
JCSI 28 (2023) 197–203 

Received: 24 May 2023 

Accepted: 21 June 2023 

197 

 

Performance optimization of web applications using Qwik 

Optymalizacja wydajności aplikacji internetowych z wykorzystaniem 
Qwik 

Adam Lipiński*, Beata Pańczyk  

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland 

Abstract 
This article analyzes the performance of three frameworks - React.js, Next.js and Qwik - that offer different methods of 

rendering application views. The purpose of the study was to show whether the new Qwik framework allows for better 

application load times compared to the other frameworks. The study was conducted using 3 applications representing 

the same research content, referring to cases occurring in production environments. In order to assess the performance, 

the Google Lighthouse tool was used, thanks to which it was proved that it is impossible to unequivocally say that Qwik 

allows for better optimization of the application compared to other frameworks. 

Keywords: optimization; React; Next; Qwik 

Streszczenie 

W niniejszym artykule przeprowadzono analizę wydajnościową trzech szkieletów programistycznych - React.js, Next.js 

oraz Qwik - oferujących różne metody renderowania widoków aplikacji. Celem badania było wykazanie, czy nowy 
szkielet Qwik pozwala na uzyskanie lepszych wyników czasów ładowania aplikacji, w porównaniu z pozostałymi 
szkieletami. Badanie przeprowadzono z wykorzystaniem 3 aplikacji reprezentujących tę samą treść badawczą, nawiązu-

jącą do przypadków występujących w środowiskach produkcyjnych. W celu oceny wydajności wykorzystano narzędzie 
Google Lighthouse, dzięki czemu dowiedziono, że nie da się jednoznacznie stwierdzić, aby Qwik pozwalał na lepszą 
optymalizację aplikacji w porównaniu z pozostałymi szkieletami. 
Słowa kluczowe optymalizacja; React; Next; Qwik 

*Corresponding author 

Email address: adam.lipinski@pollub.edu.pl (A. Lipiński) 

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction 

Along with the development and popularization of 

modern technologies used to create the client part of 

websites and web applications, programmers were en-

couraged to transfer some operations to browsers. In-

creasingly, MPA (Multi Page Applications) were aban-

doned in favor of SPA (Single Page Applications) 

which allowed for increased smoothness of operation, as 

well as avoiding constant reloading of the page with 

each user's action. Initially, the idea was to upload  

a nearly empty HTML file and fill it with content using 

code that is executed when the page loads. This method 

was named CSR (Client Side Rendering) because all 

views were rendered on the client's browser side. 

The increased amount of often computationally de-

manding code contributed to the search for new solu-

tions in the field of rendering application views, as well 

as optimization in terms of their loading speed. This 

brought many changes in this area which made the SSR 

(Server Side Rendering) method more and more often 

used in comparison to CSR. This method differed sig-

nificantly from Client Side Rendering because the initial 

view of the application sent in response to the client's 

request was rendered on the server. As a result, the ap-

plication loading speed was significantly improved and 

the user could see its content faster. However, this is not 

without some losses - the user does see the page faster, 

but there is no possibility to interact with it as long as 

the hydration process is not completed. 

Hydration is the process by which application code 

is loaded in the background when a view is displayed. 

In this process, all listeners for any events are attached 

to the static page and the code required when the appli-

cation is run for the first time is executed. As it has al-

ready been mentioned, applications very often began to 

grow very large so the time between the first page view 

and the moment when the user could start using it was 

getting longer and longer. 

Therefore, many developers began to look for a way 

to reduce the impact of hydration on page loading. 

There have been many approaches to this problem but 

one of the last ones that started to get community 

acknowledgement was the use of the resumability 

method. It was proposed by Misko Hevery, the creator 

of one of the currently most popular programming 

frameworks used to create web applications - Angular. 

This method assumes that operations on the server are 

suspended and the process is resumed in the same place 

but on the client side, without the need to re-create and 

download the entire application logic. It has been im-

plemented in the constantly developed new Qwik 

framework which, according to people working on it, is 

to change the quality of web applications and solve the 

problem that the Internet has to face due to the hydra-

tion process [1]. 

mailto:adam.lipinski@pollub.edu.pl


Journal of Computer Sciences Institute 28 (2023) 197-203 

 

198 

Due to the fact that this technology is very young, 

there are practically no scientific sources on it. To fill 

this gap this article will examine how the Qwik frame-

work handles the day-to-day cases CSR and SSR appli-

cations face. The collected results will concern applica-

tion rendering times and delays. They will be compared 

with the results for the widely used React.js and Next.js 

frameworks which will make it possible to determine 

whether Qwik can really become a new direction in the 

development of web applications in the future. 

2. Purpose and scope of the paper 

The aim of the paper is to examine and compare three 

programming frameworks: Qwik, React.js, and Next.js. 

Frameworks will be compared based on application 

rendering times and delays. 

The scope of the paper includes: analysis of litera-

ture on research oscillating in the subject of optimiza-

tion of web applications, selection of research methods, 

development of research scenarios, preparation of appli-

cations in each of the analyzed frameworks, research 

implementation, data analysis, and formulation of con-

clusions. 

For the purposes of the work, the following research 

hypotheses have been set which will be tested thanks to 

the performed analysis: 

H1. The Qwik framework allows to reduce the loading 

time of the web application compared to the Re-

act.js and Next.js frameworks. 

H2. The Qwik framework allows for faster rendering of 

applications with a different number of elements 

compared to the React.js and Next.js frameworks. 

H3. The Qwik framework allows for more efficient 

loading of a large number of larger-sized resources 

compared to the React.js and Next.js frameworks. 

H4. The Qwik framework allows for more efficient 

execution of more demanding code compared to the 

React.js and Next.js frameworks. 

3. Literature review 

Although the technology analyzed in this article is com-

pletely new, comparing the optimality and speed of 

programming frameworks is a frequent topic of scien-

tific papers and publications. 

In the research conducted in articles [2, 3] the au-

thors tried to determine which of the analyzed frame-

works - React.js, Next.js, and Vue.js - is better for tasks 

such as rendering a different number of elements in the 

DOM (Document Object Model) tree. By comparing 

several of the same applications written in different 

programming frameworks, the authors concluded that in 

most cases React.js performed the best in both studies. 

In addition, the frameworks compared in publica-

tions [4-7] offered different methods of rendering appli-

cation views. On this basis, the researchers wanted to 

indicate which of the methods allows for the best results 

in terms of response time for a specific test case. In 

most scenarios, rendering views on the server offered 

better performance results, compared to rendering on 

the client side. 

Particularly noteworthy are the articles [8, 9] in 

which the researchers, more than on the frameworks 

themselves, focused on various techniques for optimiz-

ing web applications. In these papers, one application 

was profiled in terms of performance and then subjected 

to speed optimization methods. Thanks to that it was 

possible to indicate that selecting the appropriate ren-

dering method can significantly affect the speed of the 

application. 

A frequent topic of consideration was also the de-

velopment of tools and test frameworks allowing for 

easier and more accurate profiling of applications as 

well as identifying areas where improvements could be 

made to increase the speed of their operation which was 

analyzed by researchers in articles [10-17]. In the ma-

jority of instances, the prepared test environments were 

characterized by high accuracy of results, compared to 

other widely used testing software. Moreover, the sheer 

multitude of publications on this subject proves the 

general interest in the subject of performance optimiza-

tion. 

Yet another approach to the topic of application op-

timization was adopted by researchers in a publication 

[18] in which they tried to check how adequate the re-

sults proposed by automatic performance testing tools 

are to the real, empirical feelings of users from using 

web applications. Their task was also to indicate which 

metrics best reflect the experience of using the applica-

tion. The obtained results showed that the FCP (First 

Contentful Paint) time, which is an integral metric ac-

cessible within the Google Lighthouse performance 

assessment, very clearly translated into the actual per-

ception of the website's performance. 

Among the newer sources, the subject of application 

performance is also very often mentioned which can be 

read in the article [19] prepared by researchers from 

Google and Shopify. In this article, they described the 

advantages and disadvantages of various application 

rendering methods and also explained how the choice of 

technology, and thus the rendering method, affects per-

formance as well as SEO (Search Engine Optimization). 

An important part of the article is a fragment devoted to 

the problem of hydration occurring in modern pro-

gramming frameworks prepared for developing client 

parts of web applications that offer the possibility of 

rendering views on the server. 

The last of the analyzed articles focused entirely on 

considerations very close to the subject of this thesis. In 

the paper [20] it was explained what the resumability 

method utilized by the Qwik framework is and how it 

works. The author emphasized the problems and limita-

tions caused by the hydration process and conducted 

a discussion on how the mentioned method can affect 

their solution. The challenges faced by the use of this 

framework, and thus this method in production applica-

tions, were also identified. 

4. Research method 

For this study, three identical applications with a mini-

malist graphical interface were prepared in each tested 



Journal of Computer Sciences Institute 28 (2023) 197-203 

 

199 

 

programming framework. The research is aimed at 

checking application rendering times for each of these 

technologies in various test cases. The analyzed times 

are: FCP (First Contentful Paint), TBT (Total Blocking 

Time), LCP (Largest Contentful Paint), and SI (Speed 

Index). The results were obtained through the utilization 

of data gathered from the Google Lighthouse tool. In 

order to ensure consistency and accuracy, caching of 

data in the browser was disabled for each of the con-

ducted tests. Furthermore, 50 trials were undertaken for 

every test to increase reliability and validity of the re-

sults. 

The prepared test cases performed in this study are 

as follows: 

1. Rendering applications with a large number of ele-

ments in the DOM tree: 

a) 100 elements, 

b) 1000 elements, 

c) 10000 elements. 

2. Rendering applications with a large number of re-

sources of large sizes - images with a size of several 

MB: 

a) 100 images, 

b) 1000 images, 

c) 10000 images. 

3. Rendering applications that perform expensive oper-

ations and processes data - downloading a large 

amount of external data then processing it and dis-

playing it on the screen. 

4.1. Testing platform 

For the purpose of conducting performance audits, the 

following testing platform was used: 

 web browser: Google Chrome 109.0.5414.75, 

 OS: MacOS Monterey 13.1, 

 CPU: Intel Core i5 1.4GHz quad-core, 

 RAM: 16GB 2133 MHz LPDDR3, 

 GPU: Intel Iris Plus Graphics 645 1536 MB, 

 model: Macbook Pro 13 2020. 

4.2. Description of the experiment 

To achieve the research objective an experiment was 

designed for which the research scenarios presented in 

Tables 1-3 were determined. 

Table 1: A research scenario for examining the rendering times of an 

application with a large number of elements in the DOM tree 

Name: Rendering an application with a large number 

of elements in the DOM tree 

Aim: Verifying how a large number of elements in 

the DOM affects the rendering speed of the applica-

tion 

Initial conditions: The application is ready to load, 

the number of elements in the tree is set to the initial 

value - 100 

Final conditions: App load time data has been saved 

Next steps 

No. Description of activi-

ties 

Expected result 

1. Loading the applica-

tion 

The application has 

loaded 

2. Saving the value of 

the loading times 

The data has been 

saved 

3. The app is loaded 

another 49 times 

The application has 

loaded and the results 

have been saved 

4. Changing the number 

of rendered items to 

1000 

The number of items 

has been changed 

5. Repeating points 1-3 

for a new number of 

elements 

The application has 

loaded and the results 

have been saved 

6. Changing the number 

of rendered items to 

10000 

The number of items 

has been changed 

7. Repeating points 1-3 

for a new number of 

elements 

The application has 

loaded and the results 

have been saved 

Table 2: Research scenario for examining the rendering times of an 

application with a large number of displayed photos 

Name: Rendering an application which loads large 

numbers of images of significant size 

Aim: Verifying how loading and displaying a large 

number of photos of significant sizes affects applica-

tion rendering times 

Initial conditions: The application is ready to load, 

the number of photos to download is set to the initial 

value - 10 

Final conditions: App load time data has been saved 

Next steps 

No. Description of activi-

ties 

Expected result 

1. Loading the applica-

tion 

The application has 

loaded 

2. Saving the value of 

the loading times 

The data has been 

saved 

3. The app is loaded 

another 49 times 

The application has 

loaded and the results 

have been saved 

4. Changing the number 

of photos displayed to 

100 

The number of photos 

has been changed 

5. Repeating points 1-3 

for a new number of 

photos 

The application has 

loaded and the results 

have been saved 

6. Changing the number 

of photos displayed to 

1000 

The number of photos 

has been changed 

7. Repeating points 1-3 

for a new number of 

photos 

The application has 

loaded and the results 

have been saved 

Table 3: Research scenario for testing the rendering times of an appli-

cation that downloads and processes a large amount of data 

Name: Rendering an application which performs 

expensive operations and data processing - download-

ing a large amount of external statistical data, then 

processing, sorting and displaying it on the screen in 

the form of a graph 

Aim: Verifying how downloading and processing 

large amounts of external data affects application 

rendering speed 

Initial conditions:  The application is ready to load 

Final conditions: App load time data has been saved 



Journal of Computer Sciences Institute 28 (2023) 197-203 

 

200 

Next steps 

No. Description of activi-

ties 

Expected result 

1. Loading the applica-

tion 

The application has 

loaded 

2. Saving the value of 

the loading times 

The data has been 

saved 

3. The app is loaded 

another 49 times 

The application has 

loaded and the results 

have been saved 

5. Results 

The results of the audits conducted for the three pre-

pared tests are presented in Tables 4-11. Additionally, 

Figures 1-7 showcase graphs that display the collected 

results, categorized into tests and frameworks. 

It is important to mention that the LCP times were 

not measurable using the Google Lighthouse tool for the 

third test, and hence, they were not considered in the 

analysis of the application's performance for this partic-

ular test. The absence of outcomes concerning this met-

ric could potentially be attributed to the particularity of 

this test. 

Table 4 Mean metric values for test one - 100 elements 

Metric React Next Qwik 

FCP [s] 1.40±0.02 1.11±0.04 0.80±0.00 

LCP [s] 1.40±0.02 1.83±0.06 0.80±0.00 

TBT [ms] 0.00±0.00 0.01±2.40 0.00±0.00 

SI [s] 1.40±0.02 1.11±0.04 0.80±0.00 

Table 5: Mean metric values for test one - 1000 elements 

Metric React Next Qwik 

FCP [s] 1.40±0.00 1.11±0.03 0.90±0.00 

LCP [s] 1.40±0.00 1.86±0.05 0.90±0.00 

TBT [ms] 11.20±7.18 9.40±2.40 0.00±0.00 

SI [s] 1.40±0.00 1.11±0.03 0.90±0.00 

Table 6: Mean metric values for test one - 10000 elements 

Metric React Next Qwik 

FCP [s] 1.40±0.00 1.78±0.05 1.31±0.06 

LCP [s] 1.40±0.00 1.96±0.24 1.45±0.06 

TBT [ms] 177.80±7.90 158.20±38.4
2 

309.80±64.2
9 

SI [s] 1.40±0.00 1.82±0.07 1.31±0.06 

Table 7 Mean metric values for test two - 10 photos 

Metric React Next Qwik 

FCP [s] 1.40±0.00 1.10±0.02 0.80±0.00 

LCP [s] 8.25±0.78 5.32±0.74 7.61±0.76 

TBT [ms] 449.99±346.
34 

22.80±29.97 176.98±336.
80 

SI [s] 2.26±0.16 1.12±0.05 2.12±0.50 

 

Table 8 Mean metric values for test two - 100 photos 

Metric React Next Qwik 

FCP [s] 1.40±0.00 1.10±0.01 0.80±0.00 

LCP [s] 7.97±0.56 5.56±0.34 7.89±0.67 

TBT [ms] 384.73±313.
05 

23.60±34.74 62.08±213.6
8 

SI [s] 2.37±0.18 1.12±0.09 2.14±0.27 

Table 9: Mean metric values for test two - 1000 photos 

Metric React Next Qwik 

FCP [s] 1.40±0.00 1.40±0.00 0.90±0.01 

LCP [s] 10.39±0.56 5.07±1.49 27.11±4.09 

TBT [ms] 2.24±0.44 19.80±34.26 1.95±0.46 

SI [s] 5.27±0.72 1.46±0.15 5.42±0.85 

Table 10: Mean metric values for test three 

Metric React Next Qwik 

FCP [s] 1.40±0.00 1.10±0.00 1.42±0.07 

LCP [s] N/A N/A N/A 

TBT [ms] 109.35±6.80 130.80±12.0
9 

89.40±28.24 

SI [s] 5.88±1.48 1.43±0.05 12.15±4.76 

 

Figure 1: Mean metric values in graphical form obtained in test 

one for 100 elements. 

 

Figure 2: Mean metric values in graphical form obtained in test 

one for 1000 elements. 



Journal of Computer Sciences Institute 28 (2023) 197-203 

 

201 

 

 

Figure 3:  Mean metric values in graphical form obtained in test 

one for 10000 elements. 

 

Figure 4:  Mean metric values in graphical form obtained in test 

two for 10 photos. 

 

Figure 5:  Mean metric values in graphical form obtained in test 

two for 100 photos. 

Upon analyzing the results obtained from the re-

search, it has become apparent that the metric values in 

individual tests differed significantly from one another. 

Furthermore, it is worth noting that in most cases, with-

in a given study, analyzed technologies maintained the 

same trends, thereby providing consistent results, and 

the frameworks' ranking remained relatively stable 

throughout the study.  

For test one Qwik had the best FCP and LCP times 

for each test case. Visually the content was also visible 

the fastest in the case of Qwik. For the time of blocking 

user interaction the greatest discrepancies can be ob-

served - this time was the largest for Next for a small 

number of elements, for React.js for the average number 

of elements, and for Qwik it was the largest for the 

largest number of elements. Overall, Qwik is the best 

scorer according to Lighthouse's score calculation [21] 

but it's not a landslide victory. 

 

 

Figure 6: Mean metric values in graphical form obtained in test 

two for 1000 photos. 

 

Figure 7: Mean metric values in graphical form obtained in test 

three. 

In the second test once again the lowest FCP time 

was achieved by Qwik. It can be seen, however, that the 

situation has changed for LCP and the lowest values 

were obtained by Next.js while Qwik was classified at 

the end of the ranking. Next.js also had the best TBT 

results but was overtaken by Qwik and React.js for the 

large number of images displayed. For the SI metric, the 

best results were achieved by Next.js. Qwik and React 

have kept these times on a similar level with Qwik lead-

ing slightly. To sum up this study, and considering that 

Lighthouse's TBT and LCP [21] times are the most 

important for performance, Next.js performed signifi-

cantly better than Qwik in this test while React.js per-

formed the worst. 

In the case of the third test, Qwik obtained the best 

values for the TBT metric but it also had the largest 

fluctuations of values as evidenced by the high value of 



Journal of Computer Sciences Institute 28 (2023) 197-203 

 

202 

the standard deviation. However, it performed the worst 

in other metrics where Next.js took the lead and once 

again the standard deviation for the results obtained by 

Qwik was the largest. 

6. Conclusions 

The obtained test results show that each of the tests 

performed was a different challenge for the analyzed 

frameworks. The first test went the best, as evidenced 

by the fact that each of the frameworks obtained satis-

factory results allowing for passing the Lighthouse audit 

with a high score of application optimization. As ex-

pected, the increase in the number of rendered elements 

resulted in an increase in application load times. The 

biggest surprise in this case, however, was the sudden 

jump in interaction blocking time for the Qwik frame-

work for the largest number of elements which never-

theless did not stop it from showing that it was the best 

among the analyzed frameworks at the task of display-

ing a large number of elements in the DOM tree, thus 

confirming hypothesis H2. 

In general, the results were the worst for the second 

test which was also characterized by the lowest conver-

gence between the values from subsequent trials. In this 

case, Next.js showed the best of the frameworks, which 

may be the result of the use of the Image component 

which allows optimizing the displayed images [22]. 

Therefore, Qwik did not obtain results allowing to con-

clude that it has a chance to improve the performance of 

an application loading a large number of resources with 

increased sizes, thus refuting hypothesis H3. 

The third test assumed some disadvantages in favor 

of the Qwik framework - the library used to display the 

graphs is a React library so Next.js and React.js can use 

it directly and Qwik must additionally convert the com-

ponent used from it. Despite the apparent injustice, it 

must be borne in mind that this framework is new and if 

we want to use it in a production environment we can-

not count on developers to create from scratch every 

library that has already been created in React.js, espe-

cially having the possibility to use it in an application 

written in Qwik. Therefore, this study made perfect 

sense as this is a typical case that can occur in a produc-

tion environment. This probably influenced the result of 

the study which showed that the application created in 

Qwik performed worse than other applications, and thus 

caused hypothesis H4 to be rejected. 

Summing up all tests, the application written in 

Qwik received better metrics results only in the first test 

so it was not possible to fully demonstrate that this 

framework allows for better application loading times 

which was the subject of hypothesis H1. 

References 

[1] Presentation by M. Hevery on “Qwik + Partytown: How 

to remove 99% of JavaScript from main thread” at 

WeAreDevelopers World Congress 2022, 

https://www.youtube.com/watch?v=0dC11DMR3fU, 

[13.06.2023]. 

[2] C. M. Novac, O. C. Novac, R. M. Sferle, M. I. Gordan, 

G. Bujdosó, C. M. Dindelegan, Comparative study of 
some applications made in the Vue.js and React.js 

frameworks, 16th International Conference on Engineer-

ing of Modern Electric Systems (EMES), (2021) 1-4, 

https://doi.org/10.1109/EMES52337.2021.9484149. 

[3] Z. Dinku, React.js vs. Next.js, Metropolia University of 

Applied Sciences, (2022), 

https://www.theseus.fi/bitstream/handle/10024/750122/D

inku_Zerihun.pdf. 

[4] A. Świątkowski, K. Ścibior, Comparative analysis of 
React, Next and Gatsby programming frameworks for 

creating SPA applications, Journal of Computer Sciences 

Institute, 24 (2022) 224-227, 

https://doi.org/10.35784/jcsi.2972. 

[5] T. Fadhilah Iskandar, M. Lubis, T. Fabrianti Kusumasari, 

A. Ridho Lubis, Comparison between client-side and 

server-side rendering in the web development, IOP 

Conference Series: Materials Science and Engineering, 

801 (2020) 1-6, https://doi.org/10.1088/1757-

899X/801/1/012136. 

[6] M. Hakim, Speed index and critical path rendering 

performance for isomorphic single page applications, 

Proceedings of the 16th Winona Computer Science 

Undergraduate Research Seminar, (2016) 41-46, 

https://cs.winona.edu/cs-

website/current_students/Projects/CSConference/2016co

nference.pdf. 

[7] N. K. SG, P. K. Madugundu, J. Bose, S. C. S. Mogali, A 

Hybrid Web Rendering Framework on Cloud, 2016 IEEE 

International Conference on Web Services (ICWS), 

IEEE, (2016) 602-608, 

https://doi.org/10.1109/ICWS.2016.83. 

[8] F. Pavić, L. Brkić, Methods of Improving and Optimizing 
React Web-applications, 44th International Convention 

on Information, Communication and Electronic 

Technology (MIPRO), (2021) 1753-1758, 

https://doi.org/10.23919/MIPRO52101.2021.9596762. 

[9] J. Väyrynen, Ensuring Availability of a Server-Side 

Rendered React Application: A Case Study, Aalto 

University, (2019), http://urn.fi/URN:NBN:fi:aalto-

201905122998. 

[10] A. M. Aladwani, An empirical test of the link between 

website quality and forward enterprise integration with 

web consumers, Business Process Management Journal, 

Emerald Publishing, 12 (2) (2006) 178-190, 

https://doi.org/10.1108/14637150610657521. 

[11] A. M. Aladwani, P. C. Palvia, Developing and validating 

an instrument for measuring user-perceived web quality, 

Information & Management, Elsevier, 39 (6) (2002) 467-

476, https://doi.org/10.1016/S0378-7206(01)00113-6. 

[12] F. Almeida, J. Monteiro, The role of responsive design in 

web development, Webology, Webology Center, 14 (2) 

(2017) 48-651, 

http://www.webology.org/2017/v14n2/a157.pdf. 

[13] G. Richards, A. Gal, B. Eich, J. Vitek, Automated 

construction of JavaScript benchmarks, ACM SIGPLAN, 

46 (10) (2011) 677-693, 

https://doi.org/10.1145/2076021.2048119. 

https://www.youtube.com/watch?v=0dC11DMR3fU
https://doi.org/10.1109/EMES52337.2021.9484149
https://www.theseus.fi/bitstream/handle/10024/750122/Dinku_Zerihun.pdf
https://www.theseus.fi/bitstream/handle/10024/750122/Dinku_Zerihun.pdf
https://doi.org/10.35784/jcsi.2972
https://doi.org/10.1088/1757-899X/801/1/012136
https://doi.org/10.1088/1757-899X/801/1/012136
https://cs.winona.edu/cs-website/current_students/Projects/CSConference/2016conference.pdf
https://cs.winona.edu/cs-website/current_students/Projects/CSConference/2016conference.pdf
https://cs.winona.edu/cs-website/current_students/Projects/CSConference/2016conference.pdf
https://doi.org/10.1109/ICWS.2016.83
https://doi.org/10.23919/MIPRO52101.2021.9596762
http://urn.fi/URN:NBN:fi:aalto-201905122998
http://urn.fi/URN:NBN:fi:aalto-201905122998
https://doi.org/10.1108/14637150610657521
https://doi.org/10.1016/S0378-7206(01)00113-6
http://www.webology.org/2017/v14n2/a157.pdf
https://doi.org/10.1145/2076021.2048119


Journal of Computer Sciences Institute 28 (2023) 197-203 

 

203 

 

[14] H. Findel, J. Navon, A Test Environment for Web Single 

Page Applications (SPA), In Proceedings of the 11th 

International Conference on Web Information Systems 

and Technologies - WEBIST, (2015) 47-54, 

https://doi.org/10.5220/0005428000470054. 

[15] H. Golestani, S. Mahlke, S. Narayanasamy, 

Characterization of Unnecessary Computations in Web 

Applications, IEEE International Symposium on 

Performance Analysis of Systems and Software, (2019) 

11-21, https://doi.org/10.1109/ISPASS.2019.00010. 

[16] K. Kiyokawa, Q. Jin, A Front-End Framework Selection 

Assistance System with Customizable Quantification 

Indicators Based on Analysis of Repository and 

Community Data, Big-Data-Analytics in Astronomy, 

Science, and Engineering, Lecture Notes in Computer 

Science, Springer, 13167 (2022) 41-55, 

https://doi.org/10.1007/978-3-030-96600-3_4. 

[17] M. Kaluža, K. Troskot, B. Vukelić, Comparison of Front-

End frameworks for web applications development, 

Journal of the Polytechnic of Rijeka, 6 (1) (2018) 261-

282, https://doi.org/10.31784/zvr.6.1.19. 

[18] L. Borzemski, M. Kędras, Measured vs. Perceived Web 
Performance, Information Systems Architecture and 

Technology: Proceedings of 40th Anniversary 

International Conference on Information Systems 

Architecture and Technology – ISAT 2019, ISAT 2019, 

Advances in Intelligent Systems and Computing, 

Springer, 1050 (2019) 285-301, 

https://doi.org/10.1007/978-3-030-30440-9_27. 

[19] J. Miller, A. Osmani, Rendering on the Web, Google 

Developers, web.dev, (2019), https://web.dev/rendering-

on-the-web/, [20.03.2023]. 

[20] R. Carniato, Resumable JavaScript with Qwik, DEV 

Community, (2022), https://dev.to/this-is-

learning/resumable-javascript-with-qwik-2i29, 

[20.03.2023]. 

[21] How the Performance score is weighted - Lighthouse 10, 

https://developer.chrome.com/docs/lighthouse/performan

ce/performance-scoring/#lighthouse-10, [25.04.2023]. 

[22] Next.js Documentation - Image Component and Image 

Optimization, https://nextjs.org/docs/basic-

features/image-optimization, [25.04.2023]. 

 

https://doi.org/10.5220/0005428000470054
https://doi.org/10.1109/ISPASS.2019.00010
https://doi.org/10.1007/978-3-030-96600-3_4
https://doi.org/10.31784/zvr.6.1.19
https://doi.org/10.1007/978-3-030-30440-9_27
https://web.dev/rendering-on-the-web/
https://web.dev/rendering-on-the-web/
https://dev.to/this-is-learning/resumable-javascript-with-qwik-2i29
https://dev.to/this-is-learning/resumable-javascript-with-qwik-2i29
https://developer.chrome.com/docs/lighthouse/performance/performance-scoring/#lighthouse-10
https://developer.chrome.com/docs/lighthouse/performance/performance-scoring/#lighthouse-10
https://nextjs.org/docs/basic-features/image-optimization
https://nextjs.org/docs/basic-features/image-optimization

