
JCSI 26 (2023) 7-12

Received: 13 September 2022

Accepted: 11 October 2022

7

Comparison of an effectiveness of artificial neural networks for various

activation functions

Porównanie efektywności sztucznych sieci neuronowych dla różnych
funkcji aktywacji

Daniel Florek*, Marek Miłosz

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

Activation functions play an important role in artificial neural networks (ANNs) because they break the linearity in the

data transformations that are performed by models. Thanks to the recent spike in interest around the topic of ANNs,

new improvements to activation functions are emerging. The paper presents the results of research on the effectiveness

of ANNs for ReLU, Leaky ReLU, ELU, and Swish activation functions. Four different data sets, and three different

network architectures were used. Results show that Leaky ReLU, ELU and Swish functions work better in deep and

more complex architectures which are to alleviate vanishing gradient and dead neurons problems. Neither of the three

aforementioned functions comes ahead in accuracy in all used datasets, although Swish activation speeds up training

considerably and ReLU is the fastest during prediction process.

Keywords: activation functions; artificial neural networks; artificial intelligence

Streszczenie

Funkcje aktywacji, przełamując linową naturę transformacji zachodzących w sztucznych sieciach neuronowych (SSN),
pozwalają na uczenie skomplikowanych wzorców występujących w danych wejściowych, np. w obrazach. Wzrost zain-
teresowania wokół SSN skłonił naukowców do badań wokół różnolitych aktywacji, które mogą dać przewagę podczas
uczenia jak i przewidywania, ostatecznie przyczyniając się do powstania nowych, interesujących rozwiązań. W artykule
przedstawiono wyniki badań nad efektywnością SSN dla funkcji ReLU, Leaky ReLU, ELU oraz Swish, przy użyciu
czterech zbiorów danych i trzech różnych architektur SSN. Wyniki pokazują, że funkcje Leaky ReLU, ELU i Swish
lepiej sprawdzają się w głębokich i bardziej skomplikowanych architekturach, mając za zadanie zapobieganie proble-
mom zanikającego gradientu (ang. Vanishing Gradient) i martwych neuronów (ang. Dead neurons). Żadna z trzech
wyżej wymienionych funkcji nie ma przewagi w celności (ang. Accuracy), jednakże Swish znacznie przyspiesza ucze-
nie SSN, a ReLU jest najszybsza w procesie przewidywania.

Słowa kluczowe: funkcje aktywacji; sztuczne sieci neuronowe; sztuczna inteligencja

*Corresponding author

Email address: daniel.florek@pollub.edu.pl (D. Florek)

©Published under Creative Common License (CC BY-SA v4.0)

 Introduction

In the last ten years Artificial Neural Networks (ANN)

[1] have entered daily use in our lives, they are being

utilized everywhere in the mobile phones and the inter-

net. They are employed extensively particularly in the

computer vision area, where they had most success and

are irreplaceable with other machine learning algo-

rithms. Currently ANNs are applied to solve perception

problems such as object detection, image segmentation,

image classification, speech recognition or language

translation.

At heart ANN is a simple linear transformation

combined with non-linear activation functions and

backpropagation algorithm that allow it to learn com-

plex patterns from the data provided during training.

There are multiple activation functions designed for

different purposes but the one that gained a lot of popu-

larity during 2012 revolution is Rectified Linear Unit

(ReLU) [2]. Due to its simplicity and speed, it is used

widely in computer vision tasks that often process mul-

tiple frames per second.

Because of the role that activation functions fulfill

there have been many attempts to find better performing

functions in order to get higher accuracy, faster training

and possibly speed up inference.

In this paper the effectiveness and efficiency of se-

lected activation functions for different architectures

and datasets is analyzed. For the purpose of this re-

search thesis and hypotheses have been devised:

T. Use of different activation functions results in

significant changes in effectiveness of ANNs

for various datasets.

H1. Activation functions can be sorted by efficien-

cy and effectiveness during the training process

of ANN.

H2. Activation functions can be sorted by efficien-

cy during prediction process.

H3. The order of activation functions doesn’t
change for different datasets.

mailto:daniel.florek@pollub.edu.pl

Journal of Computer Sciences Institute 26 (2023) 7-12

8

 Literature overview

There is few works that extensively compare activation

functions performance across multiple datasets and

architectures. Ramachandran et al. [3] propose Swish

function as well as compare performance of several

most known functions on CIFAR datasets [4], ImageNet

and WMT 2014 English→German dataset using deep

and wide architectures with high number of trainable

parameters such as ResNet-164, Wide ResNet 28-10,

Inception architectures, Mobile NASNet-A or attention

based Transformer Architecture. According to the re-

sults Swish function wins or ties most of the time when

compared to other functions, while ELU (Exponential

Linear Unit) [5] and LReLU (Leaky ReLU) [6] don’t
seem that reliable and often underperform when com-

pared to ReLU. Although [3] contains performance

comparisons of different activation functions it mostly

focuses on Swish function.

The paper [7] summarizes information on many cur-

rently used activation functions in deep learning. Au-

thors list cons and pros of each function along with their

formulas. Although the authors do not compare activa-

tion functions against each other, this work is nonethe-

less great source of information.

Empirical Evaluation of Rectified Activations in

Convolution Network [6] compares ReLU, Leaky

ReLU, PReLU (Parametric ReLU) and RReLU (Ran-

domized Leaky ReLU) performance on CIFAR-10,

CIFAR-100 and National Data Science Bowl Competi-

tion dataset. Results show that PReLU, RReLU and

Leaky ReLU with a = 5.5 are better than ReLU. Leaky

ReLU with a = 100 performs similar to ReLU.

PReLU has lowest training error on all datasets but

RReLU taking first place in test error which implies that

PReLU may be overfitting while RReLU combats it and

Leaky ReLU with lower a value seems to come close to

RReLU.

 Experiment Settings

3.1. Environment and Libraries

Experiment was conducted on an older machine (Table

1) using Tensorflow [8], Keras [9] and Scikit-Learn [10]

libraries with Python programming language [11]. Envi-

ronment was set up using Anaconda platform [12].

Table 1: Specification of the machine the experiment was conducted

on

Name Description / Version

CPU Intel i5-4670K @4.2GHz

GPU Nvidia GTX 1060 3GB

RAM 16GB 1600MHz

OS Windows 10 Pro 64-bit 21H2

GPU drivers Nvidia 511.23

CUDA CUDA Toolkit 11.2

cuDNN cuDNN SDK 8.1.0,

Python Python 3.9.7

Tensorflow Tensorflow 2.7.0

Scikit-Learn Scikit-Learn 1.0.2

Anaconda Anaconda 4.11.0

3.2. Selected Activation Functions

This experiment is focused on non-linear activation

functions which are used in hidden layers of the ANN

models. Those functions need to be fast, therefore they

are simple but effective in deep learning.

 Rectified Linear Unit [2] is most widely used activa-

tion function and is when looking for new functions it is

often considered as a baseline in research. ReLU re-

placed tanh and Sigmoid activation functions because of

higher performance, better generalization and being

easy to optimize.

 ReLU formula is:

 𝑓(𝑥) = max (0, 𝑥) (1)

 Leaky Rectified Linear Units [6] was supposed to be

improvement over ReLU to alleviate potential dead

neurons problem. LReLU sacrifices sparsity for a gradi-

ent which should be more robust during optimization

but is less memory efficient which is important thing to

consider in mobile systems. In the paper [6] LReLU

performs comparably to ReLU, but authors notice

slightly faster convergence. Negative values are con-

trolled by α hyperparameter, which is usually set lower

than 1.

 Leaky ReLU formula is:

 𝑓(𝑥) = { 𝑥, 𝑥 > 0𝛼𝑥, 𝑥 ≤ 0 (2)

 Exponential Linear Unit [5] is an activation function

similarly to LReLU and tries to improve on ReLU and

is supposed to speed up training by alleviating vanishing

gradient problem. ELU allows negative values which

saturation is controlled by 𝛼 hyperparameter. In the

paper [5] authors state that ELUs lead to faster learning

and significantly better generalization compared to

ReLUs and LReLUs.

 ELU formula is:

 𝑓(𝑥) = 𝑓(𝑥) = { 𝑥, 𝑥 > 0𝛼 exp(𝑥) − 1, 𝑥 ≤ 0 (3)

 Swish [3] activation function was found using rein-

forcement learning-based search when looking for

a better alternative to ReLU. Authors claim that Swish

performs better in deeper models than ReLU and other

activation functions.

 Swish formula is:

 𝑓(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝑥1+𝑒−𝑥 (4)

 Shapes of selected activation functions (1)-(4) are

presented in Figure 1.

3.3. Used Datasets

Quality and nature of dataset determine the quality and

performance of the trained ANN model. Size also mat-

ters as the bigger the dataset and, in classification prob-

lem, the number of output targets increases the longer

the training process and possibly higher need of hard-

ware resources. For this reason datasets of reasonable

size, number of targets and that have been tested by the

machine learning community or researchers, have been

selected.

Journal of Computer Sciences Institute 26 (2023) 7-12

9

Figure 1: Activation functions shapes and values.

 CIFAR-10 (Canadian Institute For Advanced Re-

search) dataset [4] consists of 60,000 colour 32x32 pixel

images split evenly between 10 classes. The targets are

comprised of animals and transport vehicles. The da-

taset is split into training subset consisting of 50,000

images and 10,000 test images. The training subset is

further split into five equal subsets for cross-validation.

 CIFAR-100 dataset [4] has the same number of

images and image size as CIFAR-10, but comes with

100 classes which are grouped into 20 superclasses such

as fish, flowers, reptiles, people, trees, vehicles, house-

hold furniture etc. This dataset is also split in the same

way as CIFAR-10, 50,000 training images which are

further split into 5 equal size subsets and 10,000 test

images.

 Animals 10 dataset [13] has been posted on Kaggle

website and it contains about 28,000 medium quality

animal images with different sizes, split into 10 classes

with varying number of images per class ranging from

~2,000 to ~5,000. In this research a subset of this da-

taset containing 1,400 of images per class has been

used. Entire subsets contains 14,000 images resized to

112x112 pixels.

 Intel Image Classification dataset [14] has also been

put on Kaggle and it contains 14,034 training images,

3,000 test images across 6 classes and size 150x150.

The dataset is almost evenly balanced and images are

resized to 112x112 pixels. Classes consist of nature and

urban areas scenes around the world.

3.4. Analyzed Artificial Neural Network architec-

tures

Different architectures may have some impact on acti-

vation functions performance, therefore three architec-

tures have been used. Two of those are well known

among machine learning community and one is simple

stacked convolutional layers. Layers use “same” pad-
ding with no bias vector, all layers use He normal kernel

initializer [15] except logistic regression layer which

uses Glorot uniform initialization [16]. During training

all models use two data augmentation layers: random

horizontal flip and random rotation. Strides are used

instead of max pooling and after each layer batch nor-

malization [17] and activation is applied.

 ResNet [18] ANN network architecture is made of

residual modules, each module consists of batch nor-

malization, activation and convolutional layer with

everything repeated two times, input of module is cop-

ied and goes through convolutional layer of size 1x1

and specified stride (1x1 or 2x2) and at the end is added

to the output of the second convolutional layer. Strides

in convolutional layers can be replaced by Max Pooling

2D layer. ResNet starts with convolutional layer, then

several groups of residual modules with each group

having one of its modules decrease the size by some

factor (usually 2x2 stride), fully-connected (dense)

block and one dense layer with Softmax activation (lo-

gistic regression layer) for classification.

An example of layers and connections in the residual

module is presented in Figure 2.

Figure 2: Residual module example.

 Xception [19], similarly to ResNet, consists of

Xception modules, which are residual modules but

inside convolutional layers are replaced by depthwise

separable convolutional layers. As the Xception archi-

tecture is based on the hypothesis that cross-channel and

spatial correlations can be mapped completely separate-

ly, the input has to go through at least one convolutional

layer which will help the hypothesis as cross-channel

and spatial correlations tend to be very high in input

images.

 Simple convolutional neural network is straight

flow, without any other connections consisting of multi-

ple convolutional layers with batch normalization and

activation, global max pooling, one or more fully-

connected layers and logistic regression layer.

3.5. Data augmentation and supply

Data supply method can be a bottleneck during training

process. One way to deal with this problem is to use

tf.data.Dataset API [20] from Tensorflow library which

can also help with data augmentation. In this experiment

training data is loaded, cached then during training

randomly augmented, shuffled and batched. Prefetch

function is used to ready the data before the next epoch

so the data preparation doesn’t happen at the start of the

epoch. All the transformations applied in tf.data.Dataset

Journal of Computer Sciences Institute 26 (2023) 7-12

10

pipeline are executed on a CPU. Data augmentation

consists of random hue, saturation, brightness and con-

trast adjustments within specified range. Random hori-

zontal image flip and image rotation is applied by the

model layers.

3.6. Research methodology

In this paper effectiveness of an activation function is

defined to be the accuracy and value of the loss function

computed on the test set. Efficiency on the other hand is

defined as the prediction time, epochs required to con-

verge and time required for a single epoch. Research has

been conducted with the use of the stratified k-fold

Cross Validation [21] for each dataset and activation

function. For CIFAR-100 and Intel Image Classification

we use variations of Xception architecture, while for

CIFAR-10 and animals 10 ResNet and simple convolu-

tional neural network has been employed respectively.

Dataset is loaded, shuffled, split into training and test

subsets (if there is no provided separate test set) then the

training subset is split into 5 stratified subsets of even

size. During training four of the splits are used for train-

ing and the remaining one for validation. This is repeat-

ed five times with different split used for validation.

Each activation function is trained five times for every

dataset. Training and validation loss and accuracy are

recorded along with time spent on each epoch.

Each trained artificial network model uses cross-

entropy as a loss function. Only the model with best loss

value across all epochs is saved. Early stopping with 10

epoch patience is used to investigate the speed of con-

vergence for each activation function. After training

every model is evaluated for test loss, accuracy and

prediction time.

During training process Adam [22] optimization al-

gorithm with initial learning rate 0.001 and exponential

decay for all models is used.

Activation function hyperparameters have been set

to following values:

• 𝛼 = 0.3 for Leaky ReLU,

• 𝛼 = 1.0 for ELU.

 Research results analysis

In this research more shallow models are trained, with

fewer hidden layers and thus smaller number of traina-

ble parameters compared to experiments conducted by

Ramachandran et al. [3]. Results tables present mean

values of all splits for each activation function.

 Models trained on CIFAR-10 dataset use ResNet

architecture with 283,595 trainable parameters and

1,628 non-trainable parameters (Table 2). It should be

noted that it is deeper than wider as the number of filters

is rather low. Batch size is set to 128. The results of

experiment are presented in Table 3.

 In this particular combination of dataset and archi-

tecture ELUs give the best accuracy and loss. It is im-

portant to note that ELUs have also trained for highest

amount of epochs with mean of 65.4 (Table 3). Second

come Swish activations with accuracy lower by value of

0.4% but with significantly lower number of epochs

before training stop. ReLUs are fastest during predic-

tion, ELU and LReLU have comparable prediction time.

Difference in mean time spent on one epoch can be

mostly attributed to resources taken by system.

Table 2: Model layers for CIFAR-10 dataset

Layer name Layer description

Input Shape (32,32,3)

Conv2D Size 5x5, filters 32

Residual module 1 Size 3x3, filters 16, strides 2

Residual module 2 Size 3x3, filters 16

Residual module 3 Size 3x3, filters 16

Residual module 4 Size 3x3, filters 32, strides 2

Residual module 5 Size 3x3, filters 32

Residual module 6 Size 3x3, filters 32

Residual module 7 Size 3x3, filters 64, strides 2

Residual module 8 Size 3x3, filters 64

Residual module 9 Size 3x3, filters 64

Global Average Pooling 2D

Dense Units 128

Dense (Classification) Units 128, activation Softmax

Table 3: Experiment results for CIFAR-10 dataset

Func. Test Acc. Test Loss Val. Loss Pred.

Time

S.

Epoch

Epoch

Time

ReLU 0.7758 0.6666 0.6526 0.55 46.2 21.99

LReLU 0.7806 0.6468 0.6275 0.58 60.6 21.38

ELU 0.7927 0.6159 0.6098 0.58 65.4 21.16

Swish 0.7881 0.6358 0.6132 0.62 51.2 22.36

 Xception architecture was employed for training

models on CIFAR-100 dataset with 1,421,956 trainable

parameters and 6,208 non-trainable parameters (Table

4). Here Dropout layer has been used, for better gener-

alization and Max Pooling for downsampling layers

output instead of strides in convolutional layers. Batch

size is set to 128.

Table 4: Model layers for CIFAR-100 dataset

Layer name Layer description

Input Shape (32,32,3)

Conv2D 1 Size 5x5, filters 64

Conv2D 2 Size 3x3, filters 96

Xception module 1 Size 3x3, filters 192, max pooling

2x2 strides 2

Xception module 2 Size 3x3, filters 256, max pooling

2x2 strides 2

Xception module 3 Size 3x3, filters 512, max pooling
2x2 strides 2

Separable Conv2D Size 3x3, filters 512

Global Average Pooling 2D

Dense Units 512

Dropout Rate 0.5

Dense (classification) Units 100, activation Softmax

Table 5: Experiment results for CIFAR-100 dataset

Func. Test Acc. Test Loss Val. Loss Pred.

Time

S.

Epoch

Epoch

Time

ReLU 0.5736 1.7489 1.7613 2.17 33.4 53.4

LReLU 0.6118 1.6058 1.6264 2.45 43.6 52.6

ELU 0.6098 1.6210 1.6388 2.43 39.8 51.7

Swish 0.5981 1.6360 1.6647 2.84 26.6 59.9

 We can see that LReLUs perform the best, with small

difference to ELU activation (Table 5). Again we can

see that worst performing function has trained for much

lower number of epochs on average but Swish seems to

have very fast convergence compared with other activa-

Journal of Computer Sciences Institute 26 (2023) 7-12

11

tions. Again Swish takes longest amount of time for

predictions and single epoch.

 For Animals 10 datasets we used Simple Convolu-

tional neural network architecture with 598 218 traina-

ble parameters and 1 792 non-trainable parameters (Ta-

ble 6). In this particular architecture Global Max Pool-

ing 2D has been used, instead of Global Average Pool-

ing. Batch size is set to 8.

Table 6: Model layers for Animals 10 dataset

Layer name Layer description

Input Shape (112,112,3)

Conv2D 1 Size 7x7, filters 64, strides 2

Conv2D 2 Size 3x3, filters 64

Conv2D 3 Size 3x3, filters 128, strides 2

Conv2D 4 Size 3x3, filters 128

Conv2D 5 Size 3x3, filters 128, strides 2

Conv2D 6 Size 3x3, filters 128

Global Max Pooling 2D

Dense Units 128

Dense Units 128

Dropout Rate 0.5

Dense (classification) Units 10, activation Softmax

Table 7: Experiment results for Animals 10 dataset

Func. Test Acc. Test Loss Val. Loss Pred.

Time

S.

Epoch

Epoch

Time

ReLU 0.6907 0.9131 0.9346 0.98 41.8 25.4

LReLU 0.6824 0.9405 0.9530 1.05 54.0 23.9

ELU 0.6782 0.9574 0.9937 1.05 44.2 26.5

Swish 0.6625 0.9897 0.9987 1.23 30.8 28.3

Surprisingly ReLUs result in the best mean test accura-

cy and loss, with second to Swish activations lowest

number of epochs (Table 7). Again ReLUs have the

shortest prediction time, LReLUs and ELUs perform

similiarly in this regard and Swish activations take

longest time to predict. Swish activations also have

longest mean time spent on single epoch.

 Models trained on Intel Image Classification dataset

use Xception architecture with 668,038 trainable pa-

rameters and 4,736 non-trainable parameters (Table 8).

In comparison to CIFAR-100 models here we have a bit

deeper models but lower number of filters or units in

layers. Batch size is set to 16.

Table 8: Model layers for Intel Image Classification dataset

Layer name Layer description

Input Shape (112,112,3)

Conv2D Size 5x5, filters 64

Conv2D Size 3x3, filters 64

Xception module 1 Size 3x3, filters 96, max pooling 2x2

strides 2

Xception module 2 Size 3x3, filters 128, max pooling
2x2 strides 2

Xception module 3 Size 3x3, filters 192, max pooling

2x2 strides 2

Xception module 4 Size 3x3, filters 256, max pooling
2x2 strides 2

Separable Conv2D Size 3x3, filters 512

Global Average Pooling 2D

Dense Units 256

Dense Units 128

Dropout Rate 0.5

Dense (classification) Units 6, activation Softmax

Table 9: Experiment results for Intel Image Classification dataset

Func. Test Acc. Test Loss Val. Loss Pred.

Time

S.

Epoch

Epoch

Time

ReLU 0.8546 0.4757 0.4770 1.70 32.4 44.5

LReLU 0.8561 0.4720 0.4546 1.76 41.4 46.8

ELU 0.8517 0.4663 0.4499 1.76 37.0 45.8

Swish 0.8594 0.4568 0.4485 2.05 31.4 49.6

In this combination of dataset and architecture we have

the closest results between all activation functions in

terms of accuracy and loss so far, with Swish taking the

crown (Table 9). Again prediction time results are simi-

lar to previous results. Swish activations need lower

number of epochs to converge but take the longest time

for single epoch.

 Conclusions

From the results a conclusion can be drawn that H1 and

H2 are true but H3 is only partially true as the activation

functions order of effectiveness and efficiency changes

in every dataset and architecture combinations.

In regards to H1 it is true that although Swish activa-

tions take the longest time to train for a single epoch

they also need significantly lower number of epochs to

converge thus decreasing total training time. More com-

plex models seem to favor activations that try to allevi-

ate vanishing gradient and dead neurons problems alt-

hough the functions are not consistent in their effective-

ness across all datasets.

Without a doubt the H2 is true and the order doesn’t
change for different datasets as is stated in H3. Swish

activations slow down prediction time by value ranging

from ~12.7% up to ~30.9% compared to ReLUs. LRe-

LUs and ELUs are comparable in terms of prediction

time but are still slower than ReLUs by varying value of

~3.5% to ~13%. This may have considerable impact on

performance of cloud services that employ ANN models

especially in moments of high traffic.

It should be noted that Swish may be comparable in

terms of effectiveness or possibly better than LReLU

and ELU since Early Stopping ends training early be-

fore learning rate has a chance to decrease to a value

which can make finer changes to the model. Another

thing to note is that authors of Searching for activation

functions [5] have made their experiments on deep

models with higher number of parameters than the mod-

els presented in this paper. This has effect on the per-

formance of activation functions as the selected func-

tions try to alleviate vanishing gradient and dead neu-

rons problems which are less likely to occur in shallow

models.

Ultimately research on performance of activation

functions is not nearly completed by the results present-

ed in this article. Future experiments should focus on

verifying activation functions efficiency and effective-

ness for different value of learning rate and its decay,

parameters affecting activation function themselves

such as α in LReLU or ELU, broader selection of archi-

tectures and datasets.

Journal of Computer Sciences Institute 26 (2023) 7-12

12

References

[1] A. Abraham, Artificial neural networks. Handbook of

measuring system design, John Wiley and Sons Ltd.,

London (2005) 901-908,

https://doi.org/10.1002/0471497398.mm421.

[2] V. Nair, G. E. Hinton, Rectified Linear Units Improve

Restricted Boltzmann Machines in Proceedings of the

27th International Conference on International

Conference on Machine Learning, Omnipress, Madison

(2010) 807-814.

[3] P. Ramachandran, B. Zoph, Q. V. Le, Searching for

activation functions, arXiv (2017),

https://doi.org/10.48550/arXiv.1710.05941.

[4] A. Krizhevsky, V. Nair, G. E. Hinton, CIFAR-10 and

CIFAR-100 datasets

http://www.cs.toronto.edu/~kriz/cifar.html, [14.06.2022].

[5] D. A. Clevert, T. Unterthiner, S. Hochreiter, Fast and

accurate deep network learning by exponential linear

units (elus), Published as a conference paper at ICLR

2016 (2015), https://doi.org/10.48550/arXiv.1511.07289.

[6] B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of

rectified activations in convolutional network, arXiv

(2015), https://doi.org/10.48550/arXiv.1505.00853.

[7] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall,

Activation functions: Comparison of trends in practice

and research for deep learning, arXiv (2018),

https://doi.org/10.48550/arxiv.1811.03378.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J.

Dean et al., TensorFlow: A System for Large-Scale

Machine Learning, OSDI 16 (2016) 265-283.

[9] Keras, https://keras.io , [14.06.2022].

[10] F. Pedregosa et al., Scikit-learn: Machine Learning in

Python, JMLR 12 (2011) 2825-2830,

https://doi.org/10.48550/arXiv.1201.0490.

[11] G. Van Rossum, F. L. Drake, Python 3 Reference

Manual, CA: CreateSpace, Scotts Valley, 2009.

[12] Anaconda platform website https://anaconda.org/,

[14.06.2022].

[13] Animals 10 dataset

https://www.kaggle.com/datasets/alessiocorrado99/anima

ls10 , [14.06.2022].

[14] Intel Image Classification dataset

https://www.kaggle.com/datasets/puneet6060/intel-

image-classification , [14.06.2022].

[15] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into

rectifiers: Surpassing human-level performance on

ImageNet classification, arXiv (2015),

https://doi.org/10.48550/arXiv.1502.01852.

[16] X. Glorot, Y. Bengio, Understanding the difficulty of

training deep feedforward neural networks, Journal of

Machine Learning Research - Proceedings Track 9

(2010) 249-256.

[17] S. Ioffe, C. Szegedy, Batch normalization: Accelerating

deep network training by reducing internal covariate

shift, International conference on machine learning,

PMLR 37 (2015) 448-456,

https://doi.org/10.48550/arXiv.1502.03167.

[18] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning

for image recognition, Proceedings of the IEEE

conference on computer vision and pattern

recognition (2016) 770-778,

https://doi.org/10.48550/arXiv.1512.03385.

[19] F. Chollet, Xception: Deep learning with depthwise

separable convolutions, Proceedings of the IEEE

conference on computer vision and pattern

recognition (2017) 1251-1258,

https://doi.org/10.1109/CVPR.2017.195.

[20] tf.data.Dataset API

https://www.tensorflow.org/api_docs/python/tf/data/Data

set , [20.06.2022].

[21] P. Refaeilzadeh, L. Tang, H. Liu, Cross-Validation.

Encyclopedia of Database Systems. Springer, Boston

(2009), https://doi.org/10.1007/978-0-387-39940-9_565.

[22] D. P. Kingma, J. Ba, Adam: A method for stochastic

optimization, arXiv (2014),

https://doi.org/10.48550/arXiv.1412.6980.

https://doi.org/10.1002/0471497398.mm421
https://doi.org/10.48550/arXiv.1710.05941
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.48550/arXiv.1511.07289
https://doi.org/10.48550/arXiv.1505.00853
https://doi.org/10.48550/arxiv.1811.03378
https://keras.io/
https://doi.org/10.48550/arXiv.1201.0490
https://anaconda.org/
https://www.kaggle.com/datasets/alessiocorrado99/animals10
https://www.kaggle.com/datasets/alessiocorrado99/animals10
https://www.kaggle.com/datasets/puneet6060/intel-image-classification
https://www.kaggle.com/datasets/puneet6060/intel-image-classification
https://doi.org/10.48550/arXiv.1502.01852
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1109/CVPR.2017.195
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.48550/arXiv.1412.6980

