
JCSI 25 (2022) 309–314 

Received: 16 June 2022 

Accepted: 2 July 2022 

309 

 

Evaluation of Flutter framework time efficiency in context of user  

interface tasks 

Ocena wydajności czasowej frameworku Flutter w kontekście obsługi  
interfejsów użytkownika 

Damian Białkowski*, Jakub Smołka 

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland 

Abstract 

The article describes a comparative analysis of the time performance between native Android applications (created with 

the Android SDK and Java language) and applications created with the Flutter multi-platform framework. The study 

consisted of creating three pairs of applications that are functionally identical with each other using both programing 

tools, and then examining the time taken to perform individual actions by both applications. The functionality of the test 

applications consisted mainly of tasks related to operating on the user interface. The study was carried out on a Huawei 

P30 phone using the Perfetto tool. Results confirm that native apps are more time efficient than Flutter apps. 

Słowa kluczowe: Flutter; szkielet wieloplatformowy; aplikacja mobilna; Android 

Streszczenie 

Artykuł opisuje analizę porównawczą wydajności czasowej aplikacji natywnych systemu Android (stworzonych za 

pomocą Android SDK oraz języka Java) oraz aplikacji stworzonych za pomocą wieloplatformowego frameworku 
Flutter. Badanie polegało na stworzeniu trzech par identycznych ze sobą funkcjonalnie aplikacji za pomocą obu rozwią-
zań, a następnie zbadaniu czasu wykonania poszczególnych działań przez obie aplikacje. Funkcjonalność aplikacji 
testowych składała się głównie z zadań z zakresu operowania na interfejsie użytkownika. Badanie zostało przeprowa-

dzone na smartfonie Huawei P30 za pomocą narzędzia Perfetto. Wyniki potwierdzają lepszą wydajność czasową apli-
kacji natywnych względem aplikacji Fluttera. 

Keywords: Flutter; cross – platform framework; mobile app; Android  

*Corresponding author 

Email address: damian.bialkowski@pollub.edu.pl (D. Białkowski) 

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction 

Cross-platform technologies are one of the most popular 

development directions of IT industry. The essence of 

these solutions is the ability to create applications for 

many different environments using only one code base. 

This solution has two obvious advantages. Firstly, it 

significantly reduces the time needed to deliver the end 

product to all platforms, which translates into the 

amount of resources needed to complete the project, and 

thus the cost of product delivery. The second advantage 

is that a multi-platform software developer does not 

need to know all native technologies for each target 

platforms. 

Flutter framework is being developed by Google 

corporation and was released in 2017. This tool allows 

for creating Web, mobile (Android and iOS) as well as 

desktop and embedded applications. It uses Dart as its 

programming language. Dart is a language optimized 

for user interfaces creation.  

Cross-platform frameworks have significant ad-

vantages over native solutions of specific environments, 

however there are concerns regarding their quality and 

usability. The objections mainly concern the efficiency 

of multi-platform solutions, as well as the possibility of 

obtaining the same functionalities and appearance of the 

application as in the case of native applications. 

In case of mobile applications performance testing, 

researchers usually inspect such actions as: sorting data, 

database writing and reading or downloading file from 

the Internet. This article, however, describes the less 

frequently studied aspect of mobile applications, which 

is the display and manipulation of user interfaces. In 

regard to the Flutter framework, it is even more im-

portant, because the manufacturer strongly emphasizes 

its usefulness as a tool for building user interfaces. 

The purpose of the study is to determine whether 

there is a difference between the time efficiency of an 

application created with the Flutter framework and the 

time efficiency of a native Android application (created 

with the Android SDK and Java language). Tasks per-

formed by applications consists of user interface opera-

tions. 

2. Literature review 

Despite the short presence of the Flutter framework on 

the market, first scientific publications about this tool 

are gradually appearing. 

The Authors of the article [1] conducted a multi-

criteria analysis of applications written in the Flutter 

framework. Execution times of the following operations 

were examined: writing and reading data from a file, 

sorting data table, writing and reading data from a local 

mailto:damian.bialkowski@pollub.edu.pl


Journal of Computer Sciences Institute 25 (2022) 309-314 

 

310 

database. Results were compared to native Android 

application. In most cases, the native application has 

proven to be more efficient or as efficient as the applica-

tion developed with Flutter. Additionally, the size of the 

source code for both applications was examined. How-

ever, no tests have been undertaken on the display of the 

user interface. 

In the article [2], the Authors examined the perfor-

mance differences between mobile applications of An-

droid and iOS systems created with the following tools: 

Flutter, React Native and native languages, respectively 

Java for Android and Swift for iOS. The execution time 

of the following tasks was measured: HTTP query with 

the retrieval of response in JSON format, displaying the 

first 5 elements of the list on the screen, writing 7 ele-

ments of the list to the local database and reading 5 

elements from this database. On both platforms native 

applications performed list display and database read 

tasks faster. Native applications of iOS also performed 

data retrieval via HTTP protocol faster. In the remaining 

cases, there was no significant difference in execution 

time or multi-platform applications completed faster. 

The authors indicated that cross-platform frameworks 

often match the performance of native applications. 

An example of using the Flutter framework applica-

tion in a real IT system is presented in the article [3] in 

which the Authors created a system to support shipment 

tracking by using the GPS technology. The system in-

cluded both viewing shipments by customers and han-

dling the status of the package by the supplier. It con-

sisted of a web application created with HTML, CSS 

and JavaScript tools, a mobile application created with 

the Flutter framework, an application server created in 

the Node.js technology, while the Firebase Realtime 

Database was used as a database. The results of the 

article show the usability of the Flutter tool in real-life 

projects. However, the efficiency of the system compo-

nents has not been tested. 

For a deeper analysis of the cross-platform tools ef-

ficiency problem, it is also worth taking into account the 

studies on frameworks other than Flutter, as usually 

those technologies are also compared to native applica-

tions. 

The Authors of the article [4] have analyzed the im-

pact of using various programming tools on the perfor-

mance of a mobile application. The subject of the re-

search were the following programming tools: Android 

SDK with Java, Android NDK, Xamarin and Apache 

Cordova. For each of the platforms, an application was 

created that tested the execution time of the following 

tasks: sorting an array of 100 000 items, saving a 10 MB 

file to the device’s storage, and reading a 10 MB file 

from the device’s storage. However, the authors did not 

specify unambiguously which tool is the most efficient, 

because in various test cases, applications in various 

technologies were the fastest. The differences in execu-

tion times were determined to be imperceptible to the 

user. It is also important that the authors found large 

differences in the results between the tests carried out 

on the physical device and on the emulator. 

The Authors of the article [5] conducted a study 

comparing the performance of mobile applications cre-

ated with the Xamarin tool (in two versions - Forms and 

Native) to applications created in native technologies of 

Android and iOS mobile systems. The execution time 

was tested of applications that performed the following 

test scenarios: computing the number of π to ten thou-

sandths of a decimal place, writing and reading this 

number to a file, downloading a file of approximately 7 

MB over the network, and reading location coordinates. 

In the vast majority of cases, native applications have 

proven to be more efficient, although these have not 

always been a big difference. The authors of the article 

concluded that the benefits of using a multi-platform 

tool justify its use, as long as the disadvantages of this 

solution are acceptable and do not have a critical impact 

on the project implementation. 

In the article [6], the authors described the concept 

of creating cross-platform hybrid applications and the 

reason why this type of approach is present on the mar-

ket. This approach was compared to two other solutions 

to the problem: creating native applications for each of 

the target mobile operating systems and creating web 

applications optimized for mobile devices. It has been 

shown that hybrid applications can combine the ad-

vantages of using one code base on many platforms, as 

is the case with web applications, as well as the ability 

to access native functions of mobile devices such as a 

camera or GPS by using capable API of the hardware 

platform. 

The authors of the article [7] conducted an analysis 

of the possible impact of multi-platform applications on 

the mobile technology market. Possible advantages, 

disadvantages and the general impact of selecting one of 

the paradigms: single-platform or multi-platform on the 

application life cycle were shown. The analysis was 

carried out from the perspective of three groups related 

to the application: customers, programmers and suppli-

ers of the platform on which the application runs. One 

of the anticipated drawbacks is the inability to fully 

utilize the hardware's capabilities. Flutter framework, 

however, differs from the solutions available at the time 

of writing the article, and the authors themselves pro-

mote it as a tool that allows one to achieve performance 

comparable to that for native applications. The authors 

also consider the possibility that cross-platform applica-

tions may not provide user experiences comparable to 

native applications. 

3. Research method 

In order to compare the time efficiency between native 

applications and applications developed in the Flutter 

framework, three pairs of Android mobile applications 

have been developed. Each pair of applications consists 

of one native application created with the Android SDK 

and Java language, while the other one is created with 

the Flutter framework. Both applications in a pair were 

created in such a way to be as similar as possible in 

terms of functionality, appearance and logic. 



Journal of Computer Sciences Institute 25 (2022) 309-314 

 

311 

 

Each of the pairs of applications executes one of the 

test scenarios. The test scenarios consist of specific 

actions on the user interface. The work time of the 

threads responsible for displaying the user interface was 

measured, both for individual tasks and for the entire 

test. 

The performance of the application is understood as 

the threads’ work time, other thread states have not been 

taken into account. Measured time will therefore be the 

time of the threads’ work during the execution of the 

task. It is worth noting that this is not the total time of 

the task execution, but the time during which the thread 

was up and running for a specific task. Such a meas-

urement option was decided because it was the most 

reliable and the most platform-independent method of 

conducting the test. 

In order to measure the work times of the threads,  

Android’s built-in system tracing function was used. 

The Perfetto tool was used to trace the system. The 

reports generated by this tool were analyzed in an Excel 

spreadsheet. 

Since it would be difficult to isolate the performance 

of individual tasks in the Perfetto report graph, 5-second 

breaks were introduced between individual tasks. This 

enables easy verification of subsequent tasks. It also has 

no effect on the results because the wait is not imple-

mented in such a way that the thread is asleep, not 

blocked, and not doing any work. As the thread runtime 

is tested and not the total test execution time, the results 

are not negatively affected. 

Research was carried out on Huawei P30 

smartphone with EMUI operating system (version 12) 

based on Android API version 29. 

3.1. Research scenarios 

Each test scenario was carried out in following manner: 

1. The researcher launches script initializing system 

tracing on smartphone via USB connection from 

computer command line. 

2. The test application is launched on the mobile de-

vice. 

3. The test application performs the tasks defined by 

the scenario. The course of the study is observed 

visually by the researcher. 

4. After 60 seconds system tracing is stopped and 

Perffeto report is opened in Web browser. Report 

file is saved for further analysis. 

5. After performing all the tests in the series, the re-

searcher saves the relevant data from the result files 

to an Excel spreadsheet. The data in the sheet is ana-

lyzed and compared with the results for the second 

application in pair. 

3.1.1.  Research scenario no. 1 

The first research scenario involves performing opera-

tions on images. The test consists of the following tasks: 

1. Application displays an image of specific size. 

2. Image is replaced with different image. 

3. Image is moved down. The motion is animated. 

Animation duration time is 2 seconds. 

4. Red color filter is applied to the image. 

5. Image is scaled to specific size. 

3.1.2.  Research scenario no. 2 

This scenario is based on performing actions with text 

characters. The test scenario includes the following 

tasks: 

1. Text consisting of 2 000 random alphanumeric signs 

in a scrollable text field is displayed. 

2. Font size is changed. 

3. The displayed text is changed to a new random text 

with 10 000 random alphanumeric signs. 

4. The font color is changed to green. 

5. Underline is applied to the text. 

3.1.3.  Research scenario no. 3 

The last scenario includes operations on various popular 

user interface elements. The scenario includes the fol-

lowing tasks: 

1. Application window with Drawer (swiping naviga-

tion menu), Appbar (bar with application title dis-

played on top of application) and Floating Action 

Bar (button displayed over application main content) 

is displayed. 

2. 3 radio buttons are displayed in the application win-

dow. 

3. One of the radio buttons is selected. 

4. Radio buttons are deleted and 6 input text fields are 

displayed instead in the application window. 

5. the text „HelloWorld!” is set in the input fields. 

6. Input fields are deleted and a scrollable list of 150 

elements is displayed. Each list element is a text la-

bel with a index of the element in list. 

7. Scrolling the list by several items. 

4. Results 

During the tests, it turned out that while the native ap-

plication performed the operations responsible for the 

user interface in 2 threads, as expected, the application 

developed with Flutter had 4 threads responsible for the 

user interface. The Flutter application uses both the 

main application thread (in the Android documentation 

it is called the UI thread) and the Render thread, typical 

for Android applications, however, the system trace 

output file also shows a second thread named UI and a 

thread named Raster. These threads are used by the 

Flutter system, which is confirmed by the documenta-

tion of this framework [8]. 

In order to distinguish between the two UI threads, 

the main, typical Android thread, was named the UI 

application thread, and the second UI thread was named 

Flutter's UI thread. 

Since there are only 2 threads in the native applica-

tion, while in the Flutter application there are 4, in order 

to make a fair comparison for the Flutter application, the 

working times of both UI threads were added together 

and compared to the UI thread time of the native appli-

cation.  



Journal of Computer Sciences Institute 25 (2022) 309-314 

 

312 

The work times of the Render and Raster Flutter 

threads were added and compared with the work time of 

Render thread of the native application. 

4.1. Results for research scenario no. 1 

As a result of the research carried out for the tests of the 

first research scenario, the following results were ob-

tained: 

The results for UI threads’ (Table 1) show a signifi-

cant difference between the execution time of the first 

scenario in UI threads. The native application finished 

work much faster. 

Table 1: UI threads’ work time for first research scenario 

 Flutter application Native application 

Task no. Average execution 

time ± standard devia-

tion 

(ms) 

Average execution 

time ± standard devia-

tion 

(ms) 

1 365.66 ± 32.35 212.22 ± 14.31 

2 64.23 ± 6.00 194.01 ± 10.41 

3 278.84 ± 8.29 181.86 ± 3.42 

4 4.72 ± 0.37 2.25 ± 0.11 

5 5.07 ± 0.17 3.72 ± 0.65 

Entire 

test 

718.53 ± 38.82 594.07 ± 13.35 

 

The difference is especially noticeable in the first 

task, in the UI threads of both applications. The native 

application completed the task more than 100 ms faster. 

This is especially important because this task includes 

the start of the application. The difference is so large 

that during the observation of the course of the study, 

the difference in the time of starting the application was 

visible to the naked eye. 

The second, big difference was observed in the time 

it takes to change the image. This time, Flutter applica-

tion did the task much faster. However, when observing 

the examination in the Flutter application, the image 

"blinked" - the first image disappeared for a moment, 

revealing the application background below the image, 

and only later was the second image displayed. In the 

case of a native application, the image was replaced 

immediately, without this "blink". Thus, in terms of 

aesthetics, the task was performed better in the native 

application. 

The native application performed almost all tasks 

faster, except for task no. 2. 

Table 2: Render threads’ work times for first research scenario 

 Flutter application Native application 

Task no. Average execution 

time ± standard devia-

tion 

(ms) 

Average execution time 

± standard deviation 

(ms) 

1 32.10 ± 2.01 55.28 ± 4.69 

2 28.17 ± 11.24 49.37 ± 2.53 

3 399.20 ± 8.12 334.55 ± 7.30 

4 12.55 ± 1.17 10.56 ± 13.16 

5 6.59 ± 0.92 4.69 ± 0.85 

Entire test 478.62 ± 14.40 454.45 ± 14.91 

 

In the case of rendering threads (Table 2), the differ-

ence between the execution times of both applications is 

small and in practice it is not large enough to be signifi-

cant in the context of indicating a faster application. 

In this case, the Flutter application performed the 

first 2 tasks faster, while the native application was 

faster from third task to the end of test. 

Analyzing the results for the first of the test scenari-

os, it can be concluded that the main performance dif-

ference lies in the work time of the UI threads, and in 

particular for the task involving launching the applica-

tion.  

To sum up, in the first test scenario the native appli-

cation turned out to be more efficient than the applica-

tion created with Flutter. 

4.2. Results for research scenario no. 2 

The research for the second test scenario led to the fol-

lowing results: 

Table 3: UI threads’ work time for second research scenario 

  Flutter application Native application 

Task 

no. 

Average execution time 

± standard deviation 

(ms) 

Average execution 

time ± standard deviation 

(ms) 

1 316.75 ± 8.85 168.09 ± 12.02 

2 24.87 ± 4.16 64.11 ± 4.30 

3 106.35 ± 6.57 163.48 ± 7.67 

4 36.47 ± 9.64 3.18 ± 0.34 

5 59.74 ± 18.93 118.31 ± 3.83 

Entire 

test 

549.97 ± 16.90 517.16 ± 12.15 

 

The results (Table 3) indicate that once again the na-

tive application was executed more efficiently (in the 

context of UI threads) than the Flutter application. In the 

case of the second test scenario, however, the differ-

ences in the total work time of the threads were much 

smaller than in the first test scenario. 

Detailed analysis of the table shows that in the case 

of text operations, some tasks were completed faster in 

the native application, and some in the Flutter applica-

tion. Invariably, a big difference appeared when the 

application was started. It is worth noting that the dif-

ference in the execution times of task no. 1 for UI 

threads is again the largest difference among the execu-

tion times of individual tasks. 

Table 4: Render threads’ work times for second research scenario 

 Flutter application Native application 

Task 

no. 

Average execu-

tion time ± standard 
deviation 

(ms) 

Average execution 

time ± standard devia-

tion 

(ms) 

1 34.64 ± 2.64 63.37 ± 2.10 

2 20.49 ± 3.17 12.96 ± 3.90 



Journal of Computer Sciences Institute 25 (2022) 309-314 

 

313 

 

3 8.60 ± 6.64 6.44 ± 0.87 

4 45.92 ± 4.85 14.98 ± 1.25 

5 13.09 ± 3.00 8.04 ± 1.00 

Entire 

test 

122.74 ± 10.96 105.3.85 

 

The work time differences for rendering threads are 

even lower than for UI threads (Table 4). Similar to the 

first test scenario, the native application turned out to be 

only slightly more efficient than the Flutter application. 

The native application did all the tasks faster except 

for the first task. 

The difference in the runtime of rendering threads 

can again be considered too small to indicate a signifi-

cant performance difference to the detriment of the 

Flutter framework. 

4.3. Results for research scenario no. 3 

The results of the third test scenario are as follows (Ta-

ble 5, Table 6): 

Table 5: UI threads’ work times for third research scenario 

 Flutter applica-

tion 

Native application 

Task no. Average exe-

cution time ± 
standard deviation 

(ms) 

Average execution time 

± standard deviation 

(ms) 

1 296.11 ± 9.73 106.98 ± 21.53 

2 13.39 ± 2.42 10.74 ±0.71 

3 31.00 ± 2.03 82.27 ± 5.68 

4 53.02 ± 6.04 15.97 ± 0.86 

5 68.92 ± 8.12 13.63 ± 1.19 

6 50.46 ± 5.22 86.85 ± 6.17 

7 20.73 ± 3.42 16.26 ± 1.05 

Entire 

test 

533.63 ± 18.19 332.83 ± 27.81 

 

As in the 2 previous test scenarios, the native appli-

cation again performed tasks faster for the UI thread 

(Table 5). 

The native application performed 5 out of 7 tasks 

faster. The differences in the execution times of the 

entire test, similar to the first test scenario, are large, as 

the difference is over 200 ms, which, taking into ac-

count the test duration, is a very significant difference in 

favor of the native application. 

Table 6: Render threads’ work times for third research scenario 

 Flutter application Native application 

Task 

no. 

Average execution 

time ± standard devia-

tion 

(ms) 

Average execu-

tion time ± standard 
deviation 

(ms) 

1 29.58 ± 2.58 26.09 ± 1.39 

2 6.30 ± 0.80 7.36 ± 0.28 

3 59.08 ± 4.59 118.85 ± 5.46 

4 21.41 ± 2.78 8.03 ± 1.01 

5 50.61 ± 2.36 8.42 ± 0.71 

6 14.07 ± 1.83 45.30 ± 2.90 

7 11.52 ± 1.23 35.66 ± 1.10 

Entire 

test 

192.59 ± 5.72 249.70 ± 7.64 

 

Interestingly, rendering threads ran faster in the Flut-

ter application (Table 6). This is the only case in the 

entire study where the average overall test execution 

times are lower for the Flutter application. 

Moreover, it should be noted that the difference in 

the duration of the entire test is quite large. When it 

comes to specific operations, the native application 

performed 3 tasks faster, while the Flutter application - 

4.  

5. Conclusions 

The study was successfully completed. All tests were 

performed and a complete set of data was obtained for 

analysis. 

In the first test scenario, the native application defi-

nitely outperformed the Flutter application. Total thread 

working times were lower, and most individual tasks 

were completed faster by the native application. The 

result of the first test scenario show difference in per-

formance of both applications. It should be emphasized 

that this performance difference is mainly caused by the 

difference in the operating times of the UI threads. 

Among the specific tasks, the biggest difference in exe-

cution time can be seen for task no. 1. 

Much lower differences in execution times in the 

second research scenario. The test execution times for 

both the UI threads and rendering threads have little 

variation. The test confirms the performance differ-

ences, but in this case they were not large. 

The tests of the last research scenario, like the tests 

of the previous scenarios, indicate a performance differ-

ence in terms of UI threads, however, for the third test 

scenario, the Flutter application performed faster for the 

rendering threads. This is the only such case in the en-

tire study. 

Summarizing the results of all tests, it can be con-

firmed that the native application are much more effi-

cient in the UI thread than the Flutter application. A 

particularly big difference is visible when the applica-

tion is started. This indicates that Flutter has to perform 

heavy tasks at the initiation of the application, which 

leads to a significant increase in the startup time of the 

application. 

The slight performance difference was noticeable for 

rendering threads. Of course, in 2 out of 3 tests the na-

tive application was more efficient, but the differences 

were insignificant each time. Therefore, it can be con-

cluded that Flutter's applications are satisfactorily effi-

cient in this respect. 

The research confirmed the differences in time effi-

ciency between applications developed in the Flutter 

framework and mobile applications. 



Journal of Computer Sciences Institute 25 (2022) 309-314 

 

314 

Android native applications are more efficient, so 

creating a native application will be better choice if top 

performance is critical aspect of application. 

Considering the current state of knowledge in the ar-

ea of the study, it has been confirmed again that native 

applications are more efficient. The study confirmed 

this statement for UI-based tests, which hasn’t been 
researched before this study. 

Study presents usefulness of UI-based tests in con-

text of mobile frameworks quality evaluation. 

Literature 

[1] D. Gałan, K. Fisz, P. Kopniak, A multi-criteria 

comparison of mobile applications built with the use of 

Android and Flutter Software Development Kits, Journal 

of Computer Sciences Institute, 19 (2021) 107-113,  

https://doi.org/10.35784/jcsi.2614. 

[2] L. P. Barros, F. Medeiros, E. Moraes, A. F. Júnior, 

Analyzing the Performance of Apps Developed by using 

Cross-Platform and Native Technologies, International 

Conference on Software Engineering and Knowledge 

Engineering (SEKE 2020). 

[3] A. M. Qadir, P. Cooper, GPS-based Mobile Cross-

platform Cargo Tracking System with Web-based 

Application, 2020 8th International Symposium on 

Digital Forensics and Security (ISDFS) 2020 1-7, 

https://doi.org/10.1109/ISDFS49300.2020.9116336. 

[4] P. Kotarski, K. Śledź, J. Smołka, Analysis of the impact 

of development tools used on the performance of the 

mobile application, Journal of Computer Sciences 

Institute 6 (2018) 68-72, 

https://doi.org/10.35784/jcsi.642. 

[5] P. Grzmil, M. Skublewska-Paszkowska, E. Łukasik, J. 

Smołka, Performance Analysis of Native and Cross-

Platform Mobile Applications, Informatyka, Automatyka, 

Pomiary W Gospodarce I Ochronie Środowiska 

7(2) (2017) 50-53, 

https://doi.org/10.5604/01.3001.0010.4838. 

[6] C. M. Pinto, C. Coutinho, From Native to Cross-platform 

Hybrid Development, 2018 International Conference on 

Intelligent Systems (IS) (2018) 669-676, 

https://doi.org/10.1109/IS.2018.8710545. 

[7] L. Corral, A. Janes, T. Remencius, Potential Advantages 

and Disadvantages of Multiplatform Development 

Frameworks – A Vision on Mobile Environments, 

Procedia Computer Science 10 (2012) 1202-1207, 

https://doi.org/10.1016/j.procs.2012.06.173. 

[8] Flutter framework documentation – performance 

monitoring, https://docs.flutter.dev/perf/ui-performance, 

[14.06.2022].

 

https://doi.org/10.35784/jcsi.2614
https://doi.org/10.1109/ISDFS49300.2020.9116336
https://doi.org/10.35784/jcsi.642
https://doi.org/10.5604/01.3001.0010.4838
https://doi.org/10.1109/IS.2018.8710545
https://doi.org/10.1016/j.procs.2012.06.173
https://docs.flutter.dev/perf/ui-performance

