
JCSI 27 (2023) 145–153

Received: 25 November 2022

Accepted: 7 December 2022

145

A comparison of word embedding-based extraction feature techniques and

deep learning models of natural disaster messages classification

Porównanie technik wyodrębniania cech opartych na osadzeniu słów oraz

modeli głębokiego uczenia w klasyfikacji wiadomości o klęskach żywio-
łowych
Irwan Budiman, Mohammad Reza Faisal*, Friska Abadi, Dodon Turianto Nugrahadi, Muhammad Haekal

Department of Computer Science, Lambung Mangkurat University, Banjarbaru 70714, Indonesia

Abstract

The research aims to compare the classification performance of natural disaster messages classification from Twitter.

The research experiment covers the analysis of three-word embedding-based extraction feature techniques and five

different models of deep learning. The word embedding techniques that are used in this experiment are Word2Vec,

fastText, and Glove. The experiment uses five deep learning models, namely three models of different dimensions of

Convolutional Neural Network (1D CNN, 2D CNN, 3D CNN), Long Short-Term Memory Network (LSTM), and Bidi-

rectional Encoder Representations for Transformer (BERT). The models are tested on four natural disaster messages

datasets: earthquakes, floods, forest fires, and hurricanes. Those models are tested for classification performance.

Keywords: Twitter; Natural disaster; CNN; LSTM; BERT

Streszczenie

Badanie ma na celu porównanie skuteczności klasyfikacji wiadomości o klęskach żywiołowych z Twittera. Ekspery-
ment badawczy obejmuje analizę technik ekstrakcji cech opartych na osadzeniu trzech słów oraz pięciu różnych modeli
głębokiego uczenia. Techniki osadzania słów używane w tym eksperymencie to Word2Vec, fastText i Glove. Ekspery-

ment wykorzystuje pięć modeli głębokiego uczenia, a mianowicie trzy modele o różnych wymiarach konwolucyjnej
sieci neuronowej (1D CNN, 2D CNN, 3D CNN), oraz dwie sieci: Long Short-Term Memory Network (LSTM) oraz

Bidirectional Encoder Representations for Transformer (BERT). Modele zostały prztestowane na czterech zestawach

danych dotyczących klęsk żywiołowych, a mianowicie trzęsień ziemi, powodzi, pożarów lasów i huraganów. Modele te
przetestowano pod kątem wydajności klasyfikacji.
Słowa kluczowe: twitter; klęska żywiołowa; CNN; LSTM; BERT

*Corresponding author

Email address: reza.faisal@ulm.ac.id (M. R. Faisal)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

The existence of social media currently plays an essen-

tial role in assisting in every activity in the disaster

management cycle. In the pre-disaster stage, social

media can be used as an early warning before a disaster

occurs [1]. At the scene when the natural disaster oc-

curred, eyewitnesses shared information about the situa-

tion at that time. It can be used by volunteers or the

government to deal with the impact of disasters. Where-

as in the post-disaster stage, social media users share

messages containing information on relief that has been

carried out or information on locations that have not

received assistance [2].

Natural disaster messages on social media are cate-

gorized into three: eyewitness and non-eyewitness, and

don’t-know [3]. Messages of the eyewitness category

are natural disaster messages posted by eyewitnesses at

the location when the disaster occurred. Messages in the

non-eyewitness category are messages about natural

disasters uploaded by users who are not eyewitnesses.

In contrast, a message in don't-know category is a mes-

sage in which there are words related to natural disas-

ters, but the meaning is not about natural disasters.

Utilization of social media messages related to natu-

ral disasters for natural disaster management can be

maximized with the help of artificial intelligence. Arti-

ficial intelligence can help find natural disaster messag-

es faster [4]. The artificial intelligence system will clas-

sify social media messages into the three categories that

are mentioned above.

The word embedding-based feature extraction tech-

nique is formed by the concatenation of word vectors

into 1-dimensional data (1D) [5], [6]. Sentance vectors

can be formed by arranging word vectors into a matrix

(2D) [7]. Three 2D data created by each word embed-

ding technique such as Wod2vec, Glove and fastText

can be combined into 3 layers to form 3-dimensional

data (3D) [8]. The output of the feature extraction pro-

cess is structured data.

The deep learning method that can process multi-

dimensional structured data is the Convolutional Neural

Network (CNN) [9]–[11]. For text classification with

1D CNN with feature extraction technique based on

word2vec [5]. The application of the 2D CNN technique

mailto:reza.faisal@ulm.ac.id

Journal of Computer Sciences Institute 27 (2023) 145-153

146

to classify forest fire messages produces a good accura-

cy of 81.97%[7]. This study used three-word embedding

techniques to create 2D data, namely word2vec,

fastText and Glove. The application of text data classi-

fication with 3D CNN is made by combining 2D data

based on word embedding consisting of three layers

based on word embedding techniques word2vec [12],

Glove [13] and fastText [8].

Another deep learning technique that is commonly

used to classify text is the Long Short-Term Memory

Network (LSTM). For the case of sentiment analysis on

the IMDB dataset [14], the classification performance

obtained using the LSTM model works better than the

1D CNN model. In this study, 1D concatenated data

were used from the Word2Vec vector and the 1D CNN

model. Meanwhile, the LSTM model uses input data

from the tokenised form, which is then converted by an

embedding layer based on Word2Vec. For the case of

classifying natural disaster messages using deep learn-

ing models, the performance of the LSTM model is

better than CNN [15]. The CNN model used in this

study uses 2D data from the Glove vector and the 2D

CNN model. And the LSTM model uses input data from

the tokenized form, which is then converted by a Glove-

based embedding layer.

Bidirectional Encoder Representations for Trans-

former (BERT) [16] is a recently popular deep learning

method. BERT has achieved state-of-the-art results in a

broad range of NLP tasks because of its ability to under-

stand words more thoroughly [17]. BERT can provide a

richer linguistic structure because linguistic knowledge

is stored in hidden states and on attention maps [18].

The explanation above has provided knowledge of

the methods used to carry out feature extraction and

classification in the case of sentiment analysis and clas-

sification of natural disaster messages. However, it is

necessary to carry out a comprehensive comparative

study of these methods to obtain knowledge of the tech-

nique that can provide the best classification perfor-

mance in the case of natural disaster messages. This

research is done to answer following questions:

1. What are the classification performance of 1D CNN,

2D CNN, and 3D CNN models using the three-word

embedding techniques in the feature extraction pro-

cess?

2. What is the classification performance of the LSTM

model using the three-word embedding techniques

in the feature extraction process?

3. What is the classification performance of the BERT

model?

Existing research generally only uses a word em-

bedding technique for feature extraction. This research

also combines feature extraction results based on

Word2Vec, Glove, and fastText for processing with 1D

CNN, 2D CNN, 3D CNN, and LSTM models. The aim

is to determine whether combining those techniques can

improve the natural disaster message classification per-

formance.

This report is divided into five sections: 1) Introduc-

tion, 2) Dataset and method section explaining the da-

taset and classification algorithms that are used, 3) Re-

search implementation section explaining the steps in

the implementation of this study, 4) Result, and the last

section is 5) Conclusions.

2. Dataset

The natural disaster message dataset used in this re-

search comes from research [3]. Details about this da-

taset can be seen in Table 1.

Table 1: The natural disaster dataset

Dataset Class Label #Messages

Earthquakes

eyewitness 1600

dont-know 200

non-eyewitness 200

Floods

eyewitness 627

dont-know 822

non-eyewitness 551

Forest fires

eyewitness 189

dont-know 432

non-eyewitness 1379

Hurricanes

eyewitness 465

dont-know 336

non-eyewitness 1199

Each dataset has three categories or class labels:

eyewitness, dont-know, and non-eyewitness. Examples

of natural disaster messages from each class label can

be seen in Table 2.

Table 2: Samples of natural disaster messages

No Message Class Label
1 We're a family pulled from a flood eyewitness

2 I’m ready for these earthquake memes dont-know

3 Houston streets flood again, dam-

pening July 4th celebrations

https://t.co/3I1aOZkNBx

https://t.co/4i5kHBcRjo

non-eyewitness

The first message is from natural disasters such as

floods and earthquakes uploaded by eyewitnesses when

the disaster occurred. The secon message is message

that contain the words earthquake and flood, but the

meaning is not about natural disasters. While the last

message is about natural disasters from the news that

are re-shared by Twitter users.

3. Research implementation

The steps in the implementation of the research can be

seen in Figure 1.

3.1. Text Normalization & Word Padding

Four natural disaster message datasets were normal-

ized with steps commonly performed in text classifica-

tion cases: removing double spaces, punctuation marks,

numbers and non-alphanumeric characters [19]. The

four text data that have been normalized are used as

input for the BERT method to create a classification

model.

Clean text data is then counted as the number of

words in each message. After that, each message in each

dataset is equated with the word padding based on the

mean value.

Journal of Computer Sciences Institute 27 (2023) 145-153

147

Figure 1: Steps of research implementation.

3.2. Feature Extraction

The next stage is feature extraction. There are three

groups of techniques based on the dimensions of the

output data, namely, one dimension (1D), two dimen-

sions (2D), and three dimensions (3D). Each of these

techniques will use three popular word embedding tech-

niques used in classification studies, namely Word2ve

[12], fastText [20], Glove [13], [21]. Data structures

with different dimensions are created using the three-

word embedding models. The formation of 1D data is

explained as follows.
 𝑣𝑖 = V1 V2 V2 … V98 V99 V100

If 𝑣𝑖 is the vector of a word, and n is the number of

words in a sentence, then the 1D data is the sentence

vector 𝑣𝑠 which is formed by combining all word vec-

tors (Formula 1). The value of 𝑛 corresponds to the

number of words searched for with a statistically based

word padding technique, namely the mean. 𝑣𝑠 = ⋃ 𝑣𝑖𝑛
𝑖=1

(1)

Formula 2 shows how to create 1D data by combin-

ing the three-word embedding techniques. 𝑣𝑎𝑙𝑙 = 𝑣𝑠 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 ∪ 𝑣𝑠 𝑓𝑎𝑠𝑡𝑇𝑒𝑥𝑡 ∪ 𝑣𝑠 𝐺𝑙𝑜𝑣𝑒 (2)

The feature extraction results in this way produce

structured data with 1D dimensions, as seen in Table 3.

From these results, 16 structured data were obtained,

which were used as input to create a classification mod-

el using the 1D CNN method.

Table 3: 1D structured data

Input

dataset

Word

embedding method

Dimension of

1D structured

data
Earthquakes Single word embedding

technique

900

Union of 3 word embed- 2700

Input

dataset

Word

embedding method

Dimension of

1D structured

data

ding techniques (All)

Floods Single word embedding

technique

1600

Union of 3 word embed-

ding techniques (All)

4800

Forest fires Single word embedding

technique

1200

Union of 3 word embed-

ding techniques (All)

3600

Hurricanes Single word embedding

technique

1300

Union of 3 word embed-
ding techniques (All)

3900

The formation of 2D data with each word embed-

ding technique is explained as follows. If 𝑣1, 𝑣2, to 𝑣𝑛

re word vectors resulting from a number of word em-

bedding techniques 𝑚 and 𝑛 is formed by creating a

two-dimensional matrix 𝑚 × 𝑛 as shown in Figure 2.

Where 𝑚 is 100.

Figure 2: 2D Data.

This research also proposes the formation of 2D data

from a combination of three-word embedding tech-

niques. The combined 2D data can be seen in Figure 3.

The 2D data is a two-dimensional matrix 𝑚 × 𝑁, where 𝑚 is 100 and N is 3 × 𝑛.

Figure 3: 2D data combined with three word embedding techniques.

The feature extraction results in this way produce

structured data with 2D dimensions, as seen in Table 4.

From these results, 16 structured data are obtained,

which are used as input to create a classification model

using the 2D CNN and LSTM methods.

Table 4: 2D structured data

Input

Dataset

Word

Embedding

Method

Dimension of

2D structured

data
Earthquakes Single word embed-

ding technique

9 x 100

Union of 3 word

embedding tech-
niques (All)

27 x 100

Floods Single word embed-

ding technique

16 x 100

Journal of Computer Sciences Institute 27 (2023) 145-153

148

Input

Dataset

Word

Embedding

Method

Dimension of

2D structured

data

Union of 3 word
embedding tech-

niques (All)

48 x 100

Forest fires Single word embed-
ding technique

12 x 100

Union of 3 word

embedding tech-

niques (All)

36 x 100

Hurricanes Single word embed-

ding technique

13 x 100

Union of 3 word
embedding tech-

niques (All)

39 x 100

To create 3D data by combining 2D data from three

different word embedding techniques. There are two

ways of generating 3D data. The way of forming the

first 3D data can be seen in Figure 4. 3D data type 1 is

generated in 3 layers. The first layer is 2D data from the

word2vec technique, followed by 2D data from the

fastText and Glove techniques.

If 3D data type 1 is represented as a matrix, the di-

mensions are𝑚 × 𝑛 × 𝑧. Where 𝑚 is 100, 𝑛 is the

number of words in a sentence, and 𝑧 is 3. The method

of forming 3D data type 1 follows the method of form-

ing 3D image data consisting of 3 RGB color channels.

Figure 4: Data 3D type 1.

The way to generate 3D data type 2 is to follow the

formation of 3D video. Video are a set of frames or

images. For this study, a frame is formed by three vec-

tors of a word from three-word embedding techniques.

Then the next layer represents the second word, and so

on. So that this data will have 𝑛 layers. If 3D data type 2

is defined as a matrix, the dimensions are 𝑚 × 𝑧 × 𝑛.

Where 𝑚 is 100, 𝑧 is the number of word embedding

techniques, namely 3. 𝑛 is the number of words in the

sentence.

The feature extraction results in this way produce

structured data with 3D dimensions, which can be seen

in Table 5.

Table 5: 3D structured data

Input

Dataset

Word

Embedding

Method

Dimension of

3D structured

data
Earthquakes Type 1 100 x 9 x 3

Type 2 100 x 3 x 9

Floods Type 1 100 x 16 x 3

Type 2 100 x 3 x 16

Forest fires Type 1 100 x 12 x 3

Type 2 100 x 3 x 12

Hurricanes Type 1 100 x 13 x 3

Input

Dataset

Word

Embedding

Method

Dimension of

3D structured

data

Type 2 100 x 3 x 13

3.3. Classification

Three deep learning methods are used in this research:

CNN, LSTM, and BERT.

Convolutional Neural Network (CNN) is an artificial

neural network used initially in image recognition and

processing [22]. The input and output of each stage are

in the form of an array called a feature map. The output

of each stage is a feature map of the processing results

from all input locations. Each stage consists of three

layers: the convolutional layer, the activation layer, and

the pooling layer [22]. The convolutional layer is the

first layer that receives direct input data to the architec-

ture. The convolutional layer performs the convolution

operation on the previous layer's output. The purpose of

convolution on data is to extract features from the input

data. Pooling layer is reducing the size of the matrix by

using a pooling operation. Two types of pooling are

often used: average pooling and max pooling. The acti-

vation function is a node that is added at the end of the

output of each neural network. The activation function,

also known as the transfer function, is used to determine

the neural network output. In the CNN architecture, the

activation function lies in the final computation of the

feature map output or after the convolution or pooling

calculation process to produce a feature pattern. Several

kinds of activation functions that are often used in re-

search include the sigmoid, tanh, Rectified Liniear Unit

(ReLU), Leaky ReLU (LReLU) dan Parametric ReLU

[23].

The result of these three layers is a feature map in

the form of a multi-dimensional array. The feature map

is then processed by the flatten operation to become a

vector. Then the vector is processed by the fully con-

nected layer. The fully connected layer is where all the

previous layer's activated neurons are connected to the

neurons in the next layer [24]. Each activation of the

prior layer needs to be converted into one-dimensional

data before it can be linked to all neurons. The Fully-

Connected layer is usually used in the Multi Layer Per-

ceptron method to process data so that it can be classi-

fied.

Long Short-Term Memory is a variant of Recurrent

Neural Network (RNN). LSTM can conduct training

and overcome vanishing gradient problems which are

difficult for RNNs [25]. LSTM was created with the aim

of overcoming the hidden layer problem. LSTM can

learn long patterns from sequential data because it pre-

vents vanishing gradient situations. However, LSTM

still has the same principle as RNN and what differenti-

ates it from RNN is the cell content. RNN is simple

because with cells that only contain a layer of neurons

with the tanh activation function. LSTM becomes more

complex because the cell's contents are more than one

layer of neurons. There is a layer of neurons called

gates [26].

Journal of Computer Sciences Institute 27 (2023) 145-153

149

Bidirectional Encoder Representations from Trans-

formers (BERT) is a pre-trained contextual word repre-

sentation model based on MLM (Masked Language

Model), using two-way Transformers [18]. The BERT

model architecture is a multi-layer bidirectional trans-

former encoder-decoder structure. Transformers follow

this overall architecture using self-attention and point-

wise stacked, fully connected encoders and decoders.

There are two steps in the performance of the BERT

framework, namely pre-training and fine-tuning [18].

BERT pre-training does not use the traditional left-to-

right or right-to-left method but uses Masked Language

Modeling (MLM) and Next Sentence Prediction (NSP)

for pre-training data. MLM fills in the blanks, where the

model uses the context word around the mask token to

predict what word should be, while NSP is the predic-

tion of the next sentence with the two models given.

After pre-training data, BERT will perform fine-tuning

where fine-tuning is initialized with previously trained

parameters, and all fine-tuning parameters use labeled

data from downstream tasks.

Model building implementation uses the Python

programming language with the Keras and Tensorflow

libraries. In this study, three CNN models were made,

namely 1D CNN, 2D CNN and 3D CNN. Table 6 shows

the parameters used in each model in this study.

Table 6: Parameters of CNN models

Algorithm Parameters
1D CNN Input Shape layer

• Output = max_word

Word embedding layer

• embedding word, embedding vector,

embedding matrix, max word

• Output = max_word, 100

4 convolutional layers = Conv_1, Conv_2,
Conv_3, Conv_4

Convolutional 1D

• Kernel size = n; n = {1, 2, 3, 5}

• Activation=Tanh

• Kernel initializer = orthogonal

• Kernel regularizer=L1,L2

• Bias initializer = glorot

• Output = max_word, 128

Max pooling 1D

• Pool size = max_word-n; n = {1, 2, 3,

5}

• Padding = valid

• Output = max_word, 128; 1, 128

Dropout

• P=0.25

• Output = 1, 128

Concatenate

• Input = Conv_1, Conv_2, Conv_3,

Conv_4

• Output = 4, 128

Flatten_1

• Input = flatten

• Output = 512

Dropout_1

• P = 0.35

• Output = 512

Dense_1

• Units = 3

• Activation = softmax

• Output = 3

Algorithm Parameters
2D CNN Input Shape layer

• Output = max_word

Word embedding layer

• embedding word, embedding vector,

embedding matrix, max word

• Output = max_word, 100

4 convolutional layers = Conv_1, Conv_2,
Conv_3, Conv_4

Conv_1
Convolutional 2D

• Kernel size= n, embedding vector; n =

{1, 2, 3, 5}

• Activation=Tanh

• Kernel initializer = orthogonal

• Kernel regularizer=L1,L2

• Bias Initializer = glorot

• Output = max_word, 1, 128

Max pooling 2D

• Pool size = max_word-n, 1; n = {1, 2,

3, 5}

• Padding = valid

• Strindes = 1, 1

• Output = max_word, 1, 128; 1, 1, 128

Dropout

• P=0.25

• Output = 1, 1, 128

Concatenate

• Input = Conv_1, Conv_2, Conv_3,

Conv_4

• Output = 4, 1, 128

Flatten_1

• Input = flatten

• Output = 512

Dropout_1

• P = 0.35

• Output = 512

Dense_1

• Units = 3

• Activation = softmax

• Output = 3

3D CNN

Type 1

Input Shape layer

• Output = max_word

4-word embedding layers = Word embedding 1,

Word embedding 2, Word embedding 3, Word

embedding 4

Word embedding

• embedding word, embedding vector,

embedding matrix, max word

• Output = max_word, 100

Concatenate

• Input = Word_embedding_1,

Word_embedding_2,
Word_embedding_3

• Output = max_word, 300

4 convolutional layers = Conv_1, Conv_2,
Conv_3, Conv_4

Conv_1
Convolutional 3D

• Kernal size = n, embedding vector,

3; n = {1, 2, 3, 5}

• Activation=Tanh

• Kernel initializer = orthogonal

• Kernel Regularizer=L1,L2

• Bias Initializer = glorot

• Output = max_word, 1, 128

Max pooling 3D

• Pool size = max_word-n, 1, 1; n = {1,

2, 3, 5}

Journal of Computer Sciences Institute 27 (2023) 145-153

150

Algorithm Parameters

• Padding = valid

• Strindes = 1, 1

• Output = max_word, 1, 1, 1, 128; 1, 1,

1, 128

Dropout

• P=0.25

• Output = 1, 1, 1, 128

Concatenate

• Input = Conv_1, Conv_2, Conv_3,

Conv_4
Output = 4, 2, 1, 128

Flatten_1

• Input = flatten

• Output = 512

Dropout_1

• P = 0.35

• Output = 512

Dense_1

• Units = 3

• Activation = softmax

• Output = 3

3D CNN
Type 2

Input Shape layer
Output = max_word

 4-word embedding layers = Word embedding 1,

Word embedding 2, Word embedding 3, Word
embedding 4

Word embedding

• embedding word, embedding vector,

embedding matrix, max word

• Output = max_word, 100

 4 convolutional layers = Conv_1, Conv_2,

Conv_3, Conv_4

Conv_1

Convolutional 3D

• Input = n, embedding vector, 1; n =

{1, 2, 3, 5}

• Activation=Tanh

• Kernel initializer = orthogonal

• Kernel Regularizer=L1,L2

• Bias Initializer = glorot

• Output = max_word, 1, 128

Max pooling 3D

• Pool size = (max_word*3)-n, 1, 1; n =

{1, 2, 3, 5}

• Padding = valid

• Strindes = 1, 1

• Output = max_word, 1, 1, 1, 128; 1, 1,

1, 128

Dropout

• P=0.25

• Output = 1, 1, 1, 128

 Concatenate

• Input = Conv_1, Conv_2, Conv_3,

Conv_4

• Output = 4, 2, 1, 128

 Flatten_1

• Input = flatten

• Output = 512

 Dropout_1

• P = 0.35

• Output = 512

 Dense_1

• Units = 3

• Activation = softmax

• Output = 3

Meanwhile, the LSTM and BERT models were built

using the parameters shown in Table 7.

Table 7: parameters of LSTM and BERT model.

Algorithm Parameters
LSTM Input Shape layer

• Output = max_word

Word embedding

• embedding word, embedding vector,

embedding matrix, max word

• output = max_word, 100

Bidirectional

• unit = 256

• output = 256

Dense 1

• unit = 64

• activation = Relu

• Kernel Regularizer = L1, l2

• Bias = Glorot_uniform

• Output = 64

Dense 2

• unit = 32

• activation = Relu

• Kernel Regularizer = L1, l2

• Bias = Glorot_uniform

• Output = 32

Dropout 1

• P = 0.35

Dense 3

• Unit 3

• activation = softmax

• Output = 3

BERT Input_ids

• Input = max_word

• Output = max_word

Attention_mask

• Input = max_word

• Output = max_word

Tf_Bert_model

• Input = input_ids, attention_mask

• Output = TFBaseModelOutput

LSTM

• Unit = 32

• Output = 32

Batch normalization

• Output = 32

Dense 1

• unit = 16

• activation = Relu

• Kernel Regularizer = L1, l2

• Bias = Glorot_uniform

• Output = 16

Batch normalization

• Output = 16

Dense 2

• unit = 8

• activation = Relu

• Kernel Regularizer = L1, l2

• Bias = Glorot_uniform

• Output = 8

Dropout 1

• P = 0.3

Dense 3

• Unit 3

• activation = softmax

• Output = 3

Table 1 shows the difference in the number of sam-

ples from each class so that it is known that this is a

case of imbalanced data classification. So that the clas-

sification performance used in this research is F1 Score

and ROC AUC.

Journal of Computer Sciences Institute 27 (2023) 145-153

151

Results

This research consists of 15 experiments for each da-

taset. So that the total number of experiments carried

out is 60 experiments. Figure 5 shows a comparison of

the classification performance of the earthquake dataset.

The 1D CNN model produced the highest classification

performance with the fastText word embedding tech-

nique, and the lowest was the BERT model.

Figure 5: Comparison of performance on earthquake messages classi-

fication.

Figure 6 shows a comparison of the classification

performance of flood datasets. The CNN type 1 3D

model produced the highest classification performance

and the lowest was the performance of the LSTM model

with the fastText word embedding technique.

Figure 6: Comparison of performance on flood messages classifica-

tion.

Figure 7 shows a comparison of the classification

performance of forest fire datasets. The highest classifi-

cation performance is produced by the 2D CNN model

with the word embedding Word2Vec technique, and the

lowest is the performance of the 1D CNN model with

the combination of the three-word embedding tech-

niques.

Figure 7: Comparison of performance on forest fire messages classifi-

cation.

Figure 8 shows a comparison of the classification

performance of hurricane datasets. The 3D CNN type 2

model produced the highest classification performance,

and the lowest was the performance of the LSTM model

with the word embedding Glove technique. The effect

of increasing performance with feature extraction com-

bining the three-word embedding techniques works well

when used on 1D data with the 1D CNN classification

method. This technique also improves the performance

of the LSTM classification model.

Figure 8: Comparison of performance on hurricane messages classifi-

cation.

Figure 9 shows the average F1 score based on the

classification method. This figure shows that the 3D

CNN type 2 method as a feature extraction method

proposed in this study, provides the highest average

performance compared to other classification methods.

In this research, BERT, a state-of-the-art classification

method, cannot perform well in the case of natural dis-

aster message classification.

Figure 9. Average F1 Score by classification methods.

Figure 10: Average F1 score by word embedding methods.

Figure 10 shows the average F1 score based on the

word embedding method. The highest classification

performance is produced by the fastText-based feature

extraction method. However, combining the three word

Journal of Computer Sciences Institute 27 (2023) 145-153

152

embedding methods, the proposed feature extraction

method can work better than the Glove and Word2Vec

methods.

Further analysis of the performance of the 3D CNN

type 2 model is to look at the predictive performance of

each class in the dataset. Figure 11 shows the average

AUC of each class using this model. This figure shows

that the predictive performance of the eyewitness class

is below the prediction performance of the other two

classes.

Figure 11: Average AUC of each class by 3D CNN Type 2.

The main reason for the low average performance of

this prediction is because the number of messages in the

eyewitness category is less than the messages in other

categories, except for the earthquakes dataset. Another

cause is that eyewitness category messages generally

contain concise messages, namely 2-3 words, so the

structured data that is formed includes a value of 0.

Those reasons can impact the model training process

and decrease classification performance [27].

Analysis of the prediction performance of the classes

was also carried out by comparing the performance

provided by the model formed by fastText-based feature

extraction with the incorporation of three word embed-

ding techniques. The results of the performance compar-

ison can be seen in Figure 12. In this result it can be

seen the decrease in the prediction performance of class

eyewitness from combining the three word embedding

techniques. Figure 12 also shows that the predictive

performance of the eyewitness class is below the predic-

tion performance of the other two classes. The reason of

this issue is same as the explanation in previous para-

graph.

Figure 12: Performance comparison of classes prediction.

Conclusions

From the results of this study, it can be concluded that

the formation of 3D data type 2 and 3D CNN models as

the proposed method can provide a better average per-

formance in the four cases of classification of natural

disaster messages. In comparison, the proposed method

combining three-word embedding techniques can im-

prove classification performance in the 1D CNN and

LSTM classification models.

However, the average performance for predicting

messages from eyewitnesses is still lower than the pre-

dictive performance of other message categories. It is

because the number of eyewitness category messages is

less than the other categories, resulting in cases of un-

balanced class classification, which decreases the per-

formance of the minority class classification.

Future research will focus on solving unbalanced da-

ta classification cases by balancing the data before cre-

ating a classification model. This step is expected to

improve the prediction performance for eyewitness

category messages.

Acknowledgements

In this research, the computer system's computation

time was provided by the Data Science Lab of the Com-

puter Science Department, Faculty of Mathematics and

Natural Sciences, Lambung Mangkurat University. This

work was supported by the Program Dosen Wajib Men-

eliti (PDWM) grant from PNBP Lambung Mangkurat

University.

References

[1] D. Wu, Y. Cui, Disaster early warning and damage

assessment analysis using social media data and geo-

location information, Decision Support Systems 111

(2018) 48-59, https://doi.org/10.1016/j.dss.2018.04.005.

[2] K. M Rodriguez, S. K. Ofori, L. C. Bayliss, J. S.

Schwind, K. Diallo, M. Liu, J. Yin, G. Chowell, I. C. H.

Fung, Social media use in emergency response to natural

disasters: a systematic review with a public health

perspective, Disaster Medicine and Public Health

Preparedness, 14(1) (2020) 139-149,

https://doi.org/10.1017/dmp.2020.3.

[3] K. Zahra, M. Imran, F. O. Ostermann, Automatic

identification of eyewitness messages on twitter during

disasters, Information Processing & Management, 57(1)

(2020) 102-107,

https://doi.org/10.1016/j.ipm.2019.102107.

[4] A. Devaraj, D. Murthy, A. Dontula, Machine learning

methods for identifying social media-based requests for

urgent help during hurricanes, International Journal of

Disaster Risk Reduction 51 (2020) 101757,

https://doi.org/10.1016/j.ijdrr.2020.101757.

[5] B. Jang, M. Kim, G. Harerimana, S. Kang, J. W. Kim,

Bi-LSTM model to increase accuracy in text

classification: Combining Word2vec CNN and attention

mechanism, Applied Sciences 10(17) (2020) 5841,

https://doi.org/10.3390/app10175841.

https://doi.org/10.1016/j.dss.2018.04.005
https://doi.org/10.1017/dmp.2020.3
https://doi.org/10.1016/j.ipm.2019.102107
https://doi.org/10.1016/j.ijdrr.2020.101757
https://doi.org/10.3390/app10175841

Journal of Computer Sciences Institute 27 (2023) 145-153

153

[6] M. R. Faisal, R. A. Nugroho, R. Ramadhani, F. Abadi, R.

Herteno, T. H. Saragih, Natural Disaster on Twitter: Role

of Feature Extraction Method of Word2Vec and Lexicon

Based for Determining Direct Eyewitness, Trends in

Sciences 18(23) (2021) 680-680,

https://doi.org/10.48048/tis.2021.680.

[7] R. Rinaldi, M. R. Faisal, M. I. Mazdadi, R. A. Nugroho,

F. Abadi, Eye witness message identification on forest

fires disaster using convolutional neural network, Journal

of Data Science and Software Engineering 2(02) (2021)

100-108.

[8] J. O. Luna, D. Ari, Word Embeddings and Deep Learning

for Spanish Twitter Sentiment Analysis, Communications

in Computer and Information Science, 898 (2019) 19-31,

https://doi.org/10.1007/978-3-030-11680-4_4.

[9] D. Li, J. Zhang, Q .Zhang, X. Wei, Classification of ECG

signals based on 1D convolution neural network, IEEE

19th International Conference on e-Health Networking

Applications and Services (Healthcom) (2017) 1-6,

https://doi.org/10.1109/HealthCom.2017.8210784.

[10] H.M. Rai, K. Chatterjee, 2D MRI image analysis and

brain tumor detection using deep learning CNN model

LeU-Net, Multimedia Tools and Applications 80 (2021)

36111–36141, https://doi.org/10.1007/s11042-021-

11504-9.

[11] B. Khagi, G. R. Kwon, 3D CNN design for the

classification of Alzheimer’s disease using brain MRI
and PET, IEEE Access 8 (2020) 217830-217847,

https://doi.org/10.1109/ACCESS.2020.3040486.

[12] Y. Goldberg, O. Levy, word2vec Explained: deriving

Mikolov et al.'s negative-sampling word-embedding

method, arXiv:1402.3722 (2014).

[13] J. Pennington, R. Socher, C. D. Manning, Glove: Global

vectors for word representation, In Proceedings of the

2014 conference on empirical methods in natural

language processing (EMNLP) (2014) 1532-1543.

[14] U. D. Gandhi, P. M. Kumar, G. C. Babu, G. Karthick,

Sentiment Analysis on Twitter Data by Using

Convolutional Neural Network (CNN) and Long Short

Term Memory (LSTM), Wireless Personal

Communications (2021) 1-10,

https://doi.org/10.1007/s11277-021-08580-3.

[15] A. Bhoi, S. P. Pujari, R. C. Balabantaray, A deep

learning-based social media text analysis framework for

disaster resource management, Social Network Analysis

and Mining 10(78) (2020) 1-14,

https://doi.org/10.1007/s13278-020-00692-1.

[16] J. Devlin, M. W. Chang, K. Lee, K. Toutanova, Bert:

Pre-training of deep bidirectional transformers for

language understanding, arXiv:1810.04805 (2018).

[17] S. G. Carvajal, E. C. G. Merchán, Comparing BERT

against traditional machine learning text classification.

arXiv:2005.13012 (2020).

[18] W. Maharani, Sentiment analysis during Jakarta flood for

emergency responses and situational awareness in

disaster management using BERT, 8th International

Conference on Information and Communication

Technology (ICoICT) (2020) 1-5,

https://doi.org/10.1109/ICoICT49345.2020.9166407.

[19] M. K. Delimayanti, R. Sari, M. Laya, M. R. Faisal, R. F.

Naryanto, The effect of pre-processing on the

classification of twitter’s flood disaster messages using
support vector machine algorithm, 3rd International

Conference on Applied Engineering (ICAE) (2020) 1-6,

https://doi.org/10.1109/ICAE50557.2020.9350387.

[20] S. Khomsah, R. D. Ramadhani, S. Wijaya, The Accuracy

Comparison Between Word2Vec and FastText On

Sentiment Analysis of Hotel Reviews, Jurnal RESTI

(Rekayasa Sistem dan Teknologi Informasi) 6(3) (2022)

352-358, https://doi.org/10.29207/resti.v6i3.3711.

[21] F. Anistya, E. B. Setiawan, Hate Speech Detection on

Twitter in Indonesia with Feature Expansion Using

GloVe, Jurnal RESTI (Rekayasa Sistem Dan Teknologi

Informasi) 5(6) (2021) 1044-1051,

https://doi.org/10.29207/resti.v5i6.3521.

[22] R. Chauhan, K. K. Ghanshala, R. C. Joshi, Convolutional

neural network (CNN) for image detection and

recognition, 1st International Conference on Secure Cyber

Computing and Communication (ICSCCC) (2018) 278-

282, https://doi.org/10.1109/ICSCCC.2018.8703316.

[23] A. K. Dubey, V. Jain, Comparative Study of Convolution

Neural Network’s Relu and Leaky-Relu Activation

Functions, Applications of Computing, Automation and

Wireless Systems in Electrical Engineering (2019) 873-

880 https://doi.org/10.1007/978-981-13-6772-4_76.

[24] S. S. Basha, S. R. Dubey, V. Pulabaigari, S. Mukherjee,

Impact of fully connected layers on performance of

convolutional neural networks for image classification,

Neurocomputing 378 (2020) 112-119,

https://doi.org/10.1016/j.neucom.2019.10.008.

[25] S. Bodapati, H. Bandarupally, R.N. Shaw, A. Ghosh,

Comparison and Analysis of RNN-LSTMs and CNNs for

Social Reviews Classification, Advances in Applications

of Data-Driven Computing (2021) 49-59,

https://doi.org/10.1007/978-981-33-6919-1_4.

[26] Y. Yu, X. Si, C. Hu, J. Zhang, A review of recurrent

neural networks: LSTM cells and network architectures,

Neural Computation 31(7) (2019) 1235-1270,

https://doi.org/10.1162/neco_a_01199.

[27] J. Bissmark, O. Wärnling, The Sparse Data Problem

Within Classification Algorithms : The Effect of Sparse
Data on the Naïve Bayes Algorithm (Dissertation),
(2017). http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-

209227.

https://doi.org/10.48048/tis.2021.680
https://doi.org/10.1007/978-3-030-11680-4_4
https://doi.org/10.1109/HealthCom.2017.8210784
https://doi.org/10.1007/s11042-021-11504-9
https://doi.org/10.1007/s11042-021-11504-9
https://doi.org/10.1109/ACCESS.2020.3040486
https://doi.org/10.1007/s11277-021-08580-3
https://doi.org/10.1007/s13278-020-00692-1
https://doi.org/10.1109/ICoICT49345.2020.9166407
https://doi.org/10.1109/ICAE50557.2020.9350387
https://doi.org/10.29207/resti.v6i3.3711
https://doi.org/10.29207/resti.v5i6.3521
https://doi.org/10.1109/ICSCCC.2018.8703316
https://doi.org/10.1007/978-981-13-6772-4_76
https://doi.org/10.1016/j.neucom.2019.10.008
https://doi.org/10.1007/978-981-33-6919-1_4
https://doi.org/10.1162/neco_a_01199
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209227
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209227

