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Abstract 

Activation functions play an important role in artificial neural networks (ANNs) because they break the linearity in the 

data transformations that are performed by models. Thanks to the recent spike in interest around the topic of ANNs, 

new improvements to activation functions are emerging. The paper presents the results of research on the effectiveness 

of ANNs for ReLU, Leaky ReLU, ELU, and Swish activation functions. Four different data sets, and three different 

network architectures were used. Results show that Leaky ReLU, ELU and Swish functions work better in deep and 

more complex architectures which are to alleviate vanishing gradient and dead neurons problems. Neither of the three 

aforementioned functions comes ahead in accuracy in all used datasets, although Swish activation speeds up training 

considerably and ReLU is the fastest during prediction process. 
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Streszczenie 

Funkcje aktywacji, przełamując linową naturę transformacji zachodzących w sztucznych sieciach neuronowych (SSN), 
pozwalają na uczenie skomplikowanych wzorców występujących w danych wejściowych, np. w obrazach. Wzrost zain-
teresowania wokół SSN skłonił naukowców do badań wokół różnolitych aktywacji, które mogą dać przewagę podczas 
uczenia jak i przewidywania, ostatecznie przyczyniając się do powstania nowych, interesujących rozwiązań. W artykule 
przedstawiono wyniki badań nad efektywnością SSN dla funkcji ReLU, Leaky ReLU, ELU oraz Swish, przy użyciu 
czterech zbiorów danych i trzech różnych architektur SSN. Wyniki pokazują, że funkcje Leaky ReLU, ELU i Swish 
lepiej sprawdzają się w głębokich i bardziej skomplikowanych architekturach, mając za zadanie zapobieganie proble-
mom zanikającego gradientu (ang. Vanishing Gradient) i martwych neuronów (ang. Dead neurons). Żadna z trzech 
wyżej wymienionych funkcji nie ma przewagi w celności (ang. Accuracy), jednakże Swish znacznie przyspiesza ucze-
nie SSN, a ReLU jest najszybsza w procesie przewidywania. 

Słowa kluczowe: funkcje aktywacji; sztuczne sieci neuronowe; sztuczna inteligencja 
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 Introduction 

In the last ten years Artificial Neural Networks (ANN) 

[1] have entered daily use in our lives, they are being 

utilized everywhere in the mobile phones and the inter-

net. They are employed extensively particularly in the 

computer vision area, where they had most success and 

are irreplaceable with other machine learning algo-

rithms. Currently ANNs are applied to solve perception 

problems such as object detection, image segmentation, 

image classification, speech recognition or language 

translation.  

At heart ANN is a simple linear transformation 

combined with non-linear activation functions and 

backpropagation algorithm that allow it to learn com-

plex patterns from the data provided during training. 

There are multiple activation functions designed for 

different purposes but the one that gained a lot of popu-

larity during 2012 revolution is Rectified Linear Unit 

(ReLU) [2]. Due to its simplicity and speed, it is used 

widely in computer vision tasks that often process mul-

tiple frames per second. 

Because of the role that activation functions fulfill 

there have been many attempts to find better performing 

functions in order to get higher accuracy, faster training 

and possibly speed up inference. 

In this paper the effectiveness and efficiency of se-

lected activation functions for different architectures 

and datasets is analyzed. For the purpose of this re-

search thesis and hypotheses have been devised: 

T. Use of different activation functions results in 

significant changes in effectiveness of ANNs 

for various datasets. 

H1. Activation functions can be sorted by efficien-

cy and effectiveness during the training process 

of ANN. 

H2.  Activation functions can be sorted by efficien-

cy during prediction process. 

H3. The order of activation functions doesn’t 
change for different datasets. 
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 Literature overview 

There is few works that extensively compare activation 

functions performance across multiple datasets and 

architectures. Ramachandran et al. [3] propose Swish 

function as well as compare performance of several 

most known functions on CIFAR datasets [4], ImageNet 

and WMT 2014 English→German dataset using deep 

and wide architectures with high number of trainable 

parameters such as ResNet-164, Wide ResNet 28-10, 

Inception architectures, Mobile NASNet-A or attention 

based Transformer Architecture. According to the re-

sults Swish function wins or ties most of the time when 

compared to other functions, while ELU (Exponential 

Linear Unit) [5] and LReLU (Leaky ReLU) [6] don’t 
seem that reliable and often underperform when com-

pared to ReLU. Although [3] contains performance 

comparisons of different activation functions it mostly 

focuses on Swish function. 

The paper [7] summarizes information on many cur-

rently used activation functions in deep learning. Au-

thors list cons and pros of each function along with their 

formulas. Although the authors do not compare activa-

tion functions against each other, this work is nonethe-

less great source of information. 

Empirical Evaluation of Rectified Activations in 

Convolution Network [6] compares ReLU, Leaky 

ReLU, PReLU (Parametric ReLU) and RReLU (Ran-

domized Leaky ReLU) performance on CIFAR-10, 

CIFAR-100 and National Data Science Bowl Competi-

tion dataset. Results show that PReLU, RReLU and 

Leaky ReLU with a =  5.5 are better than ReLU. Leaky 

ReLU with a =  100  performs similar to ReLU. 

PReLU has lowest training error on all datasets but 

RReLU taking first place in test error which implies that 

PReLU may be overfitting while RReLU combats it and 

Leaky ReLU with lower a value seems to come close to 

RReLU. 

 Experiment Settings 

3.1. Environment and Libraries 

Experiment was conducted on an older machine (Table 

1) using Tensorflow [8], Keras [9] and Scikit-Learn [10] 

libraries with Python programming language [11]. Envi-

ronment was set up using Anaconda platform [12]. 

 
Table 1: Specification of the machine the experiment was conducted 

on 

Name Description / Version 

CPU Intel i5-4670K @4.2GHz 

GPU Nvidia GTX 1060 3GB 

RAM 16GB 1600MHz 

OS Windows 10 Pro 64-bit 21H2 

GPU drivers Nvidia 511.23 

CUDA CUDA Toolkit 11.2 

cuDNN cuDNN SDK 8.1.0, 

Python Python 3.9.7 

Tensorflow Tensorflow 2.7.0 

Scikit-Learn Scikit-Learn 1.0.2 

Anaconda Anaconda 4.11.0 

3.2. Selected Activation Functions 

This experiment is focused on non-linear activation 

functions which are used in hidden layers of the ANN 

models. Those functions need to be fast, therefore they 

are simple but effective in deep learning. 

 Rectified Linear Unit [2] is most widely used activa-

tion function and is when looking for new functions it is 

often considered as a baseline in research. ReLU re-

placed tanh and Sigmoid activation functions because of 

higher performance, better generalization and being 

easy to optimize.  

 ReLU formula is:  

 𝑓(𝑥) = max (0, 𝑥)         (1) 

 Leaky Rectified Linear Units [6] was supposed to be 

improvement over ReLU to alleviate potential dead 

neurons problem. LReLU sacrifices sparsity for a gradi-

ent which should be more robust during optimization 

but is less memory efficient which is important thing to 

consider in mobile systems. In the paper [6] LReLU 

performs comparably to ReLU, but authors notice 

slightly faster convergence. Negative values are con-

trolled by α hyperparameter, which is usually set lower 

than 1.  

 Leaky ReLU formula is:  

 𝑓(𝑥) = { 𝑥, 𝑥 > 0𝛼𝑥, 𝑥 ≤ 0        (2) 

 Exponential Linear Unit [5] is an activation function 

similarly to LReLU and tries to improve on ReLU and 

is supposed to speed up training by alleviating vanishing 

gradient problem. ELU allows negative values which 

saturation is controlled by 𝛼 hyperparameter. In the 

paper [5] authors state that ELUs lead to faster learning 

and significantly better generalization compared to 

ReLUs and LReLUs.  

 ELU formula is: 

 𝑓(𝑥) =  𝑓(𝑥) = { 𝑥, 𝑥 > 0𝛼 exp(𝑥) − 1, 𝑥 ≤ 0  (3) 

 Swish [3] activation function was found using rein-

forcement learning-based search when looking for 

a better alternative to ReLU. Authors claim that Swish 

performs better in deeper models than ReLU and other 

activation functions.  

 Swish formula is: 

 𝑓(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  𝑥1+𝑒−𝑥     (4) 

 Shapes of selected activation functions (1)-(4) are 

presented in Figure 1. 

3.3. Used Datasets 

Quality and nature of dataset determine the quality and 

performance of the trained ANN model. Size also mat-

ters as the bigger the dataset and, in classification prob-

lem, the number of output targets increases the longer 

the training process and possibly higher need of hard-

ware resources. For this reason datasets of reasonable 

size, number of targets and that have been tested by the 

machine learning community or researchers, have been 

selected. 
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Figure 1: Activation functions shapes and values. 

 CIFAR-10 (Canadian Institute For Advanced Re-

search) dataset [4] consists of 60,000 colour 32x32 pixel 

images split evenly between 10 classes. The targets are 

comprised of animals and transport vehicles. The da-

taset is split into training subset consisting of 50,000 

images and 10,000 test images. The training subset is 

further split into five equal subsets for cross-validation. 

 CIFAR-100 dataset [4] has the same number of 

images and image size as CIFAR-10, but comes with 

100 classes which are grouped into 20 superclasses such 

as fish, flowers, reptiles, people, trees, vehicles, house-

hold furniture etc. This dataset is also split in the same 

way as CIFAR-10, 50,000 training images which are 

further split into 5 equal size subsets and 10,000 test 

images. 

 Animals 10 dataset [13] has been posted on Kaggle 

website and it contains about 28,000 medium quality 

animal images with different sizes, split into 10 classes 

with varying number of images per class ranging from 

~2,000 to ~5,000. In this research a subset of this da-

taset containing 1,400 of images per class has been 

used. Entire subsets contains 14,000 images resized to 

112x112 pixels. 

 Intel Image Classification dataset [14] has also been 

put on Kaggle and it contains 14,034 training images, 

3,000 test images across 6 classes and size 150x150. 

The dataset is almost evenly balanced and images are 

resized to 112x112 pixels. Classes consist of nature and 

urban areas scenes around the world. 

3.4. Analyzed Artificial Neural Network architec-

tures 

Different architectures may have some impact on acti-

vation functions performance, therefore three architec-

tures have been used. Two of those are well known 

among machine learning community and one is simple 

stacked convolutional layers. Layers use “same” pad-
ding with no bias vector, all layers use He normal kernel 

initializer [15] except logistic regression layer which 

uses Glorot uniform initialization [16]. During training 

all models use two data augmentation layers: random 

horizontal flip and random rotation. Strides are used 

instead of max pooling and after each layer batch nor-

malization [17] and activation is applied. 

 ResNet [18] ANN network architecture is made of 

residual modules, each module consists of batch nor-

malization, activation and convolutional layer with 

everything repeated two times, input of module is cop-

ied and goes through convolutional layer of size 1x1 

and specified stride (1x1 or 2x2) and at the end is added 

to the output of the second convolutional layer. Strides 

in convolutional layers can be replaced by Max Pooling 

2D layer. ResNet starts with convolutional layer, then 

several groups of residual modules with each group 

having one of its modules decrease the size by some 

factor (usually 2x2 stride), fully-connected (dense) 

block and one dense layer with Softmax activation (lo-

gistic regression layer) for classification.  

An example of layers and connections in the residual 

module is presented in Figure 2. 

 
Figure 2: Residual module example. 

 Xception [19], similarly to ResNet, consists of 

Xception modules, which are residual modules but 

inside convolutional layers are replaced by depthwise 

separable convolutional layers. As the Xception archi-

tecture is based on the hypothesis that cross-channel and 

spatial correlations can be mapped completely separate-

ly, the input has to go through at least one convolutional 

layer which will help the hypothesis as cross-channel 

and spatial correlations tend to be very high in input 

images. 

 Simple convolutional neural network is straight 

flow, without any other connections consisting of multi-

ple convolutional layers with batch normalization and 

activation, global max pooling, one or more fully-

connected layers and logistic regression layer. 

3.5. Data augmentation and supply 

Data supply method can be a bottleneck during training 

process. One way to deal with this problem is to use 

tf.data.Dataset API [20] from Tensorflow library which 

can also help with data augmentation. In this experiment 

training data is loaded, cached then during training 

randomly augmented, shuffled and batched. Prefetch 

function is used to ready the data before the next epoch 

so the data preparation doesn’t happen at the start of the 

epoch. All the transformations applied in tf.data.Dataset 
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pipeline are executed on a CPU. Data augmentation 

consists of random hue, saturation, brightness and con-

trast adjustments within specified range. Random hori-

zontal image flip and image rotation is applied by the 

model layers.  

3.6. Research methodology 

In this paper effectiveness of an activation function is 

defined to be the accuracy and value of the loss function 

computed on the test set. Efficiency on the other hand is 

defined as the prediction time, epochs required to con-

verge and time required for a single epoch. Research has 

been conducted with the use of the stratified k-fold 

Cross Validation [21] for each dataset and activation 

function. For CIFAR-100 and Intel Image Classification 

we use variations of Xception architecture, while for 

CIFAR-10 and animals 10 ResNet and simple convolu-

tional neural network has been employed respectively. 

Dataset is loaded, shuffled, split into training and test 

subsets (if there is no provided separate test set) then the 

training subset is split into 5 stratified subsets of even 

size. During training four of the splits are used for train-

ing and the remaining one for validation. This is repeat-

ed five times with different split used for validation. 

Each activation function is trained five times for every 

dataset. Training and validation loss and accuracy are 

recorded along with time spent on each epoch.  

Each trained artificial network model uses cross-

entropy as a loss function. Only the model with best loss 

value across all epochs is saved. Early stopping with 10 

epoch patience is used to investigate the speed of con-

vergence for each activation function. After training 

every model is evaluated for test loss, accuracy and 

prediction time. 

During training process Adam [22] optimization al-

gorithm with initial learning rate 0.001 and exponential 

decay for all models is used. 

Activation function hyperparameters have been set 

to following values: 

• 𝛼 = 0.3 for Leaky ReLU, 

• 𝛼 = 1.0 for ELU. 

 Research results analysis 

In this research more shallow models are trained, with 

fewer hidden layers and thus smaller number of traina-

ble parameters compared to experiments conducted by 

Ramachandran et al. [3]. Results tables present mean 

values of all splits for each activation function. 

 Models trained on CIFAR-10 dataset use ResNet 

architecture with 283,595 trainable parameters and 

1,628 non-trainable parameters (Table 2). It should be 

noted that it is deeper than wider as the number of filters 

is rather low. Batch size is set to 128. The results of 

experiment are presented in Table 3. 

 In this particular combination of dataset and archi-

tecture ELUs give the best accuracy and loss. It is im-

portant to note that ELUs have also trained for highest 

amount of epochs with mean of 65.4 (Table 3). Second 

come Swish activations with accuracy lower by value of 

0.4% but with significantly lower number of epochs 

before training stop. ReLUs are fastest during predic-

tion, ELU and LReLU have comparable prediction time. 

Difference in mean time spent on one epoch can be 

mostly attributed to resources taken by system. 

 
Table 2: Model layers for CIFAR-10 dataset 

Layer name Layer description 

Input Shape (32,32,3) 

Conv2D Size 5x5, filters 32 

Residual module 1 Size 3x3, filters 16, strides 2 

Residual module 2 Size 3x3, filters 16 

Residual module 3 Size 3x3, filters 16 

Residual module 4 Size 3x3, filters 32, strides 2 

Residual module 5 Size 3x3, filters 32 

Residual module 6 Size 3x3, filters 32 

Residual module 7 Size 3x3, filters 64, strides 2 

Residual module 8 Size 3x3, filters 64 

Residual module 9 Size 3x3, filters 64 

Global Average Pooling 2D   

Dense Units 128 

Dense (Classification) Units 128, activation Softmax 

 
Table 3: Experiment results for CIFAR-10 dataset 

Func. Test Acc. Test Loss Val. Loss Pred. 

Time 

S. 

Epoch 

Epoch 

Time 

ReLU 0.7758 0.6666 0.6526 0.55 46.2 21.99 

LReLU 0.7806 0.6468 0.6275 0.58 60.6 21.38 

ELU 0.7927 0.6159 0.6098 0.58 65.4 21.16 

Swish 0.7881 0.6358 0.6132 0.62 51.2 22.36 

 

 Xception architecture was employed for training 

models on CIFAR-100 dataset with 1,421,956 trainable 

parameters and 6,208 non-trainable parameters (Table 

4). Here  Dropout layer has been used, for better gener-

alization and Max Pooling for downsampling layers 

output instead of strides in convolutional layers. Batch 

size is set to 128. 

 
Table 4: Model layers for CIFAR-100 dataset 

Layer name Layer description 

Input Shape (32,32,3) 

Conv2D 1 Size 5x5, filters 64 

Conv2D 2 Size 3x3, filters 96 

Xception module 1 Size 3x3, filters 192, max pooling 

2x2 strides 2 

Xception module 2 Size 3x3, filters 256, max pooling 

2x2 strides 2 

Xception module 3 Size 3x3, filters 512, max pooling 
2x2 strides 2 

Separable Conv2D Size 3x3, filters 512 

Global Average Pooling 2D  

Dense Units 512 

Dropout Rate 0.5 

Dense (classification) Units 100, activation Softmax 

 

Table 5: Experiment results for CIFAR-100 dataset 

Func. Test Acc. Test Loss Val. Loss Pred. 

Time 

S. 

Epoch 

Epoch 

Time 

ReLU 0.5736 1.7489 1.7613 2.17 33.4 53.4 

LReLU 0.6118 1.6058 1.6264 2.45 43.6 52.6 

ELU 0.6098 1.6210 1.6388 2.43 39.8 51.7 

Swish 0.5981 1.6360 1.6647 2.84 26.6 59.9 

 

    We can see that LReLUs perform the best, with small 

difference to ELU activation (Table 5). Again we can 

see that worst performing function has trained for much 

lower number of epochs on average but Swish seems to 

have very fast convergence compared with other activa-
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tions. Again Swish takes longest amount of time for 

predictions and single epoch. 

 For Animals 10 datasets we used Simple Convolu-

tional neural network architecture with 598 218 traina-

ble parameters and 1 792 non-trainable parameters (Ta-

ble 6). In this particular architecture Global Max Pool-

ing 2D has been used, instead of Global Average Pool-

ing. Batch size is set to 8. 

 
Table 6: Model layers for Animals 10 dataset 

Layer name Layer description 

Input Shape (112,112,3) 

Conv2D 1 Size 7x7, filters 64, strides 2 

Conv2D 2 Size 3x3, filters 64 

Conv2D 3 Size 3x3, filters 128, strides 2 

Conv2D 4 Size 3x3, filters 128 

Conv2D 5 Size 3x3, filters 128, strides 2 

Conv2D 6 Size 3x3, filters 128 

Global Max Pooling 2D  

Dense Units 128 

Dense Units 128 

Dropout Rate 0.5 

Dense (classification) Units 10, activation Softmax 

 
Table 7: Experiment results for Animals 10 dataset 

Func. Test Acc. Test Loss Val. Loss Pred. 

Time 

S. 

Epoch 

Epoch 

Time 

ReLU 0.6907 0.9131 0.9346 0.98 41.8 25.4 

LReLU 0.6824 0.9405 0.9530 1.05 54.0 23.9 

ELU 0.6782 0.9574 0.9937 1.05 44.2 26.5 

Swish 0.6625 0.9897 0.9987 1.23 30.8 28.3 

 

Surprisingly ReLUs result in the best mean test accura-

cy and loss, with second to Swish activations lowest 

number of epochs (Table 7). Again ReLUs have the 

shortest prediction time, LReLUs and ELUs perform 

similiarly in this regard and Swish activations take 

longest time to predict. Swish activations also have 

longest mean time spent on single epoch. 

 Models trained on Intel Image Classification dataset 

use Xception architecture with 668,038 trainable pa-

rameters and 4,736 non-trainable parameters (Table 8). 

In comparison to CIFAR-100 models here we have a bit 

deeper models but lower number of filters or units in 

layers. Batch size is set to 16. 

 
Table 8: Model layers for Intel Image Classification dataset 

Layer name Layer description 

Input Shape (112,112,3) 

Conv2D Size 5x5, filters 64 

Conv2D Size 3x3, filters 64 

Xception module 1 Size 3x3, filters 96, max pooling 2x2 

strides 2 

Xception module 2 Size 3x3, filters 128, max pooling 
2x2 strides 2 

Xception module 3 Size 3x3, filters 192, max pooling 

2x2 strides 2 

Xception module 4 Size 3x3, filters 256, max pooling 
2x2 strides 2 

Separable Conv2D Size 3x3, filters 512 

Global Average Pooling 2D  

Dense Units 256 

Dense Units 128 

Dropout Rate 0.5 

Dense (classification) Units 6, activation Softmax 

 

Table 9: Experiment results for Intel Image Classification dataset 

Func. Test Acc. Test Loss Val. Loss Pred. 

Time 

S. 

Epoch 

Epoch 

Time 

ReLU 0.8546 0.4757 0.4770 1.70 32.4 44.5 

LReLU 0.8561 0.4720 0.4546 1.76 41.4 46.8 

ELU 0.8517 0.4663 0.4499 1.76 37.0 45.8 

Swish 0.8594 0.4568 0.4485 2.05 31.4 49.6 

 

In this combination of dataset and architecture we have 

the closest results between all activation functions in 

terms of accuracy and loss so far, with Swish taking the 

crown (Table 9). Again prediction time results are simi-

lar to previous results. Swish activations need lower 

number of epochs to converge but take the longest time 

for single epoch. 

 Conclusions 

From the results a conclusion can be drawn that H1 and 

H2 are true but H3 is only partially true as the activation 

functions order of effectiveness and efficiency changes 

in every dataset and architecture combinations.  

In regards to H1 it is true that although Swish activa-

tions take the longest time to train for a single epoch 

they also need significantly lower number of epochs to 

converge thus decreasing total training time. More com-

plex models seem to favor activations that try to allevi-

ate vanishing gradient and dead neurons problems alt-

hough the functions are not consistent in their effective-

ness across all datasets. 

Without a doubt the H2 is true and the order doesn’t 
change for different datasets as is stated in H3. Swish 

activations slow down prediction time by value ranging 

from ~12.7% up to ~30.9% compared to ReLUs. LRe-

LUs and ELUs are comparable in terms of prediction 

time but are still slower than ReLUs by varying value of 

~3.5% to  ~13%. This may have considerable impact on 

performance of cloud services that employ ANN models 

especially in moments of high traffic. 

It should be noted that Swish may be comparable in 

terms of effectiveness or possibly better than LReLU 

and ELU since Early Stopping ends training early be-

fore learning rate has a chance to decrease to a value 

which can make finer changes to the model. Another 

thing to note is that authors of Searching for activation 

functions [5] have made their experiments on deep 

models with higher number of parameters than the mod-

els presented in this paper. This has effect on the per-

formance of activation functions as the selected func-

tions try to alleviate vanishing gradient and dead neu-

rons problems which are less likely to occur in shallow 

models. 

Ultimately research on performance of activation 

functions is not nearly completed by the results present-

ed in this article. Future experiments should focus on 

verifying activation functions efficiency and effective-

ness for different value of learning rate and its decay, 

parameters affecting activation function themselves 

such as α in LReLU or ELU, broader selection of archi-

tectures and datasets. 
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