
JCSI 23 (2022) 105–111

Received: 11 March 2022

Accepted: 29 March 2022

105

Detrimental Starfish Detection on Embedded System: A Case Study of

YOLOv5 Deep Learning Algorithm and TensorFlow Lite framework

Nguyen Quoc Toan*

Department of Electronic and Electrical Engineering, Hongik University, Wausan-ro 94, Mapo-gu, Seoul, South Korea

Abstract
There is a great range of spectacular coral reefs in the ocean world. Unfortunately, they are in jeopardy, due to an over-

abundance of one specific starfish called the coral-eating crown-of-thorns starfish (or COTS). This article provides

research to deliver innovation in COTS control. Using a deep learning model based on the You Only Look Once ver-

sion 5 (YOLOv5) deep learning algorithm on an embedded device for COTS detection. It aids professionals in optimiz-

ing their time, resources, and enhances efficiency for the preservation of coral reefs worldwide. As a result, the perfor-

mance over the algorithm was outstanding with Precision: 0.93 - Recall: 0.77 - F1score: 0.84.

Keywords: deep learning; computer vision; YOLO; embedded system

*Corresponding author

Email address: quoctoann3@gmail.com (N. Q. Toan)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

COTS (crown-of-thorns starfish) is a natural coral pre-

dator. However, when populations reach epidemic

levels (about 15 starfish per hectare), corals are eaten

quicker by COTS than they can develop. Crown-of-

thorns starfish may devour up to 90% of a reef's living

coral tissue during an epidemic. This adds to the pressu-

res already exerted on the reef by problems such as

bleaching and climate change. Many environmental

organizations, universities, government agencies, and

members of the public have contributed a vast amount

of information and resources to help understand and

monitor COTS outbreaks. On the other hand, new

outbreaks occur in 1–15-year cycles, making it impossi-

ble to pinpoint exact causes or even keep its numbers

under control. COTS outbreaks have been related to a

variety of reasons, including ocean "stressors" such as

surges in ocean nutrients generated by coastal and agri-

cultural run-off into the ocean, as well as a loss of pre-

dators due to overfishing, according to decades of stu-

dies on the Great Barrier Reef. In this study, I trained

and evaluated the COTS detection model (YOLOv5

small version 6) with the You Only Live Once algo-

rithm which is used for embedded systems and mobile

devices. It has a state-of-the-art convolutional neural

network (CNN) at its core with the required configura-

tion that parameters were optimized. On top of that, I

applied advanced data augmentation methods for en-

hancing the quality and quantity of the dataset from 'The

CSIRO Crown-of-Thorn Starfish Detection Dataset' [1].

2. Methodology

Deep learning has been well-known in recent years for

its capacity to learn from experience and is now being

utilized to solve complicated issues. Deep convolutional

neural networks (CNNs) have made significant progress

in large-scale object recognition in particular [7]. Figure

2 shows the workflow of a deep CNN-based object

detection system with components.

Figure 1: Crown-Of-Thorns Starfish (COTS) on coral.

Figure 2: Deep CNN-based object detection system’s workflow.

2.1. You Only Look Once algorithm (YOLO)

YOLO is a one-stage object detection algorithm that has

been around for a long time. It transforms the detection

issue into a regression problem. Instead of extracting

RoI, it uses the regression approach to obtain the boun-

ding box coordinates and probability of each class. It

considerably enhances detection speed when compared

to faster R-CNN. It doesn't employ a region proposal or

a sliding window like other networks; It reframes object

detection as a single regression problem. After only one

Journal of Computer Sciences Institute 23 (2022) 105-111

106

look at the input image, YOLO turns it into a grid of S x

S cells. Each grid cell predicts B bounding boxes and a

confidence score that shows if the predicted bounding

box intersects with the ground truth bounding box and

whether the predicted bounding box includes some

objects: 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑃𝑟(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑡𝑟𝑢𝑡ℎ (1)

Figure 3: YOLO algorithm's anchor box.

The YOLO network predicts bounding boxes as

deviations from a set of 'anchor box' dimensions to

produce box predictions.

2.2. YOLOv5 Network

YOLOv5 outperforms all prior versions in terms of

speed and accuracy. YOLOv5 version 6 was applied for

this research. The YOLOv5 algorithm adjusts the width

and depth of the backbone network using the depth-

multiple and width-multiple parameters, yielding five

different models: YOLOv5n, YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x.

As a backbone, it uses CSPDarknet53. This backbo-

ne handles the repeating gradient information in big

backbones and incorporates gradient change into feature

maps, which speeds up inference, improves accuracy,

and decreases the model size by lowering parameters. It

boosts information flow by using a path aggregation

network (PANet) as a neck. PANet uses a novel feature

pyramid network (FPN) with many bottom-up and top-

down layers. This enhances the model's low-level featu-

re propagation. PANet increases the object's localization

accuracy by improving localization in lower levels.

Moreover, the focus structure using CSPdarknet53 as a

backbone reduces the amount of CUDA memory requi-

red, increases forward propagation, and decreases back-

propagation.

2.3. TensorFlow Lite

TensorFlow Lite was employed in this research for a

variety of reasons:

 Light-weight: In terms of storage and compute ca-

pacity, embedded devices have minimal resources.

Deep learning models consume a lot of resources,

thus the models we deploy on embedded devices

should be light and have reduced binary sizes.

 Low Latency: Regardless of network connectivity,

deep learning models on the embedded systems

should produce faster inferences irrespective.

 Pre-trained: Models can be trained on-premise or

cloud for various deep learning tasks. Such as image

classification, object detection, speech recognition,

etc. and can be simply deployed to make inferences.

Figure 4: YOLOv5s version 6 network architecture.

It has all the capabilities needed to make inferences

on the embedded systems. It is a cross-platform, open-

source deep learning framework that transforms a pre-

trained model into its format. It is a specific format

model that is efficient in terms of performance and a

lightweight version that will take up less space, these

features make it ideal for use on mobile and embedded

devices. Therefore, I decided to use it because it is not

only easy to use but also optimized to execute.

Figure 5: YOLOv5 to TensorFlow Lite weight conversion proces.

The TensorFlow Lite model can be deployed on

mobile devices. Such as Android and iOS, or on em-

bedded devices like Raspberry and Microcontrollers in

general. The following are the steps to making an infer-

ence from embedded devices:

 Initialize the interpreter and load the model into it.

 Allocate the tensor and obtain the input and output

tensors.

Journal of Computer Sciences Institute 23 (2022) 105-111

107

 Preprocess the images by reading them into a tensor.

 Invoke the interpreter to make the inference on the

input tensor.

 Get the image's result by mapping the inference's

results.

3. Experiments

The flowchart below depicts the experiment steps in my

proposed research:

Figure 6: Flowchart of the proposed research.

3.1. Data Collection and Processing

The dataset [1] was gathered by a CSIRO team using a

GoPro Hero9 camera that had been modified for use in

the Manta Tow technique. The camera was specifically

affixed to the bottom of the manta tow board, which the

snorkeller-diver held during the surveys. As the diver

explores the reef, the camera displays an oblique field of

view of the reef below him, with the distance to the reef

constantly changing. The distance from the bottom is

usually several meters, although it might be as little as a

few tens of centimeters or as much as 10 meters or

more. The survey boat travels at a top speed of 5 knots

and pulls the diver for two minutes, covering a distance

of around 200 meters. The boat then comes to a com-

plete halt to allow the diver to record data collected

throughout the transect on a sheet of paper. Expert an-

notators used pre-trained COTS detection models to

identify every COTS in the photos, which was followed

by an AI-assisted annotation and quality assurance pro-

cedure. Using the annotation program, all of the COTS

detection in a picture was marked with a box. The data

was gathered on a reef in the Swain Reefs section of the

GBR on a single day in October 2021. Lighting, visibil-

ity, coral habitat, depth, distance from the bottom, and

viewpoint all vary.

The collection comprises underwater picture se-

quences recorded at five distinct locations on a reef in

the GBR. There are almost 35000 photos in all, with

hundreds of individual COTS visible. However, only

4888 photos, including COTS, which I utilized to aug-

ment for the dataset to train the proposed model.

The size of the original images has been normalized

to 640x640 to give a detection technique that fulfills the

requirement for real-time and precise operation. This

boosts the detection speed without deleting any im-

portant data in the image. The normalized photos have

also been divided into two groups: a test set and a train-

ing set. After including the detection model's anchor

box size for clustering purposes, the pre-processing

criteria would be finished. I employed certain processes

for data augmentation. Such as rotation, horizontal and

vertical shear, mosaic. Those approaches do not change

the image's pixel values; they merely change the image's

position. As a result, the learning ability of the convolu-

tional neural network would be modified to learn high-

quality features while avoiding overfitting. Table 1

depicts the description of the augmented dataset after

my data processing step. Figure 7 depicts a flowchart of

the data augmented implementation process.

Figure 7: Data augmentation proces.

Table 1: Augmented dataset summary

Total Image Size Class Labelled box

14.646 640x640 COTS 40.000

Journal of Computer Sciences Institute 23 (2022) 105-111

108

3.2. Training

Model training was carried out on 2 GPUs - NVIDIA

GeForce RTX 2080 Ti (11GB-GDDR6).

4. Results

4.1. Evaluation metrics

To evaluate YOLOv5's algorithm, F1score and mAP

were employed. The F1score is the harmonic mean of

accuracy and recall. It is also the model’s test accuracy.
The maximum possible F1score value is 1, indicating

flawless accuracy and memory, while the lowest possi-

ble score is 0, indicating that either precision or recall is

zero. Furthermore, mAP is determined by averaging the

average precision (AP), where q is the number of que-

ries and AveP(q) is the average precision for that partic-

ular query. The mean of AP may then be used to deter-

mine mAP. mAP may also be thought of as a metric for

calculating the accuracy of machine learning algo-

rithms. In COTS detection, True Positive (TP) is the

predicted COTS was correctly detected and the actual

class was the same as the predicted one. False Positive

(FP) is the model that predicted COTS and the actual

class was not. False Negative (FN) is predicted class

was not COTS and the actual class was COTS. True

Negative (TN) is the predicted class was not COTS and

the actual class was also not COTS.

F1score = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (4)

mAP= ∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄𝑄𝑞=1 (5)

It is worth noting that precision is computed as the

ratio of true prediction to the total number of predic-

tions. For instance, if a model generates 50 predictions

and all of them are true, the precision is 100%. Precision

does not take into account the actual number of true

objects present in an image; whereas recall computes

the ratio of true predictions to the total number of ob-

jects in an image. For example, if a model detects 75

true objects and the image contains 100 true objects,

recall is determined to be 75%. The presence of simply

high precision or only high recall does not imply that

the model is a good one. It must strike a balance be-

tween precision and recall for an object detection algo-

rithm to be considered outstanding. Therefore, we use

the F1score to determine if a model is a good one or not.

4.2. Model’s weight information

Table 2: Model’s weight information

Item Information

Model YOLOv5s.pt

Precision 0.93

Recall 0.77

F1score 0.84

mAP(%) 83

Training time 4 hours + 53 minutes

Figure 8: Model's F1score curve.

Figure 9: Model's Precision-Recall-mAP.

Journal of Computer Sciences Institute 23 (2022) 105-111

109

4.3. Model’s performance on embedded system

Figure 10: Setup of the proposed embedded system: 1) Odroid

XU4 - 2) Microsoft Camera C3000 - 3) Google Edge TPU

coprocessor - 4) Adafruit 7-inch monitor.

Table 3: Proposed embedded system in detail

Item Property

Microcontroller Odroid XU4

Identifier ARM implementer 65 architecture 7 variant

2 part 3087 revision 3

CPU Samsung Exynos5422 Cortex™-A15 2Ghz

and Cortex™-A7 Octa-core

GPU ARM Mali-T628 6 Cores

RAM 2GB LPDDR3

TPU Google Edge Coral

Camera Mircosoft C3000 (720p)

Monitor Adafruit 7 inch (720p)

OS Ubuntu 18.04 MATE

Language Python 3.7.3

Table 4: Performance on the proposed embedded system

Item Property

Model COTS.tflite

Model size 7.3 MB

Input size 640x480

FPS 30

Inference time (Single-core) 30 milliseconds

(0.03 seconds)

Inference time (Multiple-cores) 8 milliseconds

(0.008 seconds)

Accuracy 93%

Figure 12: COTS detection inferences on the proposed system.

Figure 11: Proposed embedded board block diagram.

Journal of Computer Sciences Institute 23 (2022) 105-111

110

5. Conclusion

In this paper, I provided a Crown-of-thorns starfish

(COTS) detection system based on the YOLOv5 algo-

rithm. This approach can identify COTS in real-time,

videos or images, and recognize whether it appears on

the scene. I trained a model to provide a real-time sys-

tem, but still, be able to maintain high accuracy. Fur-

thermore, the size of my model is quite favorable; it is

only 7.3 MB in size. It can undoubtedly be applied to

real-world scenarios. It demonstrated that a deep CNN

can indeed be applied to the task with promising results

in evaluated metrics. I expect that the outcomes will be

far better than those shown here with more training data.

A restriction of embedded system configuration is also a

concern. In the future, I will do research to develop a

system that balances the needed configuration and mod-

el performance.

6. Acknowledgment

I would like to send my sincere appreciation to HAIL

(Hongik University Artificial Intelligence Laboratory)

which is advised by Prof. Seongwon Cho for supporting

me in this research.

References

[1] L. Jiajun, K. Brano, M. Ross, D. Brendan, M. Torsten, C.

Joey, S. Andy, H. Nic, V. R. Karl, T. S. Lachlan, A. A.

David, A. A. Mohammad, C. Geoffrey, B. Russ, M.

Peyman, S. Daniel, D. Tim, E.M. Kemal, W. Martin, M.

Megha, The CSIRO Crown-of-Thorn Starfish Detection

Dataset, arXiv, 2021,

https://doi.org/10.48550/arXiv.2111.14311

[2] W. Junlong, K. Wei, Z. Wei, H. Fengbiao, T. Xuefeng,

W. Qiong, Helmet Detection Algorithm Based on the

Improved YOLOv5 and Dynamic Anchor Box Matching,

Proceedings of the IEEE International Conference on

Emergency Science and Information Technology

(ICESIT), (2021) 79-83,

http://dx.doi.org/10.1109/ICESIT53460.2021.9696525.

[3] Y. Zhong, J. Wang, J. Peng, L. Zhang, Anchor Box

Optimization for Object Detection, Proceedings of the

IEEE Winter Conference on Applications of Computer

Vision (WACV), (2020) 1275-1283,

http://dx.doi.org/10.1109/WACV45572.2020.9093498.

[4] T. F. Dima, M. E. Ahmed, Using YOLOv5 Algorithm to

Detect and Recognize American Sign Language,

Proceedings of the International Conference on

Information Technology (ICIT), (2021) 603-607,

http://dx.doi.org/10.1109/ICIT52682.2021.9491672.

[5] G. Verma, Y. Gupta, A. M. Malik, B. Chapman,

Performance Evaluation of Deep Learning Compilers for

Edge Inference, Proceedings of the IEEE International

Parallel and Distributed Processing Symposium

Workshops (IPDPSW), (2021) 858-865,

http://dx.doi.org/10.1109/IPDPSW52791.2021.00128.

[6] T. Zhi, S. Chunhua, C. Hao, H. Tong, FCOS: Fully

Convolutional One-Stage Object Detection, arXiv, 2019,

https://doi.org/10.48550/arXiv.1904.01355.

[7] L. Wei, A. Dragomir, E. Dumitru, S. Christian, R. Scott,

F. Cheng-Yang, B. C. Alexander, SSD: Single Shot

MultiBox Detector, Lecture Notes in Computer Science,

2016, https://doi.org/10.1007/978-3-319-46448-0_2.

[8] Z. Ni, J. Chen, N. Sang, C. Gao, L. Liu, Light YOLO for

high-speed gesture recognition, Proceedings of The 2018

25th IEEE International Conference on Image Processing

(ICIP), (2018) 3099-3103,

http://dx.doi.org/10.1109/ICIP.2018.8451766.

[9] A. Aleena, S. Ayesha, J. Tauseef, U.K. Asif, Small

Object Detection using Deep Learning, arXiv, 2022,

https://doi.org/10.48550/arXiv.2201.03243.

[10] B. G. Han, J. G. Lee, K. T. Lim, D. H. Choi, Design of a

scalable and fast YOLO for edge-computing devices,

Sensors, 2020, https://doi.org/10.3390/s20236779.

[11] B. Liang, S. Wu, K. Xu, J. Hao, Butterfly detection and

classification based on integrated YOLO algorithm,

arXiv, 2020, https://doi.org/10.48550/arXiv.2001.00361.

[12] C. Shaobin, L. Wei, Embedded System Real-Time

Vehicle Detection based on Improved YOLO Network,

Proceedings of the IEEE 3rd Advanced Information

Management, Communicates, Electronic and Automation

Control Conference (IMCEC), (2019) 1400-1403,

http://dx.doi.org/10.1109/IMCEC46724.2019.8984055.

[13] Y. Zhu, C. Yao, X. Bai, Scene text detection and

recognition: recent advances and future trends, Frontiers

of Computer Science, 2015,

http://dx.doi.org/10.1007/s11704-015-4488-0.

[14] Q. Lu, Y. Yuan, Improved YOLO Algorithm for Object

Detection in Traffic Video, Proceedings of the

International Conference in Communications, Signal

Processing and Systems, 2019,

http://dx.doi.org/10.1007/978-981-13-9409-6_198.

[15] R. Shaoqing, H. Kaiming, G. Ross, S. Jian, Faster R-

CNN: Towards Real-Time Object Detection with Region

Proposal Networks, arXiv, 2016,

https://doi.org/10.48550/arXiv.1506.01497.

[16] H. Shijie, W. Zhonghao, S. Fuming, LEDet: A Single-

Shot Real-Time Object Detector Based on Low-Light

Image Enhancement, The Computer Journal, 2021,

https://doi.org/10.1093/comjnl/bxab055.

[17] A. A. Choudhury, R. Saha, S. Z. Shoumo, S. R. Tulon, J.

Uddin, M. K. Rahman, An efficient way to represent

braille using YOLO algorithm, Proceedings of the Joint

7th International Conference on Informatics, Electronics

& Vision (ICIEV), (2018) 10-19,

http://dx.doi.org/10.1109/ICIEV.2018.8641038.

[18] D. Volivier, M. Saïd, A. M. Sidi, M. Pierre, L. Frédéric,
A new Edge Architecture for AI-IoT services

deployment, Proceedings of the 17th International

Conference on Mobile Systems and Pervasive Computing

(MobiSPC), (2020) 10-19,

https://doi.org/10.1016/j.procs.2020.07.006.

[19] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet

classification with deep convolutional neural networks,

Advances in neural information processing systems,

(2012) 1097-1105, https://doi.org/10.1145/3065386.

[20] D. S. Viraktamath, P. Navalgi, A. Neelopant,

Comparison of YOLOv3 and SSD Algorithms,

https://doi.org/10.48550/arXiv.2111.14311
http://dx.doi.org/10.1109/ICESIT53460.2021.9696525
http://dx.doi.org/10.1109/WACV45572.2020.9093498
http://dx.doi.org/10.1109/ICIT52682.2021.9491672
http://dx.doi.org/10.1109/IPDPSW52791.2021.00128
https://doi.org/10.48550/arXiv.1904.01355
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/ICIP.2018.8451766
https://doi.org/10.48550/arXiv.2201.03243
https://doi.org/10.3390/s20236779
https://doi.org/10.48550/arXiv.2001.00361
http://dx.doi.org/10.1109/IMCEC46724.2019.8984055
http://dx.doi.org/10.1007/s11704-015-4488-0
http://dx.doi.org/10.1007/978-981-13-9409-6_198
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.1093/comjnl/bxab055
http://dx.doi.org/10.1109/ICIEV.2018.8641038
https://doi.org/10.1016/j.procs.2020.07.006
https://doi.org/10.1145/3065386

Journal of Computer Sciences Institute 23 (2022) 105-111

111

Proceedings of the International Journal of Engineering

Research & Technology (IJERT), (2021) 1156–1160.

[21] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You

only look once: Unified, real-time object detection, In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, (2016) 779–788,

http://dx.doi.org/10.1109/CVPR.2016.91.

[22] A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, YOLOv4:

Optimal speed and accuracy of object detection, arXiv,

2020, https://doi.org/10.48550/arXiv.2004.10934.

[23] B. Jiang, R. Luo, J. Mao, T. Xiao, Y. Jiang, Acquisition

of Localization Confidence for Accurate Object

Detection, In Proceedings of the European conference on

computer vision (ECCV), (2018) 8-14,

http://dx.doi.org/10.1007/978-3-030-01264-9_48.

[24] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, W.

Zuo, Enhancing Geometric Factors in Model Learning

and Inference for Object Detection and Instance

Segmentation, arXiv, 2021,

https://doi.org/10.48550/arXiv.2005.03572.

[25] K. K. Reddy, M. Shah, Recognizing 50 human action

categories of web videos, Machine Vision and

Applications, (2016) 971-981,

https://doi.org/10.1007/s00138-012-0450-4.

http://dx.doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.2004.10934
http://dx.doi.org/10.1007/978-3-030-01264-9_48
https://doi.org/10.48550/arXiv.2005.03572
https://doi.org/10.1007/s00138-012-0450-4

