
JCSI 24 (2022) 250–257

Received: 14 June 2022

Accepted: 6 July 2022

250

Performance analysis of relational databases MySQL, PostgreSQL and
Oracle using Doctrine libraries

Analiza wydajności relacyjnych baz danych MySQL, PostgreSQL oraz
Oracle z zastosowaniem bibliotek Doctrine

Marcin Choina* , M. Skublewska-Paszkowska

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

In modern applications, databases perform a very important function but the choice of a database system and additional
libraries may affect the speed of the operations. The paper presents a time analysis concerning the performing of insert,
update, delete and select operations on three database systems, MySQL 8.0, PostgreSQL 14.1 and Oracle 21c, cooperat-
ing with an application using Doctrine libraries. The obtained results showed differences between performing opera-
tions with and without object-relational mapping. In cooperation with the application, the operations were carried out
the fastest using the PostgreSQL system. The Oracle system performed data selection faster without mapping on a large
data set.

Keywords: relational databases; Doctrine; ORM; PHP

Streszczenie
We współczesnych aplikacjach, bazy danych pełnią bardzo ważną rolę, jednak wybór systemu bazodanowego i dodat-
kowych bibliotek może wpływać na szybkość wykonywania operacji. W niniejszej pracy przedstawiono czasową anali-
zę dotyczącą wykonywania operacji bazodanowych insert, update, delete i select dla trzech systemów baz danych
MySQL 8.0, PostgreSQL 14.1 i Oracle 21c, współpracujących z aplikacją wykorzystującą biblioteki Doctrine. Badania
wykazały różnice między wykonywaniem operacji wraz z mapowaniem obiektowo-relacyjnym, a wykonywaniem sa-
mych zapytań. Przy współpracy z aplikacją, operacje najszybciej przeprowadzono korzystając z systemu PostgreSQL.
System Oracle szybciej wykonywał operacje pobierania danych bez udziału mapowania na dużym zbiorze danych.

Słowa kluczowe: relacyjne bazy danych; Doctrine; ORM; PHP

*Corresponding author

Email address: marcinchoina1997@gmail.com (M. Choina)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

Database systems are a common method of data storage
today. They are used in various types of IT systems,
computer programs and applications. Currently, data-
bases can be divided into several types (e.g. noSQL,
object-oriented, hierarchical), but the most common
choice for application development are relational data-
bases [1]. There are many free and commercial relation-
al database management systems available on the mar-
ket, differing in capabilities and speed of operations.
The performance is also influenced by the technology
in which the application using the database is created
and the operating system on which it is run.

This paper aims to compare the time performance of
MySQL 8.0, PostgreSQL 14.1 and Oracle 21c database
systems running with an application using Doctrine
libraries, one of the most popular and fast technologies
using object-relational mapping, allowing for the con-
nection of an application written in PHP with the data-
base. The performed tests allow to verify the time of
operations and assess which database systems are the
fastest and the slowest in carrying out operations of
inserting, updating, deleting or selecting data, using,
among others, the mechanisms of sorting, grouping and
joining tables.

1.1. Doctrine

Doctrine is an open source library set for PHP technolo-
gy under the MIT (the Massachusetts Institute of Tech-
nology) license. It is the default communication mecha-
nism with the database for the Symfony framework and
can be much more efficient compared to other mecha-
nisms, e.g. Propel library [2]. The Doctrine abstraction
layer (DBAL) enables cooperation with many available
database systems. Additionally Doctrine is based on
object-relational mapping (ORM) technology that al-
lows to present information retrieved from the database
using entity class objects. This solution allows to signif-
icantly improve the quality of the code and enables
faster information management in the database [3].
Doctrine supports relationship mechanisms, which is
achieved through associations between class objects.
They make it possible to refer to other objects, and the
library ensures that the relevant data is retrieved from
the database [4].

1.2. MySQL

MySQL is a database system licensed under the GNU
GPL license, currently developed by Oracle [5]. It is
supported by a large number of technologies as well as

mailto:marcinchoina1997@gmail.com

Journal of Computer Sciences Institute 24 (2022) 250-257

251

by the most popular programming languages such as
PHP, Java, C ++, and it can be used on all popular oper-
ating systems [6]. It is also part of the server environ-
ment on the Linux - LAMP platform.

1.3. PostgreSQL

PostgreSQL is an advanced database system released
under the PostgreSQL license, which is very similar
to the MIT license. The system introduces many propri-
etary extensions to the implementation of the SQL
standard. It enables the creation of stored procedures in
various programming languages such as Python or Perl.
PostgreSQL is a combination of a relational and object-
oriented database system, which allows for a more pre-
cise adaptation of the database to the needs of the appli-
cation being created [7].

1.4. Oracle

The Oracle database management system is a commer-
cial solution released by Oracle Corporation under
a paid license [8]. There is also a free version, the Ex-
press Edition, with limited functionality. Like Post-
greSQL, it contains elements of an object-oriented data-
base system. It also provides its own PL / SQL lan-
guage, which enables the extension of standard func-
tionalities to automate some activities carried out in
the database.

2. Related works

Many scientists analyzed the differences between indi-
vidual database solutions, their capabilities and perfor-
mance. The authors of the article [9] chose to compare
various relational database systems, Oracle Database
19c, SQL Server 2019, PostgreSQL 12 and MySQL 8.
For this purpose, on each of them they created a data-
base according to the same scheme, and then tested on it
data selecting, grouping, and inserting operations
as well as backup and restoring data. These tests showed
differences in the performance of databases, where the
most efficient in terms of time turned out to be the Ora-
cle and SQL Server systems, and the MySQL system
was the worst.

Oracle and SQL Server databases are commercial
solutions which were compared by the authors of arti-
cles [10], [11]. The first one presents an analysis of the
differences and performance of the servers in the given
databases. The research presents the advantages of the
Oracle database, which has better accessibility, in terms
of the possibility of installation on various operating
systems and support by a larger number of program-
ming languages, as well as having multi-layer security.
On the other hand, MS SQL is supported by simpler
language syntax and better query performance for single
and joined tables. In the second of the mentioned arti-
cles, the performance of these systems was compared
with the use of a desktop application. In the study, an
external application was used to perform various actions
on the database, and the execution time of a given ac-
tions was taken from the views of the database system
such as V$SQL for the Oracle database and

sys.dm_exec_query_stats for MS SQL. The operations
were performed on a set of 500-100,000 records for text
or numeric data and on a set of 1-50 records for binary
data larger than 50MB, and the cache was cleared after
each action. The results showed that the MS SQL data-
base performs DML (Data Manipulation Language)
operations such as inserting and updating data better.
The Oracle database is much better suited for DQL
(Data Query Language) operations, which means da-
ta selecting.

Authors of many articles compare Oracle, SQL
Server and MySQL databases. Examples of this com-
parison are the articles [12], [13]. In the first one, the
time of updating one column of a table, transferring
records to another table, and selecting records using
sorting, grouping and joining tables in a database sys-
tem running on a home computer was examined. The
MySQL was the best for most operations in this case. In
the second article, the authors compared these relational
databases with non-relational databases such as Mongo,
Redis, GraphQL and Cassandra, where the times of
basic operations were compared. The obtained results
confirmed that queries to non-relational databases were
executed much faster than in the case of relational data-
bases. Considering relational systems, in the Oracle
system there has been achieved one of the fastest data
selection times.

Currently, various frameworks or libraries are used
to support the application development process, as well
as connecting to the database and managing the data
stored. Since the libraries are designed so that they can
cooperate with various database systems, they can have
an impact on the efficiency of performed operations.
One of the most popular frameworks for creating web
applications in PHP language are Symfony and Laravel.
For Symfony, the preferred way to communicate with
the database is to use Doctrine libraries, while Laravel
has its own mechanism Eloquent ORM [14]. In the
article [15], the authors examine the performance of
relational databases cooperating with an application
written using the Laravel framework. The test consisted
in comparing the average execution times of operations
such as insert, update, delete and select on a database
running on mid-range hardware. To the research open
source databases such as MySQL 8 and PostgreSQL 12
and the commercial Microsoft SQL Server 2017 were
used. The results showed that in the case of a small
number of records stored in the database (up to 1000
records), MySQL was the best solution, while with
a larger number of records, the PostgreSQL system
turned out to be better.

Another article presents the analysis of MySQL, MS
SQL and PostgreSQL database systems in the context of
web applications using the Spring framework, the Hi-
bernate library and the JDBC interface [16]. In the case
of database cooperation with a web application, Post-
greSQL turned out to be the most efficient system for
complicated operations on joined tables, using both the
Hibernate library and the JDBC interface. In the case of
a single table, the average times of performing opera-

Journal of Computer Sciences Institute 24 (2022) 250-257

252

tions were similar, and when performing operations
directly on the database, MS SQL was the most opti-
mal system.

In all above-mentioned articles, authors focused
mostly on comparing the average times of performing
basic operations on the database. In the article [17] the
authors also analyzed the CPU load and the memory
usage, and the authors of the article [9] examined the
times of making and restoring a database backup. In
most studies one model to build the database was used
for each tested system. Some researchers used an addi-
tional application [11] or technology [15, 16], but few
studies were related to the cooperation of databases with
Doctrine libraries.

Based on the literature analysis, the following hy-
potheses were made:

 Insert, update and delete operations should be per-
formed the fastest by the PostgreSQL database in
cooperation with the Doctrine library,

 The Oracle database should perform the operations
of selecting data the fastest with a large number of
records (100,000) in the table.

3. Research method

In this paper, it was decided to compare the average
times of performing select, insert, update and delete
operations. These times were measured for the query
with object-relational mapping on the data and with-
out it. For the needs of the research, an application that
uses Doctrine libraries has been created. It contained
a module that allows to test the database. On each tested
system, a database based on the model shown in Fig-
ure 1 was created.

The research was carried out according to a scenario.
The purpose of the study was to verify the time of per-
forming subsequent operations specified in Table 1,
depending on the used database system and the number
of records stored in the database tables. The initial con-
dition for the study was a fixed number of records in

each table of the tested database, which was 1,000,
10,000 or 100,000 records, respectively.

The following activities were performed during
the study:

 selecting one of the operations (Table 1),

 test of operations on MySQL database,

 test of operations on PostgreSQL database,

 test of operations on Oracle database,

 restoring the initial state of databases.

Before each test, the cache of the database system
and application was cleared, and the entire test was
repeated 10 times for each operation. Computer with the
following parameters was used for the tests:

 Intel® Core™ i5-10300H processor,

 8GB DDR4 2400 MHz RAM,

 Xioxia BG4 512GB NVMe SSD,

 Windows 10 64-bit operating system.

Table 1: Database operations

Operation Query

Insert one row into
the table

INSERT INTO appuser val-
ues (100001, “Adam”,

”Nowak”, ”anowak”, ”an-
owak@pollub.pl”,
”zaq1@WSX”)

Update one row in
a table

UPDATE appuser SET name
= “Marek” WHERE id = 567

Delete one row from
the table

DELETE FROM task_user
WHERE id = 567

Select all rows from
one table

SELECT * FROM appuser

Select all rows sorted SELECT * FROM appuser
ORDER BY surname, name

Select rows using
pattern search

SELECT * FROM appuser
WHERE UPPER(name)

LIKE ‘%ADA%’
Select one row from
a table based on the

primary key

SELECT * FROM appuser
WHERE id = 567

Select rows with join-
ing tables using JOIN

construction

SELECT * FROM course c
INNER JOIN appuser u ON
u.id = c.owner_id INNER

JOIN task t ON t.course_id =
c.id

Select rows with join-
ing tables using

WHERE construction

SELECT * FROM course c,
appuser u, task t WHERE u.id

= c.owner_id AND
t.course_id = c.id

Select rows using
grouping functions

SELECT c.* FROM course c
LEFT JOIN task t ON

t.course_id = c.id GROUP
BY c.* HAVING

count(t.id) = 0

Select rows using
a correlated query

SELECT t.* FROM task_user
t WHERE grade_value = (

SELECT MAX(grade_value)
FROM task_user tu1 WHERE

t1.user_id = t.user_id)

Figure 1: Database model.

Journal of Computer Sciences Institute 24 (2022) 250-257

253

4. Results

The first tested operations were DML queries. First,
insert of single user operation were tested (Figure 2-3).
The results do not vary significantly depending on the
number of records in the tables for each database
system. This type of operations for both the query with
mapping and without it were executed the quickest in
the PostgreSQL database. With the other systems, insert
operations were performed much slower. By performing
the query without mapping to the database, using the
MySQL database the shorter execution time was

achieved than for Oracle database, but for this system
the application processed the entity object into a query
much longer. The application did not take a long time
(18-21ms) to process the object to insert it into the
Oracle database, which shows that this system works
quicker with the application than MySQL.

The results of the update and data delete operation

(Figure 4-7) were similar to the data insert operation. The

fastest execution times were achieved using PostgreSQL

database.The results of the other two systems differ

depending on whether the object-relational mapping was

considered. The shorter time was gained performing

Figure 2: Average time of INSERT operation.

Figure 3: Average time of INSERT operation with ORM. Figure 6: Average time of DELETE operation.

Figure 4: Average time of UPDATE operation. Figure 7: Average time of DELETE operation with ORM.

Figure 5: Average time of UPDATE operation with ORM.

Journal of Computer Sciences Institute 24 (2022) 250-257

254

update operation in cooperation with the application using

the Oracle database than MySQL. Using the MySQL

system theshorter time was obtained performing the update

query without cooperating with the application. Aditionally

the MySQL system performed the delete operation with

and without object-relational mapping faster than the

Oracle system.
Next operations belong to the group of DQL

instructions that allow to retrieve specific data from the
database. One of the most commonly used operations is
selecting one row from a table based on its primary key.
The results of this operation were similar to the results

of DML operation studies (Figures 8-9). In the
PostgreSQL database the data from the database has
been obtained the fastest, but regarding to other
databases, the performing query wihout mapping was
faster with MySQL database than whit Oracle. While
cooperating with the application, the longest times were
obtained for a large number of records (i.e. 100,000)
using the Oracle system. With less number of records in
the tables, its results were similar to the MySQL system.

When selecting all the rows from the database
(Figures 10-11), with PostgreSQL the shortest average
time was obtained when the number of records in the

Figure 9: Average time of select one row operation with ORM.

Figure 10: Average time of select all data operation.

Figure 8: Average time of select one row operation. Figure 11: Average time of select all data operation with ORM.

Figure 12: Average time of select sorted data.

Figure 13: Average time of select sorted data with ORM.

Journal of Computer Sciences Institute 24 (2022) 250-257

255

tables was low or medium (up to 10,000). With a larger
number of records, the operations were performed much
faster using the Oracle system, for which the average
operation execution time decreased while the number of
records increased. However, when working with the
application, using the Oracle database the longest times
were achieved and the best times were obtained using
the PostgreSQL database, regardless of the number of
records in the tables.

In the Oracle the best times were obtained when
executing select queries using sort or pattern search

(Figures 12-15) on a table with a large number of rows
(i.e. 100,000). With fewer numbers, PostgreSQL
performed queries the quickiest. The MySQL system
with a large number of records in the tables, carried out
both operations several times longer than the other
systems. Regarding mapping with a large number of
records (i.e. 10,000), there have been obtained a very
similar result for the Oracle and the PostgreSQL system
when sorting. When searching for pattern, the time was
up to 27% shorter using Oracle system.

Figure 14: Average time of select operation using pattern search. Figure 17: Average time of join operation using JOIN construction
with ORM.

Figure 16: Average time of join operation using JOIN construction.

Figure 15: Average time of select operation using pattern search
with ORM. Figure 18: Average time of join operation using WHERE construc-

tion.

Figure 19: Average time of join operation using WHERE construction
with ORM.

Journal of Computer Sciences Institute 24 (2022) 250-257

256

When operations of joining the tables were
performed, the results for both tested methods were
similar (Figures 16-19). The Oracle system was very
quick at executing a query for a large number of records
in the database, while for a smaller number of records,
the shortest time was achieved using the PostgreSQL
system. When cooperating with the application, in the
PostgreSQL database the best time was achieved,
regardless of the number of records, but also using the
MySQL system a very similar average execution time
was acheved.

For the grouping operations, the best times were
obtained using PostgreSQL database with and without
mapping (Figures 20-21). The Oracle system performed
operations for small and medium number of records (up
to 10,000) the slowest, while in MySQL system the
slowest execution time was obtained for a large number
of records stored in tables.

For the select operation using correlated query (Fig-
ures 22-23), while executing the query without object-
relational mapping on a large number of records the
shortest time was obtained using Oracle database. With
a smaller number of records in the table, or when the
object-relational mapping was performed, the quickest
times were gained using PostgreSQL database.

5. Discussion

In the study, in addition to various database systems, the
number of records in the tables of a given database, and
whether object-relational mapping was used, was taken
into account. For different database systems, when
executing the query without mapping, for data
manipulation operations and for the rest of operations
where the number of records in database tables was less
than 100,000, PostgreSQL perform operations the
fastest. With the Oracle system the shortest times was
obtained for almost all data select operation when the
number of records in the tables was 100,000, except for
retrieving a record using a primary key and using
grouping. The obtained result confirmed the results of
the research in articles [9] and [13], in which the Oracle
system performed select operations the fastest, when the
operation was performed directly on the database.

Results vary depending on whether cooperation with
application was used, that means executing query with
object-relational mapping. Regarding the select
operation with a like clause, on a table containing
100,000 records, using Oracle database system the
significantly shorter time was obtained comparing to
other analyzed database systems. Analising query
execution with obiect-relational mapping, operations
were performed even several times faster using the

Figure 23: Average time of select operation using correlated query
with ORM.

Figure 21: Average time of group operation with ORM.

Figure 22: Average time of select operation using correlated query. Figure 20: Average time of group operation.

Journal of Computer Sciences Institute 24 (2022) 250-257

257

PostgreSQL system. That confirmed the results obtained
in the article [16], in which, the PostgreSQL system
performed the operations the fastest using additional
technology.

The operation execution time increases when object-
relational mapping is performed. Regarding the DML
operations executed by the MySQL database, the per-
formed queries with mapping lasted even 10ms longer
than the queries without it. The difference for time que-
ry execution with and without object-relational mapping
for other analyzed database systems varied from 1 to
2 ms. For the select operations, the mapping time de-
pended on the number of records stored in the database.
The biggest difference between performing operations
with and without mapping occurred for the Oracle data-
base for a large number of records in the tables (i.e.
100,000). This database system executed the query
without mapping the fastest, but with the mapping the
execution times were the longest. When all rows were
selected, the system performed operation up to 50 times
longer with mapping than without it.

Based on the gathered results, it can be concluded
that the first hypothesis, which is that insert, update and
delete operations should be performed the fastest by the
PostgreSQL database in cooperation with the Doctrine
library, was confirmed. PostgreSQL always performed
operations of inserting, updating and deleting data the
fastest. The second hypothesis, that the Oracle database
should perform the operations of selecting data the fast-
est with a large number of records (i.e. 100,000) in the
tables, could be partially confirmed. Oracle database
executed most of the queries for selecting data from
tables with a number of 100,000 records the fastest.
However, in cooperation with the application, the opera-
tion time was significantly increased in favor of the
PostgreSQL system.

6. Conclusions

In the presented paper, the times of various database
systems were tested and compared while working with
the Doctrine library, which allowed to verify the hy-
potheses. The study showed that the PostgreSQL system
is the fastest solution when working with an application
using Doctrine libraries. The Oracle system works the
best when performing select queries without mapping to
the database. The research focused on the time of per-
formed operations, which is the most noticeable feature
of databases for the end user. Other aspects such as
CPU load and memory utilization were not analyzed,
which may be an interesting direction of future research.

References

[1] T. Connolly, C. Begg, Database Systems, A practical
approach to Design, Implementation, and Management,
sixth edition, Pearson, 2015.

[2] K. Sawłuk, M. Miłosz, Comparison of object-relational
data mapping technology in Symfony 3 framework,
Journal of Computer Sciences Institute 8 (2018) 235-
240, https://doi.org/10.35784/jcsi.687.

[3] M. Lorenz, G. Hesse, J. Rudolph, Object-relational

Mapping Revised - A Guideline Review and

Consolidation, Proceedings of the 11th International Joint

Conference on Software Technologies - ICSOFT-EA,

(2016) 157-168,

https://doi.org/10.5220/0005974201570168.

[4] Doctrine documentation, https://www.doctrine-
project.org/index.html, [03.11.2021].

[5] MySQL documentation, https://dev.mysql.com/doc/ref
man/8.0/en/introduction.html, [26.05.2022].

[6] Supported Platforms: MySQL Database,
https://www.mysql.com/support/supportedplatforms/da
tabase.html, [24.01.2022].

[7] PostgreSQL website,
https://www.postgresql.org/about/, [26.05.2022].

[8] Oracle documentation, https://docs.oracle.com/en/datab
ase/oracle/oracle-database/21/cncpt/introduction-to-
oracle-database.html, [26.05.2022].

[9] A. Solarz, T. Szymczyk, Oracle 19c, SQL Server 2019,
Postgresql 12 and MySQL 8 database systems
comparison, Journal of Computer Sciences Institute 17
(2020) 373-378, https://doi.org/10.35784/jcsi.2281.

[10] M. Ilić, L. Kopanja, D. Zlatković, M. Trajković, D.
Ćurguz, Microsoft SQL Server and Oracle: Comparative
performance analysis, The 7th International conference

Knowledge management and informatics (2021) 33-40.

[11] G. Dziewit, J. Korczyński, M. Skublewska-
Pawszkowska, Performance analysis of relational
databases Oracle and MS SQL based on desktop
application, Journal of Computer Sciences Institute 8
(2018) 263-269, https://doi.org/10.35784/jcsi.693.

[12] K. Islam, K. Ahsan, S. Bari, M. Saeed, S. Ali, Huge and

Real-Time Database Systems: A Comparative Study and

Review for SQL Server 2016, Oracle 12c & MySQL 5.7

for Personal Computer, Journal of Basic & Applied

Sciences 13 (2017) 481-490, https://doi.org/10.6000/1927-

5129.2017.13.79.

[13] R. Čerešňák, M. Kvet, Comparison of query
performance in relational a non-relation databases,
Transportation Research Procedia 40 (2019) 170-177,
https://doi.org/10.1016/j.trpro.2019.07.027.

[14] Eloquent documentation, https://laravel.com/docs/5.0/e
loquent/, [26.05.2022].

[15] R. Wodyk, M. Skublewska-Paszkowska, Performance

comparison of relational databases SQL Server, MySQL

and PostgreSQL using a web application and the Laravel

framework, Journal of Computer Sciences Institute 17

(2020) 358-364, https://doi.org/10.35784/jcsi.2279.

[16] K. Lachewicz, Performance analysis of selected database

systems: MySQL, MS SQL, PostgerSQL in the context of

web applications, Journal of Computer Sciences Institute

14 (2020) 94-100, https://doi.org/10.35784/jcsi.1583.

[17] Y. Bassil, A Comparative Study on the Performance of
the Top DBMS Systems, Journal of Computer Science
& Research 1 (1) (2012) 20-31,
https://doi.org/10.48550/arXiv.1205.2889.

https://doi.org/10.35784/jcsi.687
https://doi.org/10.5220/0005974201570168
https://www.doctrine-project.org/index.html
https://www.doctrine-project.org/index.html
https://dev.mysql.com/doc/refman/8.0/en/introduction.html
https://dev.mysql.com/doc/refman/8.0/en/introduction.html
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://www.postgresql.org/about/
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/introduction-to-oracle-database.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/introduction-to-oracle-database.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/introduction-to-oracle-database.html
https://doi.org/10.35784/jcsi.2281
https://doi.org/10.35784/jcsi.693
https://doi.org/10.6000/1927-5129.2017.13.79
https://doi.org/10.6000/1927-5129.2017.13.79
https://doi.org/10.1016/j.trpro.2019.07.027
https://laravel.com/docs/5.0/eloquent/
https://laravel.com/docs/5.0/eloquent/
https://doi.org/10.35784/jcsi.2279
https://doi.org/10.35784/jcsi.1583
https://doi.org/10.48550/arXiv.1205.2889

