 

Polish professors [8], between 1 and  3.2 for citations to 

articles by 4 of 5 Chinese American Nobel Prize win-

ners [40], and between 0.9 and 3.5 for citations to 41 of 

43 top-cited papers by 12 authors (Sangwal, un-

published results). This suggests that the process of 

citations received by individual articles is mainly de-

termined by progressive nucleation mode involving both 

diffusion and integration of published knowledge (cf. 

Appendix B).  

6. Summary and conclusions 

Some examples of empirical data of sigmoidal-shaped 

y(t) growth of different types of real and abstract items 

are analyzed by Verhulst, Gompertz and AvramiWei-

bull functions. It was found that AvramiWeibull func-

tion describes the growth behavior of different types of 

items better than Gompertz and Verhulst functions. 

Moreover, in comparison with Verhulst (logistic) and 

Gompertz functions, AvramiWeibull function is rela-

tively simple and mathematically convenient for ex-

plaining different trends of the generation rate dy(t)/dt 

of scientific literature in terms of its two parameters: the 

time constant  and the exponent q. 

Employing the basic concepts of occurrence of 

chemical reactions between reactants producing reaction 

products and overall crystallization of solid phase in 

melts and solutions (Appendices A and B), Avrami 

Weibull function (1) for the growth behavior of cumula-

tive number y(t) items produced at time t by individual 

(simple) sources and  collectives or groups of sources 

(complex sources) is presented. Then the data of germi-

nation of tomato seeds, growth of various bacteria in 

different media and evolution of overall crystallization 

of polypropylene are analyzed from the standpoint of 

occurrence of chemical reactions and crystallization 

from melts and solutions. 

It is observed that every plot of the growth of cumu-

lative number y(t) of items against time t is character-

ized by three parameters: dimensionless growth rate R = 

dy/ymaxdt determined from the linear part of a y(t)/ymax 

plot, time lag t0 corresponding to the onset of initial 

growth, and time constant  when the rate R reaches a 

maximum value. In the case of growth of material items 

such as bacteria, the growth rate R increases whereas the 

time lag t0 and the time constant  decrease with in-

creasing temperature T. However, an opposite trend is 

observed in overall crystallization from the melt. In this 

case, the crystallization rate R decreases but the time lag 

t0 and the time constant  increase with crystallization 

temperature T. The former processes are associated with 

chemical reactions which follow simple Arrhenius-type 

relation (A3) in which the cumulative volume (concen-

tration) of reaction products decreases with an increase 

in GR, whereas overall crystallization follows relation 

(A8) in which the cumulative volume of crystallized 

phase increases with an increase in GR. In the latter 

case, the parameters R, t0 and  are related to the de-

pendence of the number Nm of nuclei formed or the 

nucleation rate J on driving force GR.  

There exists a cognitive citation pressure GR as the 

driving force for the citation received by a paper 

[51,52]. The mechanisms and processes of motivations 

for citation have been discussed in the scientometric 

research [69-71]. The cognitive citation pressure GR is 

essentially associated with the attractiveness of a paper 

to be cited. The higher the attractiveness of a paper, the 

higher is its citability. Comparison of the process of 

receiving of citations by papers with the processes of 

occurrence of chemical reactions and crystallization of 

solid phases from melts and supersaturated solutions in 

terms of this driving force GR shows that the process 

of citations of papers is similar to that of overall crystal-

lization of solid phases. The process of overall crystalli-

zation involves the formation of nuclei of crystallized 

phase instantaneously or progressively with time in a 

fixed volume. Using an analogy with overall crystalliza-

tion, it is argued that similar processes occur during the 

citation of papers. However, citation process differs 

from overall crystallization. Overall crystallization of 

solid phase depends on crystallization temperature but 

no effect of temperature can be conceived in citation 

process.   

Analysis of growth of citations using AvramiWei-

bull function to individual papers published by different 

authors shows that 1 < q < 4 for most cases. This sug-

gests that the process of citations received by individual 

articles is mainly determined by progressive nucleation 

mode involving both diffusion and integration of pub-

lished knowledge. 

Finally, it should be emphasized that, despite argu-

ments in favor of similarity of citations of papers and 

other information production processes with overall 

crystallization presented here for their explanation by 

AvramiWeibull function, all workers in the field of 

informetrics may not be convinced. However, the rela-

tively simple and mathematically convenient form of 

this function does deserve due attention to describe the 

dynamics of growth of citations of papers and other 

similar processes.  

Appendix A. Occurrence of chemical reactions and 

crystallization  

The driving force for the occurrence of any chemical 

reaction is the difference GR in the Gibbs free energy 

GI of initial reactants, say A and B, and the free energy 

GII of the products, say C and D, and may be expressed 

by the relation 

A + B  X
*
  C + D + GR, (A1) 

where X
*
 is a transient, activated complex of free ener-

gy G
*
 higher than GI of the reactants (see Figure A1). 

The rate of formation of products is determined by the 

values of these three free energies. The formation of 

products is possible when the free energy change GR > 

0, which is the necessary driving forces for the reaction, 

but the rate of the reaction is determined by the relative 
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increase in the free energy Ga (Ga = G
*GI) involved 

in the formation of the activated complex X
*
. The high-

er the free energy change Ga required for the formation 

of the activated complex, the more difficult it is for the 

reaction to occur. Similarly, the greater the value of 

GR, the higher is the stability of the reaction products.  
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Figure A1: Schematic presentation of free energy changes associated 

with a chemical reaction. 

 

The rate of the reaction (A1) may be given by (see 

ref. [47]; Chap. 14)  

BA
Prrate CkC

dt

dC
 , (A2) 

where CA, CB and CPr are concentrations of A, B and 

products, and k is the rate constant. According to the 

transition state theory of reaction rates, the rate constant  
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where GR
0
 is the difference between energy of reac-

tants and complex, all in their respective ground states, 

the pre-exponential factor A is frequently called the 

frequency factor, RG is the gas constant, and T is the 

temperature in Kelvin. 

According to Eq. (A3) the rate constant k for a 

chemical reaction involving a constant energy change 

GR
0
 increases with temperature T. Eq. (A3) is similar 

in form to the Arrhenius equation relating the tempera-

ture dependence of rate constant k with activation ener-

gy GR
0
 for a chemical reaction. An Arrhenius-type 

equation also holds for diffusion and fluidity processes 

in solutions [65].  

As in the case of chemical reactions, crystallization 

from melts and solutions is also associated with two 

energy changes: an activation barrier G3D
*
 for the 

formation of three-dimensional (3D) clusters or nuclei 

in the liquid phase, given by Eq. (A7), and an overall 

change in the free energy GR, given by Eq. (A1). The 

value of the activation barrier G3D
*
 is associated with 

the formation of 3D clusters by aggregation of growth 

entities (e.g. atoms, ions and molecules) present in the 

liquid, whereas the overall change in the free energy 

GR determines whether the 3D clusters formed in the 

growth system remain stable after their formation. Note 

that the free energy change GR is a measure of devia-

tion from equilibrium state when GR = 0, and GR > 0 

for supersaturated solutions. While discussing the pro-

cess of formation of clusters it is usually assumed that 

they prefer to attain a rounded shape of radius r because 

the surface tension  of a sphere is the lowest. However, 

in view of analysis of the number of items in this paper 

we discuss the process of formation of these clusters in 

the medium in terms of free energy change as a function 

of the number n of atoms, ions or molecules comprising 

them.    
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Figure A2: Change in Gibbs free energy G as a function of size n of 

clusters forming in a supersaturated medium. Values for surface 

energy  = 11.25 and driving force GR = 9 are chosen to obtain 

critical nucleus with n = 1. GR and  are expressed in the same 

arbitrary energy units (a.u.). Curves of energy contributions GS and 

GV are also shown.  

 

The reduction in the Gibbs free energy G of a sys-

tem due to the formation of a 3D cluster composed of n 

growth units is equal to the sum of the surface excess 

free energy GS and the volume excess free energy 

GV. The resulting free energy change may be given by 

[66,67]  

R

3/2

VS GnnGGG   , (A4) 

where  is a surface-energy term. The two terms in the 

right-hand side of Eq. (A4) depend differently on n. 

This behavior of G associated with the formation of 

the cluster is shown in Figure A2 as a function of its 

size n. It may be seen from the figure that G passes 

through a maximum and the maximum value G3D
*
 

corresponds to the critical size n
*
. The value of n

*
 may 

be obtained by maximizing Eq. (A4), taking dG/dn = 

0, i.e. 

0
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Gn
dr
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or 
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Upon substituting the value of n
*
 from Eq. (A6) into Eq. 

(A4), one obtains the energy barrier 
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Note that the value of G3D
*
 is always a positive quanti-

ty. Obviously, increasing free energy difference GR 

and decreasing interfacial energy  facilitate the for-

mation of 3D clusters. 

Occurrence of a crystalline phase in a supersaturat-

ed medium depends on the size n of the nuclei. When n 

< n
*
, the nuclei dissolve. However, when n > n

*
, the 

nuclei are stable and grow. The critical size n
*
 is the 

minimum size of a stable nucleus. As seen from Figure 

A2, only when the nucleus size n > n
*
, the free energy 

G for the formation of a nucleus decreases with an 

increase in its size n. 

At constant temperature and supersaturation condi-

tions, the occurrence of 3D cluster formation (or nuclea-

tion) is described by the so-called stationary nucleation 

rate J, given by [66] 










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





 


2

R

0

G

*

3
0

)(
expexp

G

B
J

TR

G
JJ D , (A8) 

where J0 is a kinetic factor and is associated with the 

frequency of attachment of basic units to the nucleus at 

equilibrium, G3D
*
 is given by Eq. (A7) and B = 

43
/27RGT. 

Eq. (A8) represents the temperature dependence of 

nucleation rate J, and is usually referred to as the classi-

cal theory of 3D nucleation. Obviously, it is an Arrheni-

us-type relation where the activation barrier G3D
*
 is 

essentially a measure of the “difficulty” for atom-

ic/molecular aggregates to attain the size n
*
 of the stable 

clusters in a growth medium.  

It should be mentioned that the free energy differ-

ence GR is not a temperature independent quantity, and 

is given by (for example, see: [36,67]) 

)( m

m

m
R TT

T

H
G 




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

 
 , (A9) 

where Hm is the enthalpy of melting of the compound, 

Tm is the its melting point, and T is the crystallization 

temperature. Obviously, crystallization from the melt is 

possible when the temperature difference T = (TmT) > 

0. Then the nucleation rate (for example, see: [36,67]) 












20

)(
exp

TT

B'
JJ , (A10) 

with the constant 

3

2 



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




GR
B'





, (A11) 

where  is the geometrical factor for the shape of clus-

ters (here  = 4/27), and the parameter  = Hm/RGTm is 

about 2 for metals, 3 for anhydrous inorganic salts, and 

6 for organic compounds.   

Eq. (A10) differs fundamentally from Arrhenius-

type relation (A3) in the T-term. Under crystallization 

conditions, in Eq. (A10) the crystallization temperature 

T  Tm but the temperature difference T = (TmT) 

rapidly increases with small increases in T. Therefore, 

the nucleation rate J essentially depends on T instead 

of T, with an activation energy B’ in the plots of lnJ 

against T(T)
2
. 

Appendix B: Basic concepts of overall crystallization 

Description of overall crystallization of a solid phase in 

the volume of a melt or supersaturated solution is one of 

the various applications of the theory of nucleation in 

the field of crystal growth. The theory of overall crystal-

lization is based on the following concepts [66]:  

(1)  The fraction  of solid phase is the total volume 

Vc(t) of solid phase crystallized after time t in the 

initial fixed volume V of the crystallizing system:  

= Vc(t)/V.  

(2)  The volume Vc(t) of the solid phase is formed by its 

nucleation at material points at a rate J(t) in the vol-

ume V of the crystallizing medium (melt or super-

saturated solution) and each nucleus grows inde-

pendently of the other nucleating and growing crys-

tallites. This means that crystallites can be nucleat-

ed only in the noncrystallized volume VVc of the 

crystallizing medium. 

(3)   Nuclei can form on active centers in the medium 

either instantaneously at t = 0 or progressively dur-

ing the entire crystallization process, thereby deter-

mining the time dependence of nucleation on active 

centers and finally the overall crystallization of the 

solid phase resulting from the growth of the nuclei 

in the liquid phase. These types of growth are 

known to occur by instantaneous and progressive 

nucleation modes, respectively, and are illustrated 

in Figure B1.   
 

With the above ideas of the fraction (t) of solid 

phase crystallized at time t, the total volume Vc(t) of the 

solid phase crystallized after time t in the initial fixed 

volume V of the crystallizing system by instantaneous 

and progressive nucleations may be given by the unified 

relation [66] 




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
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

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
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q

t

V

tV
t exp1

)(
)( c ,      (B1) 

where  is a time constant, and the exponent q > 0. The 

exponent q and the time constant  are given by 
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Figure B1: Schematic illustration of (a) instantaneous and (b) progres-

sive formation of nuclei of a solid phase at active centers in a fixed 

volume of melt or supersaturated solution.    
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for instantaneous nucleation, and 

dq 1 , 

)1/(1

s

1
d

d
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
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


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

 
  (B3)  

for progressive nucleation. In Eqs. (B2) and (B3) Nm is 

the maximum number of nucleation centers, J is the rate 

of stationary nucleation given by Eq. (A8),  is the 

shape factor for the nuclei (for example,  = 4/3 for 

spherical nuclei) and the growth constant g is defined by 

t

r
g

/1

 ,      (B4) 

where r is the radius of the growing nucleus and the 

constant  > 0 is a number. Eq. (B4) describes the de-

pendence of the radius r of the growth of individual 

nuclei on time t according to the traditional power-law 

relation 


Zttr )( , (B5) 

where the values of  are 1/2 and 1 for growth con-

trolled by volume diffusion and interface transfer, re-

spectively, and Z = g

. In Eqs. (B2) and (B3) the param-

eter d denotes the dimensionality of growing nuclei. For 

nuclei growing in one-, two- and three-dimensions, d = 

1, 2 and 3, respectively. However, when the nuclei do 

not grow, d = 0.  

Aggregation of growth entities into nuclei and their 

subsequent growth into stable entities involves diffusion 

of growth entities to active nucleation centers present in 

the melt or solution volume and integration of these 

growth units into the surface of the nuclei. Therefore, 

the value of the exponent q in Eqs. (A2) and (A3) de-

pends on the values of the exponent , the dimensionali-

ty d and the nucleation mode. In the case of instantane-

ous nucleation mode, 0 < q < 1.5 and 0 < q < 3 for crys-

tallization controlled by volume diffusion and interface 

integration, respectively. However, when crystallization 

occurs by progressive nucleation mode, 1 < q < 2.5 and 

1 < q < 4 for crystallization controlled by volume diffu-

sion and interface integration, respectively. The lowest 

values of 0 and 1 for q, corresponding to crystallization 

by instantaneous and progressive nucleation mecha-

nisms, respectively, are obtained when the nuclei do not 

grow with t.  

Note that the exponent q is a non-integer parameter 

in diffusion-controlled crystallization but it is usually 

found that it also has non-integer values even in mass-

transfer-controlled crystallization due to different as-

sumptions used in the derivation of Eq. (B1). The time 

constant  is determined by the growth constant g and 

either by the maximum number Nm of crystallites in 

instantaneous nucleation mechanism (Eq. (B2)) or by 

stationary nucleation rate Js in progressive nucleation 

mechanism (Eq. (B3)).    

The above treatment is usually called the Kolmogo-

rovJohnsonMehlAvrami (KJMA) theory.  However, 

in the literature on crystallization of fats it is also known 

as the Avrami equation in which mass instead of vol-

ume is used and the exponential term (t/)
q
 = kt

q
, where 

k is the Avrami constant and q is the Avrami exponent 

[68]. Theoretical aspects of this theory for overall crys-

tallization are discussed by Kashchiev [66].  

It should be mentioned that real kinetic rate laws are 

not as simple as described by Eq. (A2) where the rate of 

formation of reaction product is directly related to the 

concentrations CA and CB of reactants A and B. For 

example, there are consecutive reactions in which in-

termediates interact with the reactants and the products 

and in which various types of elementary reactions and 

their combinations take place [49]. In this sense, the 

Avrami constant k is a complex constant of qth order.   

Appendix C. Comparison of predictions of different 

functions 

All of the above three functions relating cumulative 

distribution function F(t) = y(t)/ymax with t, described in 

Section 2, are two-parameter functions but they predict 

different trends of the plots of y(t) and dy(t)/dt against 

time t. AvramiWeibull and Gompertz functions predict 

y(t) = 0 at t = 0 but according to Verhulst function y(t) = 

y0 > 0 at t = 0. This means that Verhulst function is not 

expected to explain satisfactorily situations of empirical 

data with y(t) = 0 at t = 0. However, the three functions 

predict an initial increase in dy(t)/dt, followed by a sub-

sequent decrease, with t such that dy(t)/dt attains a max-
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imum value [dy(t)/dt]c at a particular value of t, say tc. 

The trends of the dependence of dy(t)/dt on t predicted 

by the three functions are different. The value of tc when 

dy(t)/dt attains its maximum value may be obtained by 

maximizing Eqs. (1), (2) and (3).  

In the case of AvramiWeibull relation (1) the rate 

R of generation y(t) of items with t may be given by 
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Eq. (C1) predicts an initial increase in the generation 

rate R of items according to power law and, after reach-

ing a maximum value at time tc, it decreases exponen-

tially. From Eq. (C1) one has 
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which gives 
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Substitution of tc from Eq. (C3) into Eq. (C2) gives the 

maximum rate Rc = (dy(t)/dt)c in the form 
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 (C4) 

According to the above equations tc and Rc depend on 

the parameters q and . Note that a maximum rate Rc is 

not achieved when 0 < q < 1 (see Figure 10). Then tc = 0 

and (dy(t)/dt)c = 0 (see Eqs. (C3) and (C4)). 

According to Verhulst function (2) the items’ gen-

eration rate R with time t is given by  
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From (C5) one obtains 
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which gives 

2
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c

y
ty  . (C7) 

Substitution of y(tc) from Eq. (C7) into Eq. (C5) gives 

the maximum Rc in the form 
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Obviously, Rc depends only on the value of the parame-

ter  and is independent of y0 and time t. 

In the case of Gompertz function (3) the items’ gen-

eration rate  



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Eq. (C9) predicts both increase and decay in y(t) with 

time t following exponential dependences, exhibiting 

maximum Rc at tc. From (C9) one has  
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which gives 
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Substitution of tc from Eq. (C11) into Eq. (C9) gives the 

maximum Rc in the form 
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 c

yR 1expm axc .  (C12) 

According to the above equations tc and Rc depend on 

the parameters c and . Note that a maximum value of R 

is not achieved when c « . Then tc = 0 and Rc = 

2.718ymax (cf. Eqs. (C11) and (C12)). 

According to power-law relation (3), the items gen-

eration rate R may be given by 

1

max

)( 


 q

q
t

q
y

dt

tdy
R . (C13) 

Obviously, the rate R is also expected to follow power-

law dependence. Similarly, for ct « 1, Gompertz func-

tion (3) gives  

})exp{(max tcyR   . (C14) 

Depending on the value of c > ,  Eq. (C14) predicts an 

exponential increase in R with t. For q = 1 and c = , 

(C13) and (C14) reduce to the form 

m axyR  , (C15) 

with  = 1/. 

In summary, although Verhulst and Gompertz func-

tions (2) and (3) predict the appearance of maximum 

rate Rc, their parameters , and c and  do not give any 

insight into the processes involved in the growth of 

items. In contrast to them, AvramiWeibull relation (1) 

not only explains the growth of items with time t better 

than the Verhulst and Gompertz functions as well as 

maximum values of Rc through its parameters  and q 

but these parameters have physical meaning. 
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