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Abstract 

The research aims to compare the classification performance of natural disaster messages classification from Twitter. 

The research experiment covers the analysis of three-word embedding-based extraction feature techniques and five 

different models of deep learning. The word embedding techniques that are used in this experiment are Word2Vec, 

fastText, and Glove. The experiment uses five deep learning models, namely three models of different dimensions of 

Convolutional Neural Network (1D CNN, 2D CNN, 3D CNN), Long Short-Term Memory Network (LSTM), and Bidi-

rectional Encoder Representations for Transformer (BERT). The models are tested on four natural disaster messages 

datasets: earthquakes, floods, forest fires, and hurricanes. Those models are tested for classification performance. 

Keywords: Twitter; Natural disaster; CNN; LSTM; BERT 

Streszczenie 

Badanie ma na celu porównanie skuteczności klasyfikacji wiadomości o klęskach żywiołowych z Twittera. Ekspery-
ment badawczy obejmuje analizę technik ekstrakcji cech opartych na osadzeniu trzech słów oraz pięciu różnych modeli 
głębokiego uczenia. Techniki osadzania słów używane w tym eksperymencie to Word2Vec, fastText i Glove. Ekspery-

ment wykorzystuje pięć modeli głębokiego uczenia, a mianowicie trzy modele o różnych wymiarach konwolucyjnej 
sieci neuronowej (1D CNN, 2D CNN, 3D CNN), oraz dwie sieci: Long Short-Term Memory Network (LSTM) oraz 

Bidirectional Encoder Representations for Transformer (BERT). Modele zostały prztestowane na czterech zestawach 

danych dotyczących klęsk żywiołowych, a mianowicie trzęsień ziemi, powodzi, pożarów lasów i huraganów. Modele te 
przetestowano pod kątem wydajności klasyfikacji. 
Słowa kluczowe: twitter; klęska żywiołowa; CNN; LSTM; BERT 
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1. Introduction 

The existence of social media currently plays an essen-

tial role in assisting in every activity in the disaster 

management cycle. In the pre-disaster stage, social 

media can be used as an early warning before a disaster 

occurs [1]. At the scene when the natural disaster oc-

curred, eyewitnesses shared information about the situa-

tion at that time. It can be used by volunteers or the 

government to deal with the impact of disasters. Where-

as in the post-disaster stage, social media users share 

messages containing information on relief that has been 

carried out or information on locations that have not 

received assistance [2]. 

Natural disaster messages on social media are cate-

gorized into three: eyewitness and non-eyewitness, and 

don’t-know [3].  Messages of the eyewitness category 

are natural disaster messages posted by eyewitnesses at 

the location when the disaster occurred. Messages in the 

non-eyewitness category are messages about natural 

disasters uploaded by users who are not eyewitnesses. 

In contrast, a message in don't-know category is a mes-

sage in which there are words related to natural disas-

ters, but the meaning is not about natural disasters. 

Utilization of social media messages related to natu-

ral disasters for natural disaster management can be 

maximized with the help of artificial intelligence. Arti-

ficial intelligence can help find natural disaster messag-

es faster [4]. The artificial intelligence system will clas-

sify social media messages into the three categories that 

are mentioned above.  

The word embedding-based feature extraction tech-

nique is formed by the concatenation of word vectors 

into 1-dimensional data (1D) [5], [6]. Sentance vectors 

can be formed by arranging word vectors into a matrix 

(2D) [7]. Three 2D data created by each word embed-

ding technique such as Wod2vec, Glove and fastText 

can be combined into 3 layers to form 3-dimensional 

data (3D) [8]. The output of the feature extraction pro-

cess is structured data. 

The deep learning method that can process multi-

dimensional structured data is the Convolutional Neural 

Network (CNN) [9]–[11]. For text classification with 

1D CNN with feature extraction technique based on 

word2vec [5]. The application of the 2D CNN technique 
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to classify forest fire messages produces a good accura-

cy of 81.97%[7]. This study used three-word embedding 

techniques to create 2D data, namely word2vec, 

fastText and Glove. The application of text data classi-

fication with 3D CNN is made by combining 2D data 

based on word embedding consisting of three layers 

based on word embedding techniques word2vec [12], 

Glove [13] and fastText [8]. 

Another deep learning technique that is commonly 

used to classify text is the Long Short-Term Memory 

Network (LSTM). For the case of sentiment analysis on 

the IMDB dataset [14], the classification performance 

obtained using the LSTM model works better than the 

1D CNN model. In this study, 1D concatenated data 

were used from the Word2Vec vector and the 1D CNN 

model. Meanwhile, the LSTM model uses input data 

from the tokenised form, which is then converted by an 

embedding layer based on Word2Vec. For the case of 

classifying natural disaster messages using deep learn-

ing models, the performance of the LSTM model is 

better than CNN [15]. The CNN model used in this 

study uses 2D data from the Glove vector and the 2D 

CNN model. And the LSTM model uses input data from 

the tokenized form, which is then converted by a Glove-

based embedding layer. 

Bidirectional Encoder Representations for Trans-

former (BERT) [16] is a recently popular deep learning 

method. BERT has achieved state-of-the-art results in a 

broad range of NLP tasks because of its ability to under-

stand words more thoroughly [17]. BERT can provide a 

richer linguistic structure because linguistic knowledge 

is stored in hidden states and on attention maps [18].  

The explanation above has provided knowledge of 

the methods used to carry out feature extraction and 

classification in the case of sentiment analysis and clas-

sification of natural disaster messages. However, it is 

necessary to carry out a comprehensive comparative 

study of these methods to obtain knowledge of the tech-

nique that can provide the best classification perfor-

mance in the case of natural disaster messages. This 

research is done to answer following questions: 

1. What are the classification performance of 1D CNN, 

2D CNN, and 3D CNN models using the three-word 

embedding techniques in the feature extraction pro-

cess? 

2. What is the classification performance of the LSTM 

model using the three-word embedding techniques 

in the feature extraction process? 

3. What is the classification performance of the BERT 

model? 

Existing research generally only uses a word em-

bedding technique for feature extraction. This research 

also combines feature extraction results based on 

Word2Vec, Glove, and fastText for processing with 1D 

CNN, 2D CNN, 3D CNN, and LSTM models. The aim 

is to determine whether combining those techniques can 

improve the natural disaster message classification per-

formance. 

This report is divided into five sections: 1) Introduc-

tion, 2) Dataset and method section explaining the da-

taset and classification algorithms that are used, 3) Re-

search implementation section explaining the steps in 

the implementation of this study, 4) Result, and the last 

section is 5) Conclusions. 

 

2. Dataset 

The natural disaster message dataset used in this re-

search comes from research [3]. Details about this da-

taset can be seen in Table 1. 

Table 1: The natural disaster dataset 

Dataset Class Label #Messages 

Earthquakes 

 

 

eyewitness 1600 

dont-know 200 

non-eyewitness 200 

Floods 

 
 

eyewitness 627 

dont-know 822 

non-eyewitness 551 

Forest fires 

 

 

eyewitness 189 

dont-know 432 

non-eyewitness 1379 

Hurricanes 

 
 

eyewitness 465 

dont-know 336 

non-eyewitness 1199 

Each dataset has three categories or class labels: 

eyewitness, dont-know, and non-eyewitness. Examples 

of natural disaster messages from each class label can 

be seen in Table 2. 

Table 2: Samples of natural disaster messages 

No Message Class Label 
1 We're a family pulled from a flood eyewitness 

2 I’m ready for these earthquake memes dont-know 

3 Houston streets flood again, dam-

pening July 4th celebrations 

https://t.co/3I1aOZkNBx 

https://t.co/4i5kHBcRjo 

non-eyewitness 

The first message is from natural disasters such as 

floods and earthquakes uploaded by eyewitnesses when 

the disaster occurred. The secon message is message 

that contain the words earthquake and flood, but the 

meaning is not about natural disasters. While the last 

message is about natural disasters from the news that 

are re-shared by Twitter users. 

 

3. Research implementation 

The steps in the implementation of the research can be 

seen in Figure 1. 

3.1. Text Normalization & Word Padding 

Four natural disaster message datasets were normal-

ized with steps commonly performed in text classifica-

tion cases: removing double spaces, punctuation marks, 

numbers and non-alphanumeric characters [19]. The 

four text data that have been normalized are used as 

input for the BERT method to create a classification 

model. 

Clean text data is then counted as the number of 

words in each message. After that, each message in each 

dataset is equated with the word padding based on the 

mean value. 
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Figure 1: Steps of research implementation. 

3.2. Feature Extraction 

The next stage is feature extraction. There are three 

groups of techniques based on the dimensions of the 

output data, namely, one dimension (1D), two dimen-

sions (2D), and three dimensions (3D). Each of these 

techniques will use three popular word embedding tech-

niques used in classification studies, namely Word2ve 

[12], fastText [20], Glove [13], [21]. Data structures 

with different dimensions are created using the three-

word embedding models. The formation of 1D data is 

explained as follows. 
 𝑣𝑖 =  V1 V2 V2 … V98 V99 V100 

If 𝑣𝑖 is the vector of a word, and n is the number of 

words in a sentence, then the 1D data is the sentence 

vector 𝑣𝑠 which is formed by combining all word vec-

tors (Formula 1). The value of 𝑛 corresponds to the 

number of words searched for with a statistically based 

word padding technique, namely the mean. 𝑣𝑠 = ⋃ 𝑣𝑖𝑛
𝑖=1  

(1) 

Formula 2 shows how to create 1D data by combin-

ing the three-word embedding techniques.  𝑣𝑎𝑙𝑙 = 𝑣𝑠 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 ∪ 𝑣𝑠 𝑓𝑎𝑠𝑡𝑇𝑒𝑥𝑡 ∪ 𝑣𝑠 𝐺𝑙𝑜𝑣𝑒 (2) 

The feature extraction results in this way produce 

structured data with 1D dimensions, as seen in Table 3. 

From these results, 16 structured data were obtained, 

which were used as input to create a classification mod-

el using the 1D CNN method. 

Table 3: 1D structured data 

Input 

dataset 

Word 

embedding method 

Dimension of 

1D structured 

data 
Earthquakes Single word embedding 

technique  

900 

Union of 3 word embed- 2700 

Input 

dataset 

Word 

embedding method 

Dimension of 

1D structured 

data 

ding techniques (All) 

Floods Single word embedding 

technique 

1600 

Union of 3 word embed-

ding techniques (All) 

4800 

Forest fires Single word embedding 

technique 

1200 

Union of 3 word embed-

ding techniques (All) 

3600 

Hurricanes Single word embedding 

technique 

1300 

Union of 3 word embed-
ding techniques (All) 

3900 

The formation of 2D data with each word embed-

ding technique is explained as follows. If 𝑣1, 𝑣2, to 𝑣𝑛 

re word vectors resulting from a number of word em-

bedding techniques 𝑚 and 𝑛 is formed by creating a 

two-dimensional matrix  𝑚 × 𝑛 as shown in Figure 2. 

Where 𝑚 is 100. 

 

Figure 2: 2D Data. 

This research also proposes the formation of 2D data 

from a combination of three-word embedding tech-

niques. The combined 2D data can be seen in Figure 3. 

The 2D data is a two-dimensional matrix 𝑚 × 𝑁, where 𝑚 is 100 and N is 3 × 𝑛. 

 

Figure 3: 2D data combined with three word embedding techniques. 

The feature extraction results in this way produce 

structured data with 2D dimensions, as seen in Table 4. 

From these results, 16 structured data are obtained, 

which are used as input to create a classification model 

using the 2D CNN and LSTM methods. 

Table 4: 2D structured data 

Input 

Dataset 

Word 

Embedding 

Method 

Dimension of 

2D structured 

data 
Earthquakes Single word embed-

ding technique 

9 x 100 

Union of 3 word 

embedding tech-
niques (All) 

27 x 100 

Floods Single word embed-

ding technique 

16 x 100 
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Input 

Dataset 

Word 

Embedding 

Method 

Dimension of 

2D structured 

data 

Union of 3 word 
embedding tech-

niques (All) 

48 x 100 

Forest fires Single word embed-
ding technique 

12 x 100 

Union of 3 word 

embedding tech-

niques (All) 

36 x 100 

Hurricanes Single word embed-

ding technique 

13 x 100 

Union of 3 word 
embedding tech-

niques (All) 

39 x 100 

To create 3D data by combining 2D data from three 

different word embedding techniques. There are two 

ways of generating 3D data. The way of forming the 

first 3D data can be seen in Figure 4. 3D data type 1 is 

generated in 3 layers. The first layer is 2D data from the 

word2vec technique, followed by 2D data from the 

fastText and Glove techniques.  

If 3D data type 1 is represented as a matrix, the di-

mensions are𝑚 × 𝑛 × 𝑧. Where 𝑚 is 100, 𝑛 is the 

number of words in a sentence, and 𝑧 is 3. The method 

of forming 3D data type 1 follows the method of form-

ing 3D image data consisting of 3 RGB color channels. 

 

Figure 4: Data 3D type 1. 

The way to generate 3D data type 2 is to follow the 

formation of 3D video. Video are a set of frames or 

images. For this study, a frame is formed by three vec-

tors of a word from three-word embedding techniques. 

Then the next layer represents the second word, and so 

on. So that this data will have 𝑛 layers. If 3D data type 2 

is defined as a matrix, the dimensions are 𝑚 × 𝑧 × 𝑛. 

Where 𝑚 is 100, 𝑧 is the number of word embedding 

techniques, namely 3. 𝑛 is the number of words in the 

sentence. 

The feature extraction results in this way produce 

structured data with 3D dimensions, which can be seen 

in Table 5. 

Table 5: 3D structured data 

Input 

Dataset 

Word 

Embedding 

Method 

Dimension of 

3D structured 

data 
Earthquakes Type 1 100 x 9 x 3 

Type 2 100 x 3 x 9 

Floods Type 1 100 x 16 x 3 

Type 2 100 x 3 x 16 

Forest fires Type 1 100 x 12 x 3 

Type 2 100 x 3 x 12 

Hurricanes Type 1 100 x 13 x 3 

Input 

Dataset 

Word 

Embedding 

Method 

Dimension of 

3D structured 

data 

Type 2 100 x 3 x 13 

3.3. Classification  

Three deep learning methods are used in this research: 

CNN, LSTM, and BERT.  

Convolutional Neural Network (CNN) is an artificial 

neural network used initially in image recognition and 

processing [22]. The input and output of each stage are 

in the form of an array called a feature map. The output 

of each stage is a feature map of the processing results 

from all input locations. Each stage consists of three 

layers: the convolutional layer, the activation layer, and 

the pooling layer [22]. The convolutional layer is the 

first layer that receives direct input data to the architec-

ture. The convolutional layer performs the convolution 

operation on the previous layer's output. The purpose of 

convolution on data is to extract features from the input 

data. Pooling layer is reducing the size of the matrix by 

using a pooling operation. Two types of pooling are 

often used: average pooling and max pooling. The acti-

vation function is a node that is added at the end of the 

output of each neural network. The activation function, 

also known as the transfer function, is used to determine 

the neural network output. In the CNN architecture, the 

activation function lies in the final computation of the 

feature map output or after the convolution or pooling 

calculation process to produce a feature pattern. Several 

kinds of activation functions that are often used in re-

search include the sigmoid, tanh, Rectified Liniear Unit 

(ReLU), Leaky ReLU (LReLU) dan Parametric ReLU 

[23].  

The result of these three layers is a feature map in 

the form of a multi-dimensional array. The feature map 

is then processed by the flatten operation to become a 

vector. Then the vector is processed by the fully con-

nected layer. The fully connected layer is where all the 

previous layer's activated neurons are connected to the 

neurons in the next layer [24]. Each activation of the 

prior layer needs to be converted into one-dimensional 

data before it can be linked to all neurons. The Fully-

Connected layer is usually used in the Multi Layer Per-

ceptron method to process data so that it can be classi-

fied. 

Long Short-Term Memory is a variant of Recurrent 

Neural Network (RNN). LSTM can conduct training 

and overcome vanishing gradient problems which are 

difficult for RNNs [25]. LSTM was created with the aim 

of overcoming the hidden layer problem. LSTM can 

learn long patterns from sequential data because it pre-

vents vanishing gradient situations. However, LSTM 

still has the same principle as RNN and what differenti-

ates it from RNN is the cell content. RNN is simple 

because with cells that only contain a layer of neurons 

with the tanh activation function. LSTM becomes more 

complex because the cell's contents are more than one 

layer of neurons. There is a layer of neurons called 

gates [26]. 
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Bidirectional Encoder Representations from Trans-

formers (BERT) is a pre-trained contextual word repre-

sentation model based on MLM (Masked Language 

Model), using two-way Transformers [18]. The BERT 

model architecture is a multi-layer bidirectional trans-

former encoder-decoder structure. Transformers follow 

this overall architecture using self-attention and point-

wise stacked, fully connected encoders and decoders. 

There are two steps in the performance of the BERT 

framework, namely pre-training and fine-tuning [18]. 

BERT pre-training does not use the traditional left-to-

right or right-to-left method but uses Masked Language 

Modeling (MLM) and Next Sentence Prediction (NSP) 

for pre-training data. MLM fills in the blanks, where the 

model uses the context word around the mask token to 

predict what word should be, while NSP is the predic-

tion of the next sentence with the two models given. 

After pre-training data, BERT will perform fine-tuning 

where fine-tuning is initialized with previously trained 

parameters, and all fine-tuning parameters use labeled 

data from downstream tasks. 

Model building implementation uses the Python 

programming language with the Keras and Tensorflow 

libraries. In this study, three CNN models were made, 

namely 1D CNN, 2D CNN and 3D CNN. Table 6 shows 

the parameters used in each model in this study. 

Table 6: Parameters of CNN models 

Algorithm  Parameters 
1D CNN Input Shape layer 

• Output = max_word 

Word embedding layer 

• embedding word, embedding vector, 

embedding matrix, max word 

• Output = max_word, 100 

4 convolutional layers = Conv_1, Conv_2, 
Conv_3, Conv_4 

 

Convolutional 1D 

• Kernel size = n; n = {1, 2, 3, 5} 

• Activation=Tanh 

• Kernel initializer = orthogonal 

• Kernel regularizer=L1,L2 

• Bias initializer = glorot 

• Output = max_word, 128 

Max pooling 1D 

• Pool size = max_word-n; n = {1, 2, 3, 

5} 

• Padding = valid 

• Output = max_word, 128; 1, 128 

Dropout 

• P=0.25 

• Output = 1, 128 

Concatenate 

• Input = Conv_1, Conv_2, Conv_3, 

Conv_4 

• Output = 4, 128 

Flatten_1 

• Input = flatten 

• Output = 512 

Dropout_1 

• P = 0.35 

• Output = 512 

Dense_1 

• Units = 3 

• Activation = softmax 

• Output = 3 

Algorithm  Parameters 
2D CNN Input Shape layer 

• Output = max_word 

Word embedding layer 

• embedding word, embedding vector, 

embedding matrix, max word 

• Output = max_word, 100 

4 convolutional layers = Conv_1, Conv_2, 
Conv_3, Conv_4 

 

Conv_1 
Convolutional 2D 

• Kernel size= n, embedding vector; n = 

{1, 2, 3, 5} 

• Activation=Tanh 

• Kernel initializer = orthogonal 

• Kernel regularizer=L1,L2 

• Bias Initializer = glorot 

• Output = max_word, 1, 128 

Max pooling 2D 

• Pool size = max_word-n, 1; n = {1, 2, 

3, 5} 

• Padding = valid 

• Strindes = 1, 1 

• Output = max_word, 1, 128; 1, 1, 128 

Dropout 

• P=0.25 

• Output = 1, 1, 128 

Concatenate 

• Input = Conv_1, Conv_2, Conv_3, 

Conv_4 

• Output = 4, 1, 128 

Flatten_1 

• Input = flatten 

• Output = 512 

Dropout_1 

• P = 0.35 

• Output = 512 

Dense_1 

• Units = 3 

• Activation = softmax 

• Output = 3 

3D CNN 

Type 1 

Input Shape layer 

• Output = max_word 

4-word embedding layers = Word embedding 1, 

Word embedding 2, Word embedding 3, Word 

embedding 4 
 

Word embedding  

• embedding word, embedding vector, 

embedding matrix, max word 

• Output = max_word, 100 

Concatenate 

• Input = Word_embedding_1, 

Word_embedding_2, 
Word_embedding_3 

• Output = max_word, 300 

4 convolutional layers = Conv_1, Conv_2, 
Conv_3, Conv_4 

 

Conv_1 
Convolutional 3D 

• Kernal size = n, embedding vector, 

3; n = {1,  2, 3, 5} 

• Activation=Tanh 

• Kernel initializer = orthogonal 

• Kernel Regularizer=L1,L2 

• Bias Initializer = glorot 

• Output = max_word, 1, 128 

Max pooling 3D 

• Pool size = max_word-n, 1, 1; n = {1, 

2, 3, 5} 
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Algorithm  Parameters 

• Padding = valid 

• Strindes = 1, 1 

• Output = max_word, 1, 1, 1, 128; 1, 1, 

1, 128 

Dropout 

• P=0.25 

• Output = 1, 1, 1, 128 

Concatenate 

• Input = Conv_1, Conv_2, Conv_3, 

Conv_4 
Output = 4, 2, 1, 128 

Flatten_1 

• Input = flatten 

• Output = 512 

Dropout_1 

• P = 0.35 

• Output = 512 

Dense_1 

• Units = 3 

• Activation = softmax 

• Output = 3 

3D CNN 
Type 2 

Input Shape layer 
Output = max_word 

 4-word embedding layers = Word embedding 1, 

Word embedding 2, Word embedding 3, Word 
embedding 4 

 

Word embedding  

• embedding word, embedding vector, 

embedding matrix, max word 

• Output = max_word, 100 

 4 convolutional layers = Conv_1, Conv_2, 

Conv_3, Conv_4 
 

Conv_1 

Convolutional 3D 

• Input = n, embedding vector, 1; n = 

{1, 2, 3, 5} 

• Activation=Tanh 

• Kernel initializer = orthogonal 

• Kernel Regularizer=L1,L2 

• Bias Initializer = glorot 

• Output = max_word, 1, 128 

Max pooling 3D 

• Pool size = (max_word*3)-n, 1, 1; n = 

{1, 2, 3, 5} 

• Padding = valid 

• Strindes = 1, 1 

• Output = max_word, 1, 1, 1, 128; 1, 1, 

1, 128 

Dropout 

• P=0.25 

• Output = 1, 1, 1, 128 

 Concatenate 

• Input = Conv_1, Conv_2, Conv_3, 

Conv_4 

• Output = 4, 2, 1, 128 

 Flatten_1 

• Input = flatten 

• Output = 512 

 Dropout_1 

• P = 0.35 

• Output = 512 

 Dense_1 

• Units = 3 

• Activation = softmax 

• Output = 3 

Meanwhile, the LSTM and BERT models were built 

using the parameters shown in Table 7. 

Table 7: parameters of LSTM and BERT model. 

Algorithm  Parameters 
LSTM Input Shape layer 

• Output = max_word 

Word embedding  

• embedding word, embedding vector, 

embedding matrix, max word 

• output = max_word, 100 

Bidirectional 

• unit = 256 

• output = 256 

Dense 1 

• unit = 64 

• activation = Relu 

• Kernel Regularizer = L1, l2 

• Bias = Glorot_uniform 

• Output = 64 

Dense 2 

• unit = 32 

• activation = Relu 

• Kernel Regularizer = L1, l2 

• Bias = Glorot_uniform 

• Output = 32 

Dropout 1 

• P = 0.35 

Dense 3 

• Unit 3 

• activation = softmax 

• Output = 3 

BERT Input_ids 

• Input = max_word 

• Output = max_word 

Attention_mask 

• Input = max_word 

• Output = max_word 

Tf_Bert_model 

• Input = input_ids, attention_mask 

• Output = TFBaseModelOutput 

LSTM 

• Unit = 32 

• Output = 32 

Batch normalization 

• Output = 32 

Dense 1 

• unit = 16 

• activation = Relu 

• Kernel Regularizer = L1, l2 

• Bias = Glorot_uniform 

• Output = 16 

Batch normalization 

• Output = 16 

Dense 2 

• unit = 8 

• activation = Relu 

• Kernel Regularizer = L1, l2 

• Bias = Glorot_uniform 

• Output = 8 

Dropout 1 

• P = 0.3 

Dense 3 

• Unit 3 

• activation = softmax 

• Output = 3 

Table 1 shows the difference in the number of sam-

ples from each class so that it is known that this is a 

case of imbalanced data classification. So that the clas-

sification performance used in this research is F1 Score 

and ROC AUC. 
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Results 

This research consists of 15 experiments for each da-

taset. So that the total number of experiments carried 

out is 60 experiments. Figure 5 shows a comparison of 

the classification performance of the earthquake dataset. 

The 1D CNN model produced the highest classification 

performance with the fastText word embedding tech-

nique, and the lowest was the BERT model.  

 

Figure 5: Comparison of performance on earthquake messages classi-

fication. 

Figure 6 shows a comparison of the classification 

performance of flood datasets. The CNN type 1 3D 

model produced the highest classification performance 

and the lowest was the performance of the LSTM model 

with the fastText word embedding technique.  

 

Figure 6: Comparison of performance on flood messages classifica-

tion. 

Figure 7 shows a comparison of the classification 

performance of forest fire datasets. The highest classifi-

cation performance is produced by the 2D CNN model 

with the word embedding Word2Vec technique, and the 

lowest is the performance of the 1D CNN model with 

the combination of the three-word embedding tech-

niques. 

 

Figure 7: Comparison of performance on forest fire messages classifi-

cation. 

Figure 8 shows a comparison of the classification 

performance of hurricane datasets. The 3D CNN type 2 

model produced the highest classification performance, 

and the lowest was the performance of the LSTM model 

with the word embedding Glove technique. The effect 

of increasing performance with feature extraction com-

bining the three-word embedding techniques works well 

when used on 1D data with the 1D CNN classification 

method. This technique also improves the performance 

of the LSTM classification model. 
 

 

Figure 8: Comparison of performance on hurricane messages classifi-

cation. 

Figure 9 shows the average F1 score based on the 

classification method. This figure shows that the 3D 

CNN type 2 method as a feature extraction method 

proposed in this study, provides the highest average 

performance compared to other classification methods. 

In this research, BERT, a state-of-the-art classification 

method, cannot perform well in the case of natural dis-

aster message classification. 
 

 

Figure 9. Average F1 Score by classification methods. 
 

 

Figure 10: Average F1 score by word embedding methods. 

Figure 10 shows the average F1 score based on the 

word embedding method. The highest classification 

performance is produced by the fastText-based feature 

extraction method. However, combining the three word 
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embedding methods, the proposed feature extraction 

method can work better than the Glove and Word2Vec 

methods. 

Further analysis of the performance of the 3D CNN 

type 2 model is to look at the predictive performance of 

each class in the dataset. Figure 11 shows the average 

AUC of each class using this model. This figure shows 

that the predictive performance of the eyewitness class 

is below the prediction performance of the other two 

classes.  
 

 

Figure 11: Average AUC of each class by 3D CNN Type 2. 

The main reason for the low average performance of 

this prediction is because the number of messages in the 

eyewitness category is less than the messages in other 

categories, except for the earthquakes dataset. Another 

cause is that eyewitness category messages generally 

contain concise messages, namely 2-3 words, so the 

structured data that is formed includes a value of 0. 

Those reasons can impact the model training process 

and decrease classification performance [27]. 

Analysis of the prediction performance of the classes 

was also carried out by comparing the performance 

provided by the model formed by fastText-based feature 

extraction with the incorporation of three word embed-

ding techniques. The results of the performance compar-

ison can be seen in Figure 12. In this result it can be 

seen the decrease in the prediction performance of class 

eyewitness from combining the three word embedding 

techniques. Figure 12 also shows that the predictive 

performance of the eyewitness class is below the predic-

tion performance of the other two classes. The reason of 

this issue is same as the explanation in previous para-

graph. 
 

 

Figure 12: Performance comparison of classes prediction. 

 

 

Conclusions 

From the results of this study, it can be concluded that 

the formation of 3D data type 2 and 3D CNN models as 

the proposed method can provide a better average per-

formance in the four cases of classification of natural 

disaster messages. In comparison, the proposed method 

combining three-word embedding techniques can im-

prove classification performance in the 1D CNN and 

LSTM classification models.  

However, the average performance for predicting 

messages from eyewitnesses is still lower than the pre-

dictive performance of other message categories. It is 

because the number of eyewitness category messages is 

less than the other categories, resulting in cases of un-

balanced class classification, which decreases the per-

formance of the minority class classification. 

Future research will focus on solving unbalanced da-

ta classification cases by balancing the data before cre-

ating a classification model. This step is expected to 

improve the prediction performance for eyewitness 

category messages. 
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