
JCSI 28 (2023) 242–247

Received: 2 June 2023

Accepted: 3 July 2023

242

Performance comparison of microservices written using reactive and

imperative approaches

Porównanie wydajności mikroserwisów napisanych w oparciu o podejście
reaktywne i imperatywne

Kacper Mochniej*, Marcin Badurowicz

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The purpose of this paper was to compare the performance of microservices based on reactive and imperative

approaches. To accomplish this task, two microservice applications written in Java using the Spring programming

framework were developed. The Spring Web and Spring Webflux modules were used for the conventional and reactive

versions, respectively. During the tests, functionalities related to operations of retrieving and inserting records into the

database, data processing and file transfer were invoked. The Gatling tool was used to conduct the tests. The tests

showed that reactive microservices can be more efficient in particular when there are delays in communication with

services or the database. Otherwise, it depends on the complexity of the operations being performed. Microservices

based on the reactive paradigm also use less RAM compared to conventional counterparts.

Keywords: microservices; reactive programming; imperative programming

Streszczenie

Celem pracy było porównanie wydajności mikroserwisów opartych o podejście reaktywne i imperatywne. Aby

wykonać zadanie, stworzono dwie aplikacje mikroserwisowe napisane w języku Java z użyciem szkieletu
programowania Spring. Wykorzystane zostały moduły Spring Web oraz Spring Webflux odpowiednio dla wersji
konwencjonalnej i reaktywnej. W trakcie badań wywoływane były funkcjonalności związane z operacjami pobierania i
wstawiania rekordów do bazy danych, przetwarzania danych, przesyłania plików. Do przeprowadzenia testów
wykorzystano narzędzie Gatling. Badania wykazały, że mikroserwisy reaktywne mogą być wydajniejsze w
szczególności w przypadku występowania opóźnień w komunikacji z serwisami lub bazą danych. W innym razie jest to

zależne od złożoności wykonywanych operacji. Mikroserwisy oparte o paradygmat reaktywny, wykorzystują również
mniej pamięci RAM w porównaniu z konwencjonalnymi odpowiednikami.

Słowa kluczowe: mikroserwisy; programowanie reaktywne; programowanie imperatywne

*Corresponding author

Email address: kacper.mochniej@pollub.edu.pl

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

A microservice is a small application which can be

deployed, scaled and tested independently and has

single responsibility. It can, for example, read data from

a queue, execute small pieces of business logic. Such

applications are easy to maintain, so the microservice

approach has become very popular in enterprise IT. It

was introduced in 2014 by J. Lewis and M. Fowler. As

a result, applications began to be divided into smaller,

cooperating components [1].

Reactive programming is focused on reacting to

changes such as data values or events. It allows to

program asynchronous and event-driven use cases much

easier, without the need for a deep understanding of

low-level computer processes and the need to define the

complex interactions of state, particularly across thread

and network boundaries. Reactive programming is

useful in following scenarios:

 processing user events or signal changes,

 handling latency-bound I/O events,

 handling events pushed to the application [2].

Java-based Spring framework is one of the most

popular solutions for microservices development. That's

because it contains a lot of functionality that helps

developers create both small and large projects. Along

with Spring 5, the Spring WebFlux [3] module was

released for creating reactive applications. It uses

Project Reactor [4] library which is an implementation

of Reactive Streams - standard for asynchronous stream

processing with non-blocking back pressure adopted in

Java 9. Spring WebFlux also provides support for non-

servlet containers such as Netty or Undertow.

The purpose of the work is to compare the

performance of microservices based on reactive and

imperative approaches, considering:

 communication with the database,

 operations on data,

 communication between services.

The following hypotheses have been defined:

1. Reactive microservices are more efficient for data-

intensive tasks than conventional ones,

mailto:kowalski@company.com

Journal of Computer Sciences Institute 28 (2023) 242-247

243

2. Reactive microservices are more efficient for

latency-bound operations compared to non-reactive

ones,

3. Reactive microservices use less RAM than

conventional ones.

2. Review of the literature

The analysis of the literature showed that the topic

covered is still fresh, as there are not many works

dedicated to it. In addition, the conclusions of the

various works are inconsistent, with some showing that

reactive applications are more efficient while others

don’t. The situation is similar for hardware resources -

the results of some works show less RAM or CPU usage

for a reactive application, while others for a

conventional application.

In the work [5] the author analyzed the features and

disadvantages of reactive programming compared to

conventional programming using a containerized

microservices-based online ticket store programmed

both in reactive and non-reactive versions. Tests have

shown that there is not much difference from the

conventional approach, however reactive programming

improves the software development process and the

stability of software.

Article [6] compares the reactive and conventional

approaches in Java Web application development. For

this purpose applications were created both in reactive

and non-reactive ways using Spring Boot framework.

Query processing times, the use of environment

resources, and how many queries can be handled

correctly was checked. In addition, the lines of code

required to create each application were analyzed to

compare the time consumption of their implementation.

Results show that the reactive application processes

queries faster, uses less CPU and is more stable in the

case of handling many simultaneous requests, but it’s

more time-consuming to create than imperative variant.

Work [7] evaluates the possibility of using reactive

programming and R2DBC in Java to communicate with

a relational database, it has been done by creating two

applications with Spring Boot framework: the reactive

and non-reactive one, which include appropriate API to

connect with the database (R2DBC and JDBC). The

database used in work is MySQL. The study shows that

R2DBC is good “out of the box” without need to set

specific parameters. However it seems to have slower

select queries and BLOB’s are not handled optimally.

In the work [8] the author compared reactive and

non-reactive applications written in Spring Boot and

Quarkus. The project aimed to provide information to

decide what framework is preferred to use in which

cases. Results show that in Spring Boot reactive

applications use more hardware resources than in non-

reactive ones unlike Quarkus. Also, the overall use of

hardware resources is higher in Spring Boot.

In the article [9] authors share the experiences in

building and adapting reactive systems to microservices

architecture. They rewrote an existing application using

microservices architecture to reactive system and

compared performance of both variants. Results show

that the performance improvement in reactive system is

not dramatic, but there is a large increase in throughput.

The article [10] is a review of the state of the art of

reactive microservices. The objective is to explore

documents concerning reactive microservices, migrate

microservice project to reactive variant, share

experiences and evaluate project with the studied

metrics. Authors chose the Restaurant Management

system to migrate to reactive microservices using the

Lagom framework. The implemented solution

accomplished goals relative to maintainability,

scalability, testability and monitorability. However, it

was not possible to obtain reliable results on the

performance, also some security vulnerabilities were

detected.

The purpose of work [11] is to check the effects of

reactive programming. Author compared synchronous

and reactive Playtech BGT Sports content server written

using Spring Boot framework. The results showed that

the CPU usage is similar for both solutions. However,

when the content provider transmitted data at 5 ms

intervals, the reactive system had lower latency and

100% throughput.

3. Research methodology

The subject of the study is to compare performance of

two microservice applications - one written in reactive

approach and another in conventional approach. The

application consists of 3 microservices each one

performing a specific function.

Figure 1: Application architecture.

ProductService is responsible for adding products to

the catalog, as well as updating their inventory by

connecting to InventoryService. It also allows for

exporting, as well as multiple saving using a csv file. It

uses a MongoDB database. The previously mentioned

InventoryService has access to the inventory of

products. It checks at the time of ordering whether the

product is in stock, if so, it subtracts the quantity

ordered from the current product stock, if not, it returns

the product code. It also uses a MongoDB database.

OrderService is used to place orders, connects to

Journal of Computer Sciences Institute 28 (2023) 242-247

244

InventoryService, uses MariaDB database. Average

request processing times for a given scenario, number of

instances and number of users were compared. The

Gatling [12] tool was used to create and send requests to

the applications. The operations that were used to

perform the tests are:

 inserting records into the database,

 retrieving records from the database,

 object mapping,

 uploading files to server,

 downloading files from server,

 sending data between services.

This will be done by performing operations such as

placing orders, adding, retrieving products or

importing/exporting them via csv file. The tests were

conducted for each functionality 3 times for both

variants of the application with different numbers of

microservice instances (1 and 3) and simultaneous

requests to the application (100 and 3000). Running

tests for different numbers of microservices instances

was intended to verify whether the number of instances

running and the chosen paradigm are related in terms of

performance. The following table presents a detailed

description of the scenarios.

Table 1: Test scenarios

Scenario Description Number

of users

Placing

incorrect

orders

Sending 55 objects representing

invalid orders to OrderService,

then transfer to InventoryService ,

remap and validate, return the

order codes to OrderService, and

then return to the user.

100,

3000

Placing

incorrect

orders (single

response

delayed)

„Placing incorrect orders”
scenario with changed logic of

order validation - each order is

sent individually, a delay of

100ms was added before returning

the response from the service.

100

Updating

stock

Updating the stock of a product

using its id: check if a product

with a given exists in the

database, if so, change the

quantity in stock

100,

3000

Product

exports

Retrieving large number of

records (271600) from database,

map objects to rows, export to csv

file

10

Product

imports

Uploading the csv file with 18084

rows to the service, remap the row

to an object and save it to the

database

10

Adding a

product

Inserting a single record into the

database

100,

3000

Retrieving a

product

Retrieving a record from the

database

100,

3000

Delay 100 ms Simulating a delay before

returning the response from the

ProductService

100,

3000

Barcode

generation

Generating a barcode for the

product

100,

3000

A platform with the following specifications was used:

 Processor: Intel Core i5 8250U 1.6-3.4GHz,

 RAM: 8GB DDR4,

 Drive: 256GB NVME SSD.

Both microservices and tests were running on the same

machine. The environment configuration for running

multiple instances was the same as for a single instance.

4. Research results

4.1. Application response times

The results of the tests are statistics of response times to

requests including average times.

Table 2: Average response times for conventional application

requests

Conventional variant (avg response time [ms])

Scenario 1 instance 3 instances

100

users

3000

users

100

users

3000 users

Placing

incorrect

orders

537 3711 537 4228

Placing

incorrect

orders

(concurrent

internal

requests

with delay)

6667 - 6649 -

Updating

stock

488 3263 522 3263

Adding

product

350 2163 351 2319

Fetching

product

338 2483 339 2395

Delay

100ms

327 2100 310 2006

Generate

barcode for

product

342 2907 369 3460

 10 users (working on large datasets)

Import

products

2337 2686

Export

products

15375 16573

Based on Tables 2 and 3, it can be seen that in most

cases the reactive application responds to requests in

comparable or worse time than the conventional

counterpart. In the test of placing incorrect orders, the

reactive application performed much worse. In the case

of 100 simultaneous users and 1 instance, the difference

is about 46%, for 3 instances the difference is 38%. For

3000 users the conventional application is more than 3

times faster for both 1 and 3 instances. In the second

scenario the same functionality is used but it’s adjusted

to take advantage of the strengths of the non-blocking

http client. This time the reactive application was 2

times faster for 100 concurrent users for 1 and 3

instances. “Updating stock” scenario focuses more on

exploring performance for inter-service communication

alone, without costly stream operations. For 1 instance

Journal of Computer Sciences Institute 28 (2023) 242-247

245

results are similar for both 100 and 3,000 users the

difference is just over 10% in favor of the conventional

version, for 3 instances the difference is greater 13% for

100 users and 23% for 3000 users. In the product

addition test, the reactive application achieved better

results by being 26% faster for 100 users for 1 instance

and 27% for 3 instances and for 3,000 users 10% and

15% respectively. In the product fetching test results

were similar, the difference in favor of the reactive

version is small and within the limit of measurement

error. The latency simulation test showed for 100 users

a 21%, and for 3000 users a 12% performance

advantage for 1 instance. However for 3 instances

results were close. For generating a barcode test for 100

users, the reactive variant was 21% faster for 1 instance,

however, for the rest of the cases the results are similar.

The last 2 tests were performed for only 10 users, as

large datasets were used and it was not possible to

perform these tests for more users for performance

reasons. Results for products import were very similar,

however in the export test the conventional variant was

12% faster for 1 instance and 16% for 3 instances.

Table 3: Average response times for reactive application requests

Reactive variant (avg response time [ms])

Scenario 1 instance 3 instances

100 users 3000

users

100 users 3000

users

Placing

incorrect

orders

992 11070 867 11077

Placing

incorrect

orders

(concurrent

internal

requests

with delay)

3102 - 3363 -

Updating

stock

549 3727 601 4227

Adding

product

260 1936 255 1963

Fetching

product

322 2321 317 2356

Delay

100ms

259 1845 314 1817

Generate

barcode for

product

271 2890 338 3266

 10 users (working on large datasets)

Import

products

2311 2582

Export

products

17505 19640

4.2. RAM usage

The charts in this chapter present the RAM consumption

of individual microservices before and after testing for

the reactive and conventional versions.

Figure 2: RAM used by microservices in the idle state.

Figure 3: RAM used by microservices in placing incorrect orders

scenario.

Figure 4: RAM used by microservices in updating stock scenario.

0

10

20

30

40

50

60

Conventional Reactive

R
A

M
 u

se
d

 [
M

B
]

Idle state

ProductService OrderService InventoryService

0

50

100

150

200

250

Conventional Reactive

R
A

M
 u

se
d

 [
M

B
]

Placing orders

InventoryService OrderService

0

50

100

150

200

250

300

350

Conventional Reactive

R
A

M
 u

se
d

 [
M

B
]

Updating stock

ProductService InventoryService

Journal of Computer Sciences Institute 28 (2023) 242-247

246

Figure 5: RAM used by microservices in export products scenario.

Figure 6: RAM used by microservices in import products scenario.

From the diagrams, you can see that the reactive

application used less RAM for most cases. In the idle

state reactive ProductService used 30% less RAM,

OrderService 7% and InventoryService 10%. After

placing incorrect orders reactive OrderService used 36%

less RAM and InventoryService 23%. A bit different

result is seen with the update stock test: reactive

ProductService used 15% less RAM, while

InventoryService used 58% more. In the adding product

test the reactive variant obtained a better result by 13%.

The biggest difference was in the fetching product test,

reactive service used 61% less memory. In the

generating barcode test, the reactive application used

57% less RAM. For the scenario of import products, the

reactive variant was better by 20%. In last test –

products export, there was an 16% advantage for the

reactive variant.

Figure 7: RAM used by microservices in adding products scenario.

Figure 8: RAM used by microservices in fetching products scenario.

Figure 9: RAM used by microservices in generate barcode for product

scenario.

800

850

900

950

1000

1050

1100

1150

ProductService

R
A

M
 u

se
d

 [
M

B
]

Export products

Conventional Reactive

0

100

200

300

400

500

ProductService

R
A

M
 u

se
d

 [
M

B
]

Import products

Conventional Reactive

0

20

40

60

80

100

120

140

160

ProductService

R
A

M
 u

se
d

 [
M

B
]

Adding products

Conventional Reactive

0

20

40

60

80

100

120

140

160

ProductService

R
A

M
 u

se
d

 [
M

B
]

Fetching product

Conventional Reactive

0

50

100

150

200

250

300

350

400

ProductService

R
A

M
 u

se
d

 [
M

B
]

Generate barcode for product

Conventional Reactive

Journal of Computer Sciences Institute 28 (2023) 242-247

247

5. Summary and conclusions

Despite the fact that reactive streams process data

asynchronously, it wasn’t possible to observe

a performance advantage for operations on large data

sets. Especially for CPU-intensive tasks, the reactive

application performed significantly worse than the

conventional one. This could mean that operations on

reactive streams have higher complexity and take longer

than the corresponding imperative code. This would be

indicated by the results of the barcode generation test,

where the results perform gently better. It is also a CPU-

intensive task, but the operations are performed in

a blocking style. This is also noticeable when

comparing the tests of placing incorrect orders and

updating stock, in both tests data is exchanged between

services, but in the latter there are far fewer data

operations and the results of the reactive version

perform much better here. Two tests (adding a single

product and I/O operations) showed the advantage of

the reactive variant due to the non-blocking nature of

I/O operations for this solution. The surprise, however,

is that this gain is not apparent for retrieving a record

from the database. As a result, it is difficult to say with

certainty which approach provides better performance.

Based on measurements for individual tests, one can

conclude that for typical purposes (communication with

other services, returning data) reactive services are less

efficient. In reality, however, this depends on many

different factors such as the specification of the server,

application design, the database used, so for similar

scenarios the results under different conditions can be

quite different. This is evident by comparing the results

obtained from various works. What's more, all the

services and databases were running on the same

machine, so there were no delays in the connections

between them, which reactive application handles better

because it doesn't block the thread, but sends another

request. This was confirmed in the ordering test, where

order data was sent one at a time, and in a test

simulating the delay in processing a request. Therefore,

it is important that before deciding on a reactive system,

careful consideration should be given to whether the

choice is appropriate under the circumstances.

Performance also depends on the implementation of the

reactive paradigm, in this case, the Spring WebFlux

framework and the Java language were used, the results

would be quite different when using other development

tools. Based on the above results, it is difficult to clearly

determine whether the number of instances and the

chosen approach are related in terms of performance,

sometimes the gain was greater for the reactive

application, other times vice versa.

In the tests conducted, reactive services used less

RAM in most cases. This is made possible by using an

event loop model that takes care of calling the

corresponding request and response handling functions.

It runs in the background and does not block the main

thread; instead, it moves on to the next request, and

when the first request is ready, it resumes processing.

This also greatly reduces the number of threads created

by a reactive application.

References

[1] J. Thönes, Microservices, IEEE Software 32(1) (2015)

113-116.

[2] T. Nurkiewicz, B. Christensen, Reactive Programming

with RxJava: Creating asynchronous, event based

applications, 1st Edition, O’Reilly Media , 2016.

[3] Spring WebFlux Documentation,

https://docs.spring.io/spring-

framework/reference/web/webflux.html#webflux,

[27.05.2023].

[4] Project Reactor webpage, https://projectreactor.io/,

[27.05.2023].

[5] P. Dakowitz, Comparing reactive and conventional

programming of Java based microservices in

containerized environments, Master thesis, Haw

Hamburg, 2018.

[6] S. Iwanowski, G. Kozieł, Comparative analysis of
reactive and imperative approach in Java Web application

development, Journal of Computer Sciences Institute 24

(2022) 242-249.

[7] K. Dahlin, An evaluation of Spring Webflux with focus

on built in SQL features, Master thesis, Mid Sweden

University, 2020.

[8] A. Nordlund, N.Nordstrom, Reactive vs Non-reactive

Java Framework, Bachelor thesis, Mid Sweden

University, 2022.

[9] A. Sim, O. Barus, F. Jaya, Lessons Learned In Applying

Reactive System In Microservices, Journal of Physics:

Conf. Series 1175 (2019) 1-6.

[10] G. Hochbergs, Reactive Programming and its effect on

performance and the development process, Master thesis,

Lund University, 2017.

[11] J. Ferreira, Reactive Microservices An Experiment,

Master thesis, Polytechnic of Porto, 2022.

[12] Gatling webpage, https://gatling.io/ , [27.05.2023]

https://docs.spring.io/spring-framework/reference/web/webflux.html#webflux
https://docs.spring.io/spring-framework/reference/web/webflux.html#webflux
https://projectreactor.io/
https://gatling.io/

