
JCSI 22 (2022) 18–25

Received: 15 October 2021

Accepted: 21 October 2021

18

Comparative analysis of PHP frameworks on the example of Laravel

and Symfony

Analiza porównawcza szkieletów PHP na przykładzie Laravel i Symfony

Paulina Garbarz*, Małgorzata Plechawska-Wójcik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

This study aims to determine which of the analyzed PHP-based design patterns – Laravel or Symfony – is a more suffi-

cient solution and which one of them is more complex from the code point of view. For this purpose, a comparative

analysis was carried out based on the available documentation, as well as a comparison of the static and dynamic met-

rics obtained in the research environment of both tested patterns. As a result of a series of experiments and studies, it

was established that both design patterns are an optimal and efficient solution, but their best application depends on

the developer's individual needs and project requirements.

Keywords: PHP frameworks; Laravel; Symfony; comparative analysis

Streszczenie

Niniejsza praca ma na celu ustalenie, który z analizowanych wzorców projektowych opartych na języku PHP – Laravel

czy Symfony – jest wydajniejszym rozwiązaniem, a także który z nich jest bardziej złożony z punktu widzenia kodu.
W tym celu przeprowadzono analizę porównawczą opartą na dostępnej dokumentacj, a także porównaniu uzyskanych
w środowisku badawczym metryk statycznych i dynamicznych obu badanych wzorców. Wynikiem serii eksperymen-

tów i badań ustalono, że oba wzorce projektowe stanowią optymalne i wydajne rozwiązanie, jednak ich najkorzystniej-

sze zastosowanie jest zależne od indywidualnych potrzeb dewelopera oraz wymagań projektu.
Słowa kluczowe: szkielety PHP; Laravel; Symfony; analiza porównawcza

*Corresponding author

Email address: garbarz.paulina@gmail.com (P. Garbarz)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

Nowadays, working without a design pattern is as-

sociated with a long code development process and low

efficiency, which is why more and more new solutions

appear on the market, and the previously created ones

are constantly developed. The most popular are

the analyzed Laravel and Symfony - GitHub contains

approximately 62,000 and approximately 24,000, re-

spectively, projects based on these patterns (Figure 1),

which are marked with stars to provide insight into them

in the future.

Figure 1: Popularity of particular PHP frameworks – own study based

on projects popularity on GitHub.

Frameworks have a similar set of functionalities, but

each of them individually has special features that dis-

tinguish them from the others. When choosing the right

template, it should be taken into account not only

the technical aspects and its possibilities, but also

the subject of the project and the programmer's skills.

Choosing a template can have a significant impact on

the future and development of the entire project. That's

why choosing the right one is so important.

The main idea behind Symfony is to create and de-

velop long-term projects by default. It is a kind of skele-

ton for e-commerce platforms such as Magento, Drupal

or PrestaShop, but also creates a base for numerous

design patterns such as Laravel, Yii or CakePHP.

The structure of Symfony is based on the MVC archi-

tecture, which provides modularity and complexity to

the created projects due to the reusability of the same

code in many different places. Its structure consists

of a system of bundles, each of which fulfills a specific-

task.

Symfony is also independent of the selected data-

base environment – it allows the use of a PDO or ORM

module to establish communication with the database,

due to which it can get connection with many types

of databases, such as MySQL, Oracle or SQLServer.

The ORM technique dedicated to Symfony is Doctrine

ORM, which allows to improve the performance

of queries and improve the security of transmitted data.

This framework uses its own template engine, which is

mailto:garbarz.paulina@gmail.com

Journal of Computer Sciences Institute 22 (2022) 18-25

19

called Twig. It allows the creation of communication

between the view and the controler throught the model,

making it possible to modify or display relevant data for

the user.

The second analyzed framework, Laravel, is based

on Symfony components and uses this framework as

a kind of skeleton, but it is distinguished by its original

logic and the way the code is implemented in PHP.

Laravel is characterized by fast application develop-

ment, a high level of abstraction and a high intuitiveness

when writing code. Due to the simplicity of creating

a project, it is often assigned to small, quickly imple-

mented projects, but the range of possibilities offered

also allows for the creation of extensive solutions.

The structure of Laravel, as in the case of Symfony, is

based on the MVC architecture. Already at the time

of creating a new project, the user receives a fully func-

tional environment with the necessary dependencies

and functionalities, which allows to reduce the time

spent on appropriate adaptation and configuration

of this environment.

Laravel enables to use Eloquent ORM by default

and PDO module by optional. Eloquent ORM allows to

increase the level of application security, and also

streamlines the process of communication with different

database environments. The way of processing queries

is not only more effective, but also more accessible for

the programmer creating the application, which affects

the efficiency of the application development process.

Due to the usage of the Blade engine template, it is

possible to encrease the performance of communication

between the view and the controller. Blade templates

also allow direct injection of PHP code into the view,

due to which additional modifications are not required

unlike Symfony.

The article presents the similarities and differences,

strengths and weaknesses, as well as the specific fea-

tures of the Symfony and Laravel frameworks. Its pur-

pose is to determine which of the analyzed frameworks

is a better and more efficient solution among the pat-

terns based on the PHP language. In order to carry out

the research, a suitable environment has been created,

consisting of two applications that perform basic CRUD

functions (Create, Read, Update, Delete) using both

frameworks. In addition, the paper presents a compara-

tive analysis between the tested patterns, the results

of which includes static metrics (such as the number

of lines of written code, the amount of used classes

and interfaces, the number of used methods and librar-

ies, the overall size of both developed applications,

the ease of introducing changes to them and the overall

assessment performance), as well as dynamic metrics

(average service response time and server load) [1].

2. Literature Review

Each design pattern offers an extensive set of tools, such

as APIs and libraries, the meaning of which is described

in article [2]. For the study of overall performance,

the authors created an environment implementing

the same task, based on three different frameworks

and three MySQL databases with an identical structure.

Ultimately, it was found that each excelled in specific

research areas, with Laravel being considered the most

advantageous for file read and write operations

and the least optimal for complex data.

The article [3] raises an important issue, which is

the selection of an appropriate framework, based on

the similarities and differences between them. The mod-

el created by the authors compares the performance

of Laravel and Symfony on specific levels, comparing

their available functionalities and evaluating their per-

formance. Both were rated as effective solutions for

PHP applications, with Symfony being a more stable

pattern and Laravel as a pioneer in creating dynamic

solutions.

Currently, Laravel is the most used PHP-based

framework. In the article [4] entirely devoted to this

pattern, the authors presented its possibilities by analyz-

ing the functionality based on the creation of an E-

Commerce website, as well as comparing it to other

patterns. The study showed that Laravel is a pioneer in

reading and writing data in files as well as in database

migration between different areas. The author

of the article [5] compares Laravel with the Slim

Framework by measuring the load test performance for

three different scenarios. The study shows that Slim

Framework is a faster and better solution, but Laravel,

due to its size and the availability of numerous libraries

and solutions, is better for large projects than the com-

petitor. It is also worth mentioning that Laravel also

owes its size to the fact that it contains Symfony com-

ponents, which constitute its specific skeleton [6].

Symfony is one of the oldest PHP frameworks. Like

most PHP frameworks, is based on MVC and uses

ORM [7]. Despite the long experience, it is still a will-

ingly chosen model, which was noted in the article [8],

which proved that Symfony quickly keeps up with

the dynamic changes in standards. It is also popular due

to the large community and extensive documentation.

During its lifetime, some versions were supported for

a longer time than others. In the study [9], the three

most popular versions were analyzed, using a research

environment based on three applications with different

versions of Symfony, which fulfill the same task, as

well as comparing the performance of individual ver-

sions. Finally, the authors determined that Symfony 4.2

deserved a special distinction due to its advantage, for

example, when returning a large amount of data from

API.

3. Research Method

For the purpose of the study, it was created a research

environment that contains two applications with identi-

cal functionalities, but implemented in different design

patterns – Laravel and Symfony in the latest stable ver-

sions (8.5.7 and 5.1.3 respectively). The applications

fulfill the tasks of a simple blog that performs basic

CRUD operations and also allows for user authentica-

tion. Both versions have been tested for performance in

communication with database. For this purpose, two

Journal of Computer Sciences Institute 22 (2022) 18-25

20

schemas were created for each project – one in MySQL,

one in PostgreSQL. Both applications run on a local

server. Table 1 shows the parameters of the equipment

on which the research environment was realized.

Table 1: The parameters of the equipment

Parameter Value

Processor AMD Ryzen 5 4500U

RAM 16GB

Disc SSD M.2PCIe 512GB

Graphic Card AMD Radeon Graphics

2.38GHz

Operating System Windows 10 Home 20H2

The created environment allows for a comparative

analysis of Laravel and Symfony in order to determine

their similarities, as well as to highlight significant dif-

ferences. To complete this task, the author used appro-

priate methods and metrics, divided into static and dy-

namic metrics.

To perform the benchmarking using static metrics,

a PHP tool called PHPLOC was used. It allows to calcu-

late the exact number of lines of source code, the classes

and methods contained in the program, and the overall

size of the application (including the number of files

and folders).

Two extensions for selected frameworks were used

to determine dynamic metrics – Laravel Dusk for

Laravel and WebTestCase for Symfony, respectively.

They allow to simulate user actions, and thus collect

data on SRT, QET and TPT metrics [10]. To measure

the execution time of a database query, a series of tests

should be carried out that perform a specific number

of queries to the database. For each operation supported

by the application (create, read, update, delete), tests

containing 10, 100 and 1000 queries were performed.

Before starting each test, it is necessary to clear

the cache to maintain the reliability of the results.

3.1. Static Metrics

The following static metriccs were used in the study:

 Number of lines of code – Known as LOC (Lines

of Code) or SLOC (Source Lines of Code), this is

a type of size metric that allows to identify the lines

of source code used in a project. Shows the scale

of the software, and indicates classes and methods

that are beyond the recommended size.

 Number of classes and interfaces – this metric

allows to specify the exact number of classes and in-

terfaces used in the software source code, it excludes

internal classes.

 Number of methods – the metric responsible for

indicating the number of methods existing in the ap-

plication. It applies not only to the entire program,

but also to individual classes or interfaces.

 Program size – a metric responsible for measuring

the number of files and folders present in the appli-

cation, as well as their size on the disk. Its size may

be affected by the number of libraries attached to

the project, the number of lines of code or the num-

ber of files and folders. This value was expressed in

KB.

3.2. Dynamic Metrics

In addition to static metrics, the following dynamic

metrics were also included in the study:

 Total Processing Time (TPT) – this metric is used

to measure the time elapsed from sending the re-

quest until the application responds. It provides in-

formation on the total processing time of the user's

command, from its creation, through processing

by the server and database, to obtaining a reply for

each CRUD operation. For each operation, the aver-

age processing time in milliseconds is calculated.

 Service Response Time (SRT) – is used to measure

the response time of the application server, starting

from sending a request to the network service until

obtaining the first byte of the response. Similar to

TPT, each CRUD operation is processed by

the specified number of query samples, from which

the average value for each operation is determined.

The metric is expressed in milliseconds.

 Query Execution Time (QET) – a metric that

measures the time that was needed to process

the query sent by the application (in this case,

the CRUD operation in the amount of samples speci-

fied above).

4. Comparative Analysis

Both frameworks – Symfony and Laravel – were an-

alyzed in terms of static and dynamic metrics. This

chapter summarizes their possibilities and the performed

analysis.

4.1. Comparative Analysis Based on Static Metrics

The comparison of static metrics of projects implement-

ed in Laravel and Symfony enables the comparison

of the quality of the source code of the application being

developed. The research environment provides infor-

mation on the number of lines of code, number of clas-

ses and interfaces, number of methods, program size,

scalability and overall performance score.

Figure 2 summarizes information on the total num-

ber of lines of code (LOC) for both projects that are part

of the research environment.

Figure 2: The number of lines of code in Symfony.

Journal of Computer Sciences Institute 22 (2022) 18-25

21

It also provides information about the number

of comment and non-comment lines of code (CLOC

and NLOC metrics respectively), and the number

of logical lines of code (LLOC metric) consisting

of classes and methods. The numerical advantage

of LOC is clearly visible for the benefit of Symfony –

the Symfony’s LOC is almost 7 times higher than
Laravel’s. It is also worth noting that Symfony has

a greater percentage of CLOC and LLOC (18.42% and

24.80% respectively) than Laravel (12.08% and 10.74%

respectively). A higher number of comment lines

of code may suggest the presence of more extensive

documentation and guidance on the use of Symfony

capabilities, while a higher number of lines of code

placed in the application logic may result in slower

performance as the project grows.

Figure 3 shows a graph showing the number of clas-

ses and interfaces available in both frameworks. Sym-

fony, as with the number of lines of code, can boast

a considerable number of classes in the project, which

exceeds the number of classes in Laravel almost

14 times. Interestingly, none of the patterns offer any

interface by default.

Figure 3: The number of classes and interfaces in Symfony

and Laravel.

The above list of the number of classes shows

the enormity and complexity of Symfony, but it is worth

remembering that it is a fully proprietary framework,

while Laravel complements the logic of Symfony with

its logic, treating it as its base.

Figure 4 shows the quantification of the different

types of method visibility in Symfony.

Figure 4: The number and the visibility of methods in Symfony.

It is clearly visible that this framework offers mostly

public methods (888), but 15% of all methods (153

exactly) are protected or private. The sheer number

of available methods in this framework is considerable,

because the project implemented in Symfony in

the research environment has 1041 of them. The audi-

ence of Symfony methods allows to conclude that

the framework by default provides the standard high

security of its components by restricting access to them.

The next graph (Figure 5) shows the number

and visibility of the methods in the application imple-

mented in Laravel. Their number, as in the case of LOC

and the number of classes and interfaces, is several

times lower than in the case of Symfony. It is worth

noting that most of the methods available in the Laravel

(77) application are public, while offering only 4 pro-

tected methods and no private methods.

Figure 5: The number and the visibility of methods in Laravel.

Collected static metrics clearly show that Symfony

creates larger-sized projects with a much higher number

of components than Laravel. This is due to the construc-

tion of the entire framework, because Symfony takes

full advantage of its proprietary solutions, while Larave

relies on Symfony components, complementing them

with its own logic.

The volume of the project can have a significant im-

pact on the performance and smoothness of the applica-

tion to the benefit of Laravel, but Symfony, due to

the greater number of protected and private methods,

can provide greater security of the designed solutions.

4.2. Comparative Analysis Based on Dynamic Met-

rics

Both Laravel and Symfony frameworks have been

subjected tu dynamic metric analysis summarized in this

chapter. It used data collected for 1000 samples, as it

turned out to be the most reliable in the context

of the entire study. The following therminology is used

in the graphs: L for Laravel and S for Symfony.

At the beginning, the cooperation of both patterns

with the PostgreSQL database was analyzed, which is

visible at the Figure 6 describing the SRT for 1000 post.

Journal of Computer Sciences Institute 22 (2022) 18-25

22

Figure 6: SRT metric for 1000 post sample in PostgreSQL.

It can be seen that when a new post was placed,

Symfony obtained better results, but in other cases (de-

lete and update) its result is much worse than Laravel in

terms of efficiency – these operations take much longer

The situation is different for the SRT with a sample

of 1000 comments presented at Figure 7.

Figure 7: SRT metric for 1000 comments sample in PostgreSQL.

Laravel did better for each operation performed

(the waiting time for a response is close to almost 0),

while Symfony took definitely more time to deliver

the first byte of the response, sometimes up to 0.3ms.

The time of querying the database at the time

of creating a new post (Figure 8) was definitely in favor

of Symfony.

Figure 8: QET metric for 1000 posts sample in PostgreSQL.

With each operation, it is visibly lower than in

the case of Laravel (almost 9 times for the create opera-

tion itself). The operation of creating a post is the most

absorbing among those listed for Laravel, while

the results for Symfony are very similar and remain

at the level of 0.2 ms.

The situation is similar in the case of posting

a comment on the blog (Figure 9). The query processing

time by Symfony is much lower than in the case

of Laravel, despite the fact that both patterns maintain

the values or all the above-mentioned operations at

a similar level.

Figure 9: QET metric for 1000 comments sample in PostgreSQL.

It is worth noting, however, that the time for adding

a comment by Laravel is significantly lower than

the time for adding a post - this is due to the fact that

less data lands in the database (a comment is much

shorter than a blog entry). Symfony is in the area

of 0.2ms in both cases.

The difference in query processing time may be due

to the fact that both frameworks, Laravel and Symfony,

use separate object-relational mapping – Eloquent ORM

and Doctrine ORM respectively. The main difference

between them is that Doctrine is entirely based on pure

old PHP language, while Eloquent inherits all the ORM

persistence logic.

The TPT metric (Figure 10) for the sample of 1000

posts in the case of Laravel was the worst for the Create

operation - it clearly surpasses the other values on

the chart.

Figure 10: TPT metric for 1000 posts sample in PostgreSQL.

This is due to the fact that the query processing time

was much higher than in other operations. A similar

tendency was shown by Symfony - a significant part

of TPT was spent on query processing, but the result is

still more optimal (oscillates between 0.2 – 0.4ms).

In the case of TPT for a sample of 1000 comments

(Figure 11), the situation for both patterns is relatively

similar - both frameworks show similar values for each

operation, but it is worth noting that in the case

of Laravel this value is 2 times lower than in the case

Journal of Computer Sciences Institute 22 (2022) 18-25

23

of the sample of 1000 posts. There was an exemplary

trend in Symfony - each operation requires almost

0.4ms of TPT. This is because Symfony has a higher

SRT which automatically increases TPT.

Figure 11: TPT metric for 1000 comments sample in PostgreSQL.

The Read operation for each framework and sample

is shown in a separate graph (Figure 12). It clearly

shows that the situation is very similar in both cases -

both Laravel and Symfony show low SRT, and most

TPT is sending and processing a query to the database

and getting a response from it. However, it is worth

paying attention to the time in which the above-

mentioned operation is performed - for Laravel this time

is 1.8ms for posts and 1.6ms for comments, while for

Symfony - 0.2ms.

Figure 12: Dynamic metrics for Read operation in PostgreSQL.

The next stage of the analysis was the compilation

of dynamic engines for the MySQL database. Figure 13

shows the SRT metric related to a sample of 1000 posts.

The most overwhelming operation in this case was

the Delete operation - for both Laravel and Symfony.

Figure 13: SRT metric for 1000 posts sample in MySQL.

It is worth mentioning that Symfony has a much

higher SRT for Update and Delete than Laravel. This

may be due to the fact that the size of the post, due to

the number of characters, is an aggravating query for

the database.

The situation is different for the SRT metric for

a sample of 1000 comments (Figure 14).

Figure 14: SRT metric for 1000 comments sample in MySQL.

While in the case of creating a post, SRT for both

patterns was relatively low and high for the remaining

operations, in this case the SRT is clearly (even 10

times) higher for Symfony than Laravel for each per-

formed operation. The graph also clearly shows that

the SRT for Laravel comments remains at a similar

level of around 0.01ms.

In the case of the query processing time in

the MySQL database for a sample of 1000 posts (Figure

15), Laravel did worse in the create and delete operation

than Symfony - its execution time was significantly

longer. Symfony, however, required much more time to

update an existing post (almost 2ms), which is not only

a few times higher result in the stocunt to Laravel, but

also in relation to the create and delete operation in

Symfony itself.

Figure 15: QET metric for 1000 posts sample in MySQL.

The situation looks different for QET metric for

comments (Figure 16). In this case, all operations tem-

porarily disadvantage Laravel - the query processing

time, from sending it to obtaining a response from

the database, is much higher than in the case of Sym-

fony. Contrary to the sample of 10,000 posts, the delete

operation was the most absorbing - probably because

the comment is additionally burdened with a foreign

key.

Journal of Computer Sciences Institute 22 (2022) 18-25

24

Figure 16: QET metric for 1000 comments sample in MySQL.

TPT for MySQL posts shown at Figure 17 - unlike

PostgreSQL - does not unequivocally speak in favor

of any of the analyzed patterns. It is true that the opera-

tion of adding a new post and removing it takes Laravel

more time, but its update is several times lower than in

the case of Symfony. This is due to the high QET for

a Symfony post update - all this metric is the vast ma-

jority of the total processing time in each case.

Figure 17: TPT metric for 1000 posts sample in MySQL.

The TPT for the sample of 1000 comments shown in

Figure 18 clearly shows that in this case Symfony is

again keeping the result at 0.2ms. The thing that stands

out is the processing time for the delete operation in

Laravel - it is significantly longer than for the other

operations and the second pattern. This fact is due to the

low SRT and high QET.

Figure 18: TPT metric for 1000 comments sample in MySQL.

Figure 19 shows the mean values of SRT, QET,

and TPT for 1000 comments and 1000 posts read opera-

tions. As in the case of other operations, the vast majori-

ty of TPT is occupied by QET (approx. 3 ms for Laravel

and approx. 0.5 ms for Symfony, respectively). SRT is

almost 0 in both cases.

Figure 19: Dynamic metrics for Read operation in MySQL.

The collected values of static and dynamic metrics

made it possible to compare the possibilities and quality

of the code and the functioning of both analyzed design

patterns itself. Dynamic metrics have been compiled in

tables to compile the final results.

Table 2 presents dynamic metrics for a sample

of 1000 PostgreSQL posts. It is clearly visible the per-

formance of Symfony showing better communication

with the database as well as better SRT for half

of the CRUD operations.

Table 2: Dynamic metrics for 1000 posts sample in PostgreSQL.

 SRT QET TPT

Create S S S

Read S S S

Update L S S

Delete L S S

Table 3 shows a similar trend with an advantage for

Symfony - Laravel is a clear favorite for the SRT met-

ric, but Symfony performs better for the rest of the cas-

es.

Table 3: Dynamic metrics for 1000 comments sample in Post-

greSQL.

 SRT QET TPT

Create L S S

Read S S S

Update L S S

Delete L S S

Table 4 summarizes the dynamic capabilities of both

frameworks for a sample of 1000 MySQL posts. In this

case, Laravel did better not only for the SRT, but also

for each metric for the Delete operation.

Table 4: Dynamic metrics for 1000 posts sample in MySQL.

 SRT QET TPT

Create S S S

Read S S S

Update L S S

Delete L L L

The last table (Table 5) shows the dynamic metrics

for a sample of 1000 MySQL comments. The situation

is the same as for the sample of 1000 PostgreSQL

Journal of Computer Sciences Institute 22 (2022) 18-25

25

comments - Laravel has better performance for the SRT

metric, except for the Read operation.

Table 5: Dynamic metrics for 1000 comments sample in MySQL.

 SRT QET TPT

Create L S S

Read S S S

Update L S S

Delete L S S

While analyzing the above results, it is worth bear-

ing in mind that the main part of the TPT metric is

the database query processing time (QET).

5. Conclusion

The aim of the study was to determine which

of the analyzed frameworks - Laravel or Symfony - is

a better solution for the developer. Based on the collect-

ed results, it can be concluded that Laravel as a frame-

work is definitely a less complex solution than Sym-

fony. Its construction based on static metrics shows

a lower complexity and volume in relation to the second

analyzed model (the values of the metrics sometimes

show a several times higher result in relation to

the Symfony - Laravel ratio). However, it is worth re-

membering that Symfony uses only its own proprietary

solutions, while Laravel uses Symfony components as

a specific base and its backbone, which has a decisive

impact on the volume of the code.

Performance was tested based on dynamic metrics.

Due to this operation it was possible to test the perfor-

mance of both frameworks. The analysis revealed that

Laravel as a framework shows better results for the SRT

metric - this means that compared to Symfony it deliv-

ers the first byte of response faster, regardless

of the operation performed, but Symfony seems to be

a pattern better connected with databases. The query

processing time for most operations with samples

of 1000 posts and 1000 comments in Symfony most

often oscillated around 0.2ms, while in Laravel it was

able to achieve the result of less than 2ms.

All CRUD operations showed a similar relationship

- in each case, the greater part of TPT took up the pro-

cessing time of the database query. For both frame-

works, this operation was the most absorbing and took

a long time to carry out from start to finish.

The above results allow to conclude that both ana-

lyzed frameworks are an efficient and optimal solution

for a developer, but each of them has its own ad-

vantages and disadvantages. Laravel is a better solution

for the processing of application content and due to

the volume of the code, it allows for easier organization

and implementation of changes, but Symfony is better

connected with PostgreSQL and MySQL databases.

The choice of the best framework should therefore de-

pend on the individual needs of the developer, project

assumptions, as well as the requirements set

by the client. More extensive research is planned to

explore this topic.

References

[1] A. Gdula, M. Plechawska-Wójcik, Porównanie
wydajności wybranych technologii tworzenia usług
sieciowych w aspekcie zastosowań w aplikacjach
internetowych, Journal of Computer Sciences Institute 1

(2016) 14-19, https://doi.org/10.35784/jcsi.61.

[2] M. Jailia, A. Kumar, M. Agarwal, I. Sinha, Behavior

of MVC (Model View Controller) based Web

Application developed in PHP and .NET framework,

International Conference on ICT in Business Industry

& Government (ICTBIG) (2016) 1-5,

https://doi.org/10.1109/ictbig.2016.7892651.

[3] U. Sa'adah, J. Akhmad, M. Hisyam, Implementing

Singleton method in design of MVC-based PHP

framework, International Electronics Symposium (IES)

(2015) 212-217,

https://doi.org/10.1109/elecsym.2015.7380843.

[4] J. Adamu, R. Hamzah, M. M. Rosli, Security issues

and framework of electronic medical record: A review,

Bulletin of Electrical Engineering and Informatics 9(2)

(2020) 565-572, https://doi.org/10.11591/eei.v9i2.2064.

[5] R. F. Olanrewaju, T. Islam, N. A. Ali, An empirical study

of the evolution of PHP MVC framework, Advanced

Computer and Communication Engineering Technology

(2015) 399-410,

https://doi.org/10.1007/978-3-319-07674-4_40.

[6] X. Li, S. Karnan, J. A. Chishti, An empirical study

of three PHP frameworks, 4th International Conference

on Systems and Informatics (ICSAI) (2017) 1636-1640,

https://doi.org/10.1109/icsai.2017.8248546.

[7] M. Laaziri, K. Benmoussa, S. Khoulji, K. M. Larbi, A. El

Yamami, A comparative study of Laravel and Symfony

PHP frameworks, International Journal of Electrical

and Computer Engineering 9(1) (2019) 704-712,

https://doi.org/10.11591/ijece.v9i1.pp704-712.

[8] S. Singh, J. Iyer, Comparative Study of MVC (Model

View Controller) Architecture with respect to Struts

Framework and PHP, International Journal of Computer

Science Engineering 5(3) (2016) 142-150.

[9] X. K. Liu, G. G. Cheng, Analysis and Implementation

of ASP. Net and PHP Frameworks Based on MVC

Architecture, In Advanced Materials Research 798

(2013) 749-752,

https://doi.org/10.4028/www.scientific.net/amr.798-

799.749.

[10] M. R. Daraż, P. Kopniak, Analiza możliwości
współpracy aplikacji mobilnych z usługami sieciowymi
typu REST i Web Service, Journal of Computer Sciences

Institute 11 (2019) 155-162,

https://doi.org/10.35784/jcsi.181.

https://doi.org/10.35784/jcsi.61
https://doi.org/10.1109/ictbig.2016.7892651
https://doi.org/10.1109/elecsym.2015.7380843
https://doi.org/10.11591/eei.v9i2.2064
https://doi.org/10.1007/978-3-319-07674-4_40
https://doi.org/10.1109/icsai.2017.8248546
https://doi.org/10.11591/ijece.v9i1.pp704-712
https://doi.org/10.4028/www.scientific.net/amr.798-799.749
https://doi.org/10.4028/www.scientific.net/amr.798-799.749
https://doi.org/10.35784/jcsi.181

