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Abstract 
There is a great range of spectacular coral reefs in the ocean world. Unfortunately, they are in jeopardy, due to an over-

abundance of one specific starfish called the coral-eating crown-of-thorns starfish (or COTS). This article provides 

research to deliver innovation in COTS control. Using a deep learning model based on the You Only Look Once ver-

sion 5 (YOLOv5) deep learning algorithm on an embedded device for COTS detection. It aids professionals in optimiz-

ing their time, resources, and enhances efficiency for the preservation of coral reefs worldwide. As a result, the perfor-

mance over the algorithm was outstanding with Precision: 0.93 - Recall: 0.77 - F1score: 0.84. 
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1. Introduction 

COTS (crown-of-thorns starfish) is a natural coral pre-

dator. However, when populations reach epidemic 

levels (about 15 starfish per hectare), corals are eaten 

quicker by COTS than they can develop. Crown-of-

thorns starfish may devour up to 90% of a reef's living 

coral tissue during an epidemic. This adds to the pressu-

res already exerted on the reef by problems such as 

bleaching and climate change. Many environmental 

organizations, universities, government agencies, and 

members of the public have contributed a vast amount 

of information and resources to help understand and 

monitor COTS outbreaks. On the other hand, new 

outbreaks occur in 1–15-year cycles, making it impossi-

ble to pinpoint exact causes or even keep its numbers 

under control. COTS outbreaks have been related to a 

variety of reasons, including ocean "stressors" such as 

surges in ocean nutrients generated by coastal and agri-

cultural run-off into the ocean, as well as a loss of pre-

dators due to overfishing, according to decades of stu-

dies on the Great Barrier Reef. In this study, I trained 

and evaluated the COTS detection model (YOLOv5 

small version 6) with the You Only Live Once algo-

rithm which is used for embedded systems and mobile 

devices. It has a state-of-the-art convolutional neural 

network (CNN) at its core with the required configura-

tion that parameters were optimized. On top of that, I 

applied advanced data augmentation methods for en-

hancing the quality and quantity of the dataset from 'The 

CSIRO Crown-of-Thorn Starfish Detection Dataset' [1]. 

2. Methodology 

Deep learning has been well-known in recent years for 

its capacity to learn from experience and is now being 

utilized to solve complicated issues. Deep convolutional 

neural networks (CNNs) have made significant progress 

in large-scale object recognition in particular [7]. Figure 

2 shows the workflow of a deep CNN-based object 

detection system with components. 

 

Figure 1: Crown-Of-Thorns Starfish (COTS) on coral. 

 

Figure 2: Deep CNN-based object detection system’s workflow. 

2.1. You Only Look Once algorithm (YOLO) 

YOLO is a one-stage object detection algorithm that has 

been around for a long time. It transforms the detection 

issue into a regression problem. Instead of extracting 

RoI, it uses the regression approach to obtain the boun-

ding box coordinates and probability of each class. It 

considerably enhances detection speed when compared 

to faster R-CNN. It doesn't employ a region proposal or 

a sliding window like other networks; It reframes object 

detection as a single regression problem. After only one 
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look at the input image, YOLO turns it into a grid of S x 

S cells. Each grid cell predicts B bounding boxes and a 

confidence score that shows if the predicted bounding 

box intersects with the ground truth bounding box and 

whether the predicted bounding box includes some 

objects: 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑃𝑟(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑡𝑟𝑢𝑡ℎ (1) 

 
Figure 3: YOLO algorithm's anchor box. 

The YOLO network predicts bounding boxes as 

deviations from a set of 'anchor box' dimensions to 

produce box predictions. 

2.2. YOLOv5 Network 

YOLOv5 outperforms all prior versions in terms of 

speed and accuracy. YOLOv5 version 6 was applied for 

this research. The YOLOv5 algorithm adjusts the width 

and depth of the backbone network using the depth-

multiple and width-multiple parameters, yielding five 

different models: YOLOv5n, YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x. 

As a backbone, it uses CSPDarknet53. This backbo-

ne handles the repeating gradient information in big 

backbones and incorporates gradient change into feature 

maps, which speeds up inference, improves accuracy, 

and decreases the model size by lowering parameters. It 

boosts information flow by using a path aggregation 

network (PANet) as a neck. PANet uses a novel feature 

pyramid network (FPN) with many bottom-up and top-

down layers. This enhances the model's low-level featu-

re propagation. PANet increases the object's localization 

accuracy by improving localization in lower levels. 

Moreover, the focus structure using CSPdarknet53 as a 

backbone reduces the amount of CUDA memory requi-

red, increases forward propagation, and decreases back-

propagation. 

2.3. TensorFlow Lite 

TensorFlow Lite was employed in this research for a 

variety of reasons: 

 Light-weight: In terms of storage and compute ca-

pacity, embedded devices have minimal resources. 

Deep learning models consume a lot of resources, 

thus the models we deploy on embedded devices 

should be light and have reduced binary sizes. 

 Low Latency: Regardless of network connectivity, 

deep learning models on the embedded systems 

should produce faster inferences irrespective.  

 Pre-trained: Models can be trained on-premise or 

cloud for various deep learning tasks. Such as image 

classification, object detection, speech recognition, 

etc. and can be simply deployed to make inferences. 

 

Figure 4: YOLOv5s version 6 network architecture. 

It has all the capabilities needed to make inferences 

on the embedded systems. It is a cross-platform, open-

source deep learning framework that transforms a pre-

trained model into its format. It is a specific format 

model that is efficient in terms of performance and a 

lightweight version that will take up less space, these 

features make it ideal for use on mobile and embedded 

devices. Therefore, I decided to use it because it is not 

only easy to use but also optimized to execute. 

 

 

Figure 5: YOLOv5 to TensorFlow Lite weight conversion proces. 

The TensorFlow Lite model can be deployed on 

mobile devices. Such as Android and iOS, or on em-

bedded devices like Raspberry and  Microcontrollers in 

general. The following are the steps to making an infer-

ence from embedded devices: 

 Initialize the interpreter and load the model into it. 

 Allocate the tensor and obtain the input and output 

tensors. 
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 Preprocess the images by reading them into a tensor. 

 Invoke the interpreter to make the inference on the 

input tensor. 

 Get the image's result by mapping the inference's 

results. 

3. Experiments 

The flowchart below depicts the experiment steps in my 

proposed research: 

 

Figure 6: Flowchart of the proposed research. 

3.1. Data Collection and Processing 

The dataset [1] was gathered by a CSIRO team using a 

GoPro Hero9 camera that had been modified for use in 

the Manta Tow technique. The camera was specifically 

affixed to the bottom of the manta tow board, which the 

snorkeller-diver held during the surveys. As the diver 

explores the reef, the camera displays an oblique field of 

view of the reef below him, with the distance to the reef 

constantly changing. The distance from the bottom is 

usually several meters, although it might be as little as a 

few tens of centimeters or as much as 10 meters or 

more. The survey boat travels at a top speed of 5 knots 

and pulls the diver for two minutes, covering a distance 

of around 200 meters. The boat then comes to a com-

plete halt to allow the diver to record data collected 

throughout the transect on a sheet of paper. Expert an-

notators used pre-trained COTS detection models to 

identify every COTS in the photos, which was followed 

by an AI-assisted annotation and quality assurance pro-

cedure. Using the annotation program, all of the COTS 

detection in a picture was marked with a box. The data 

was gathered on a reef in the Swain Reefs section of the 

GBR on a single day in October 2021. Lighting, visibil-

ity, coral habitat, depth, distance from the bottom, and 

viewpoint all vary.  

The collection comprises underwater picture se-

quences recorded at five distinct locations on a reef in 

the GBR. There are almost 35000 photos in all, with 

hundreds of individual COTS visible. However, only 

4888 photos, including COTS, which I utilized to aug-

ment for the dataset to train the proposed model. 

The size of the original images has been normalized 

to 640x640 to give a detection technique that fulfills the 

requirement for real-time and precise operation. This 

boosts the detection speed without deleting any im-

portant data in the image. The normalized photos have 

also been divided into two groups: a test set and a train-

ing set.  After including the detection model's anchor 

box size for clustering purposes, the pre-processing 

criteria would be finished. I employed certain processes 

for data augmentation. Such as rotation, horizontal and 

vertical shear, mosaic. Those approaches do not change 

the image's pixel values; they merely change the image's 

position. As a result, the learning ability of the convolu-

tional neural network would be modified to learn high-

quality features while avoiding overfitting. Table 1 

depicts the description of the augmented dataset after 

my data processing step. Figure 7 depicts a flowchart of 

the data augmented implementation process.  

 

Figure 7: Data augmentation proces. 

Table 1: Augmented dataset summary 

Total Image Size Class Labelled box 

14.646 640x640 COTS 40.000 
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3.2. Training 

Model training was carried out on 2 GPUs - NVIDIA 

GeForce RTX 2080 Ti (11GB-GDDR6). 

 

4. Results 

4.1. Evaluation metrics 

To evaluate YOLOv5's algorithm, F1score and mAP 

were employed. The F1score is the harmonic mean of 

accuracy and recall. It is also the model’s test accuracy. 
The maximum possible F1score value is 1, indicating 

flawless accuracy and memory, while the lowest possi-

ble score is 0, indicating that either precision or recall is 

zero. Furthermore, mAP is determined by averaging the 

average precision (AP), where q is the number of que-

ries and AveP(q) is the average precision for that partic-

ular query. The mean of AP may then be used to deter-

mine mAP. mAP may also be thought of as a metric for 

calculating the accuracy of machine learning algo-

rithms. In COTS detection, True Positive (TP) is the 

predicted COTS was correctly detected and the actual 

class was the same as the predicted one. False Positive 

(FP) is the model that predicted COTS and the actual 

class was not. False Negative (FN) is predicted class 

was not COTS and the actual class was COTS. True 

Negative (TN) is the predicted class was not COTS and 

the actual class was also not COTS. 

F1score = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (4) 

mAP= ∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄𝑄𝑞=1  (5) 

It is worth noting that precision is computed as the 

ratio of true prediction to the total number of predic-

tions. For instance, if a model generates 50 predictions 

and all of them are true, the precision is 100%. Precision 

does not take into account the actual number of true 

objects present in an image; whereas recall computes 

the ratio of true predictions to the total number of ob-

jects in an image. For example, if a model detects 75 

true objects and the image contains 100 true objects, 

recall is determined to be 75%. The presence of simply 

high precision or only high recall does not imply that 

the model is a good one. It must strike a balance be-

tween precision and recall for an object detection algo-

rithm to be considered outstanding. Therefore, we use 

the F1score to determine if a model is a good one or not. 

4.2. Model’s weight information 

Table 2: Model’s weight information 

Item Information 

Model YOLOv5s.pt 

Precision 0.93 

Recall 0.77 

F1score 0.84 

mAP(%) 83 

Training time 4 hours + 53 minutes 
 

 
Figure 8: Model's F1score curve. 

 

 

Figure 9: Model's Precision-Recall-mAP. 
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4.3. Model’s performance on embedded system 

 

Figure 10: Setup of the proposed embedded system: 1) Odroid 

XU4 - 2) Microsoft Camera C3000 - 3) Google Edge TPU 

coprocessor - 4) Adafruit 7-inch monitor. 

Table 3: Proposed embedded system in detail 

Item Property 

Microcontroller Odroid XU4 

Identifier ARM implementer 65 architecture 7 variant 

2 part 3087 revision 3 

CPU Samsung Exynos5422 Cortex™-A15 2Ghz 

and Cortex™-A7 Octa-core 

GPU ARM Mali-T628 6 Cores 

RAM 2GB LPDDR3 

TPU Google Edge Coral 

Camera Mircosoft C3000 (720p) 

Monitor Adafruit 7 inch (720p) 

OS Ubuntu 18.04 MATE 

Language Python 3.7.3 

Table 4: Performance on the proposed embedded system 

Item Property 

Model COTS.tflite 

Model size 7.3 MB 

Input size 640x480 

FPS 30 

Inference time (Single-core) 30 milliseconds  

(0.03 seconds) 

Inference time (Multiple-cores) 8 milliseconds  

(0.008 seconds) 

Accuracy 93% 

 

 

Figure 12: COTS detection inferences on the proposed system. 

 
Figure 11: Proposed embedded board block diagram. 
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5. Conclusion 

In this paper, I provided a Crown-of-thorns starfish 

(COTS) detection system based on the YOLOv5 algo-

rithm. This approach can identify COTS in real-time, 

videos or images, and recognize whether it appears on 

the scene. I trained a model to provide a real-time sys-

tem, but still, be able to maintain high accuracy. Fur-

thermore, the size of my model is quite favorable; it is 

only 7.3 MB in size. It can undoubtedly be applied to 

real-world scenarios. It demonstrated that a deep CNN 

can indeed be applied to the task with promising results 

in evaluated metrics. I expect that the outcomes will be 

far better than those shown here with more training data.  

A restriction of embedded system configuration is also a 

concern. In the future, I will do research to develop a 

system that balances the needed configuration and mod-

el performance. 
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