
JCSI 29 (2023) 360–365

Received: 29 June 2023

Accepted: 24 September 2023

360

A performance analysis of a cloud database on mobile devices

Badanie wydajności chmurowej bazy danych na urządzeniach mobilnych
Sylwester Kot*, Jakub Smołka

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract
The article presents a performance analysis of Firebase cloud database. Two services, namely Realtime Database and
Cloud Firestore, are examined, and their query speed are compared to those of the local SQLite database. Basic CRUD
operations were examined, taking into account the number of records in the database, the size of individual records and
the complexity of the database structure. Upon completion of the research, it was concluded that Realtime Database
outperforms Cloud Firestore and cloud databases are slower than the local database when it comes to operations on
a single record. However, when working with a larger volume of data, cloud database can achieve better results than
SQLite. The accuracy of the outcome is also influenced by the stability of the network connection and the distance from
the cloud server.

Keywords: performance; cloud database; Firebase; mobile device

Streszczenie

Artykuł dotyczy badania wydajności chmurowej bazy danych Firebase. Badane są dwie usługi: Realtime Database oraz
Cloud Firestore, których prędkość zapytań jest porównywana do prędkości zapytań lokalnej bazy danych SQLite.
Zbadane zostały podstawowe operacje CRUD z uwzględnieniem ilości rekordów w bazie danych, rozmiaru
pojedynczego rekordu oraz rozbudowaniem struktury bazy. Po zakończeniu badań stwierdzono, że baza Realtime
Database jest wydajniejsza od bazy Cloud Firestore oraz chmurowe bazy danych są wolniejsze od lokalnej bazy
w przypadku operacji na pojedynczym rekordzie. Jednocześnie przy pracy na większej ilości danych chmurowe bazy
danych potrafią osiągać lepsze rezultaty niż SQLite. Wpływ na dokładny wynik ma też stabilność łącza oraz odległość
od serwera chmury.

Słowa kluczowe: wydajność; chmurowa baza danych; Firebase; urządzenie mobilne
*Corresponding author

Email address: sylwester.kot@pollub.edu.pl (S. Kot)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

With the development of the market for mobile business
applications and applications designed for private
clients, the issue of data storage arises. Application
developers need to consider scalability and the type of
data storage in their databases. The accessibility and
storage method are also important factors. Thanks to the
ubiquity of the Internet, one of the solutions that has
emerged is the cloud-based database. It eliminates the
need for local memory for storing information and
potential hardware limitations. However, it requires
continuous internet access, which may limit the speed of
database operations.

Initially, all mobile applications utilized the only
available database, SQLite. However, due to
technological advancements and the efforts of tech
giants such as Amazon and Microsoft, there are now
numerous database offerings designed for mobile
devices on the market. These databases come in both
relational and NoSQL forms, differing in schema
structure. Currently, one of the most popular cloud
solutions for mobile devices is Firebase, a service
created by Google. It offers two database solutions:
Realtime Database and Firestore Database. This article
presents a performance evaluation of these tools based
on the speed of database operations, taking into account

the number of records, database schema complexity,
and individual record size. The results are then
compared with a corresponding local database created
in SQLite.

2. Literature review

The article "Cloud database as a service" by W. Al.
Shehri [1] discusses cloud-based databases as the future
standard for information storage, highlighting their
scalability and hardware fault tolerance. It also presents
parameters to consider when selecting an appropriate
cloud database service, such as data size, portability,
transaction capability, availability, and security.

In the article "Comparison of NoSQL and SQL
Databases in the Cloud" by D. Hammes, H. Medero,
and H. Mitchell [2], relational and non-relational
databases are compared as cloud services. The CAP
theorem is introduced as a means of identifying the
main weaknesses of any database system. According to
this theorem, any database implementation must choose
two out of three properties: consistency, availability,
and partition tolerance. Relational databases prioritize
availability and consistency, while NoSQL databases
lean towards consistency and partition tolerance.
Performance tests were also conducted using Postgres
and MongoDB databases, with the results favoring

mailto:sylwester.kot@pollub.edu.plm

Journal of Computer Sciences Institute 29 (2023) 360-365

361

Postgres as the more performant database. However,
further research is deemed necessary to confirm these
findings.

The article "A performance comparison of SQL and
NoSQL Databases in the Cloud" [3] focuses on
comparing a larger number of non-relational databases
and examining their performance for key-value data.
The results indicate that while non-relational databases
are optimized for key-value data, not all services
outperform the reference relational database. The results
vary depending on the type of database operation and
the number of operations performed. The authors
determined that Couchbase and MongoDB are the
fastest in read, write, and delete operations.

The article "The Comparison Firebase Realtime
Database and MySQL Database Performance using
Wilcoxon Signed-Rank Test" [4] compares the Firebase
database with MySQL using the Wilcoxon signed-rank
test for paired observations to determine the optimal
database for a mobile application intended for daily
nutritional needs for young children. The tests were
conducted for all CRUD operations and using the
database structure used in the application. The results
indicate that Firebase is a more efficient database.

The article "A comparison of NoSQL and SQL
Databases over the Hadoop and Spark Cloud Platforms
using Machine Learning Algorithms" [5] utilizes
machine learning algorithms to create a NoSQL
database from a relational database. The authors then
evaluate the performance of the algorithms on both
databases using the k-means method and random forest.
The results indicate the superiority of the non-relational
database in terms of operation speed, ranging from 26%
to 54%.

The author of the article "A Performance
Comparison of SQLite and Firebase Databases from a
Practical Perspective" [6] compares two officially
supported types of databases on the Android system:
SQLite and Firebase, citing results from previous
articles. The comparison involves basic database
operations such as data insertion, retrieval of data and
specific records, updating, and deletion. The study was
conducted on a simple database model containing one
entity with two properties: ID and text. The obtained
results favor SQLite as the more efficient database in
every operation except data deletion. It is also noted that
Firebase performs better when sharing database
resources with a larger number of users or when limited
by local disk space.

In the article “On the Performance of Cloud-Based
mHealth Applications: A Methodology on Measuring
Service Response Time and a Case Study” [7] the
Firebase database is being used in a performance test
based on a prototype medical application. The study is
being conducted on both Android and iOS platforms.
Results show that the average response time for Android
devices is slightly higher than that for iOS devices,
which may be influenced by buffering and differences
in the Firebase API design. It is worth noting that the
response time is not dependent on the smartphone's

battery mode. Additionally, in the case of a Wi-Fi
connection, the average response time is lower by at
least a factor of two as in the case of an LTE
connection, indicating Wi-Fi as a more efficient
connection for retrieving large data chunks.

The authors of the article “Monitoring the
performance of cloud real-time databases: A firebase
case study” [8] are investigating the performance of the
Firebase database using Firebase Console and Google
Cloud Monitoring tools. It was observed that Firebase
Console provides detailed information regarding the
database, while in cases of availability or latency issues,
consideration should be given to using Google Cloud
Monitoring, which automatically collects data on
Firebase services. Additionally, it was determined that
for the free version of Firebase, the maximum number
of concurrent connections to the database is limited to
100.

3. Research method

Two forms of data storage provided by the Firebase
service were subjected to the study: Realtime Database
and Cloud Firestore, along with a local SQLite database
implemented using the Room library. Three different
database schemas were used: a simple key-value type,
complex database with multiple objects in relationships,
and a database with a single record of size 1KB. The
complex database with relationships is an order model
consisting of a product list and details related to
payment and customer. In the SQLite database, the
relationships were established using foreign keys, while
in the Realtime Database, a reference to object IDs was
added, and in Cloud Firestore, three collections were
created: payment, order and customer.

For the purpose of this research two mobile apps
were made: one for cloud databases and one for local
database. To achieve optimal performance for the Cloud
Firestore database batched writes were used for higher
amount of data. For the Realtime Database transactions
were not increasing the performance of operations so
standard methods were used.

Cloud servers used in the research were located in
Belgium and Western Europe. A Wi-Fi connection with
a bandwidth of 30Mb/15Mb was used to connect to the
servers.

The study was conducted using two smartphones:
Xiaomi Redmi Note 8 Pro and Samsung A8 with the
specifications shown in Table 1.

Table 1: Specifications of devices used in research

Parameter Xiaomi Redmi Note
8 Pro

Samsung A8 (2018)

CPU Mediatek Hello
G90T 8x2.05 GHz

Samsung Exynos
7885 2.2 GHz

RAM 6 GB 4 GB
internal memory 64 GB 32 GB
operating system Android 11 Android 9

3.1. Research scenarios

All test scenarios were conducted on 10, 100, 500,
1000, 2000 and 10000 records as well as on the three
different database models mentioned before. Each test

Journal of Computer Sciences Institute 29 (2023) 360-365

362

was performed 10 times, and the average execution time
was calculated. After each test, the database and
application memory were cleared and generated again
for the next test. Prior to the research, the smartphone
cache was cleared and all background applications were
shut down.

The following operations were examined:
 creation of a database and populating it with data,
 inserting single record,
 editing single record,
 reading single record and entire database,
 deleting single record and entire database.
Additionally, the impact of database size on the
performed operations was investigated.

4. Results

Due to the limits of free tier for Cloud Firestore, which
is 20000 write and delete operations per day, scenarios
using data sample of 10000 records were performed in
the following days and tests for other databases were
repeated to get the accurate results.

4.1. Inserting data

First scenario tested was about generating database and
populating it with data.

The results (Table 2) indicate that for simple and
complex data models SQLite is more efficient and has
better average execution time regardless of number of
records inserted into database. However, when the size
of single record is about 1KB, cloud databases are better
as more records are being added. Realtime Database
manages to beat local database from 100 records
onwards and Cloud Firestore manages to get faster time
for 1000 records.

Table 2: Execution time of database generation

 Realtime
Database

Cloud
Firestore

SQLite

Number
of records

Database
model

Average execution time (ms)

10 Key-value 63 1302 14.5
Complex 98.5 1232 36

Large 506.5 908 203
100 Key-value 111.5 3059.5 20

Complex 370.5 9851 84.5
Large 2145.5 5819 3515.5

500 Key-value 155.5 969.5 35
Complex 1067 4551.4 307

Large 9932.5 29235.5 21680
1000 Key-value 304.5 1775 43.5

Complex 1624 9297.5 478
Large 21574.5 36126 43436.5

2000 Key-value 420.5 3266.5 69.5
Complex 3086 46962 941.5

Large 14422 - 86111
10000 Key-value 1405 15018.5 400

Complex 14852 - 3189
Large - - 493641

Unfortunately, for record count above 2000 in case

of Cloud Firestore and 10000 in case of Realtime
Database there was an OutOfMemory exception thrown
by the server side of database, which prevented getting
the results for these conditions.

Next examined operation was about inserting single
record to already existing database. This led to the
following results (Table 3).

Table 3: Execution time of inserting single record

Database model Database Average execution
time (ms)

Key-value Realtime Database 54
Cloud Firestore 98

SQLite 5
Complex Realtime Database 53

Cloud Firestore 95
SQLite 11

Large size Realtime Database 103
Cloud Firestore 181

SQLite 20

Realtime Database manages to get faster execution

time than Cloud Firestore for inserting single record in
each database model scenario. The difference between
them is nearly twofold. It can also be observed that the
complex model does not cause a decrease in
performance while a larger object size results in twice
the execution time. On the other hand, the local
database experiences a twofold increase in time for
complex model and a fourfold increase for a 1KB-sized
record.

It is worth noting that the number of records in
database does not affect the execution time and the
average execution time is composed of every tested
case.

4.2. Editing data

The second scenario involves editing a single record in
already existing database. In case of a key-value model,
a value is changed. In a complex model the order status
is changed and for the large set the big size field was
changed. The results are as follows (Table 4).

Table 4: Execution time of editing data

Database model Database Average execution
time (ms)

Key-value Realtime Database 52
Cloud Firestore 93

SQLite 3
Complex Realtime Database 53

Cloud Firestore 77
SQLite 5

Large size Realtime Database 98
Cloud Firestore 128

SQLite 3

When it comes to editing data, execution times are

similar to the inserting single record time. Realtime
Database achieves differences at maximum of 5
milliseconds for the large record, while other models
stay at 53-54 milliseconds. Cloud Firestore manages to
get faster execution time in every model and the biggest
difference is seen in the 1KB-sized record where the
difference is over 50 milliseconds. However, both of the
cloud databases have worse performance compared to
local database, which has execution time below 5
milliseconds.

Journal of Computer Sciences Institute 29 (2023) 360-365

363

Just as with previous scenario, the number of records
in database does not affect the execution time of editing
a single record.

4.3. Reading data

The next scenario of the study examines database read
operations. Both reading a single record and retrieving
the entire database are evaluated.

When it comes to reading a single record (Table 5),
Realtime Database stays at similar execution time no
matter the database model. Even on the large-size model
the difference between the best time is less than 10
milliseconds. Cloud Firestore performance is worse than
the other cloud database, especially when it comes to
simple key-value model where the average time exceeds
100 milliseconds. However, as with previous single-
record operations, both databases have worse
performance than local database.

Table 5: Execution time of reading single record

Database model Database Average execution
time (ms)

Key-value Realtime Database 56
Cloud Firestore 122

SQLite 4
Complex Realtime Database 53

Cloud Firestore 92
SQLite 4

Large size Realtime Database 62
Cloud Firestore 94

SQLite 4

Table 6: Execution time of reading whole database

Realtime
Database

Cloud
Firestore

SQLite

Number
of records

Database
model

Average execution time (ms)

10 Key-value 48.5 196 4.5
Complex 69.5 169 28

Large 158 496 3
100 Key-value 86 302 7.5

Complex 160 149.5 39
Large 680 2048 7

500 Key-value 101.5 276.5 8.5
Complex 386.5 106.5 192

Large 3077.5 10619.5 8.5
1000 Key-value 116 614.5 9.5

Complex 556.5 171 236.5
Large 5961 - 11.5

2000 Key-value 161.5 930.5 15
Complex 1193.5 404 494.5

Large 5223 - 19.5
10000 Key-value 416 5684.5 185

Complex 3953.5 186.5 2290.5
Large - - 84.5

Results of reading the entire database (Table 6)

presents that Cloud Firestore excels in reading many
data from the complex structure. The average execution
time for all evaluated database size samples is less than
500 milliseconds. This is especially good for the larger
number of records, where execution time for both
Realtime Database and SQLite exceeds 2 seconds,
whereas Cloud Firestore manages to get similar
performance regardless of number of records to read.

However, when it comes to simple key-value model and
for the large-sized records Cloud Firestore performs the
worst out of the three. Realtime Database shows that it
can compete with local database on the complex and
key-value model at larger set of data, however it falls
short on 1KB-sized records. It can also be seen that
SQLite struggles with complex database model as the
execution time is much higher than for other database
models.

Just as in the database generation scenario, for
records above 1000 for Cloud Firestore and above
10000 for Realtime Database there was an
OutOfMemory exception which made it impossible to
gather the time of the operation.

It is worth mentioning that the average execution
time for cloud databases decreased every time the read
operation was repeated on the same database. This is
caused by the device caching the data in memory so it
doesn’t have to load whole data from the cloud server.
The decrease is significant, however in this scenario
only the first read from database was measured.

4.4. Deleting data

The last performed test scenario relates to single record
and whole database deletion. Results of the tests can be
seen below (Table 7, Table 8):

Table 7: Execution time of deleting single record

Database model Database Average execution
time (ms)

Key-value Realtime Database 56
Cloud Firestore 90

SQLite 4
Complex Realtime Database 48

Cloud Firestore 78
SQLite 10

Large size Realtime Database 52
Cloud Firestore 99

SQLite 3

Results for deleting single record shows that

Realtime Database deletes data at around the same time
no matter the database model. Cloud Firestore performs
better at deleting a complex model record, which is
about 20 milliseconds faster than other models.
However, as in all previous one-record operations, local
database performs much better providing nearly-instant
execution time.

As for the database deletion operation the results
vary depending on the database (Table 8). Realtime
Database seems to be unaffected by both number of
records and size of single record. The average execution
time for key-value model increases slightly with number
of records, on the other hand it decreases for large-sized
record the more records are in the database. The
performance is slightly worse for complex database
model but all tests indicate that execution time is
between 63-118 milliseconds, which is better than
Cloud Firestore. The latter database has execution time
of over a second for all of the database models above
500 records. The best performing model is key-value,
following large-sized records at small quantity, but

Journal of Computer Sciences Institute 29 (2023) 360-365

364

being outperformed by complex model at records above
500. What is worth mentioning, Realtime Database has
better performance in deleting database consisting of
larger size data than SQLite for higher amount of
records deleted. It is best seen on the 10000 record test
as the execution time for local database reaches over 10
minutes compared to only 63 milliseconds for Realtime
Database.

Table 8: Execution time of deleting whole database

Realtime
Database

Cloud
Firestore

SQLite

Number
of records

Database
model

Average execution time (ms)

10 Key-value 70 541 2.5
Complex 98.5 1354 26

Large 59.5 495.5 15.5
100 Key-value 73.5 3060.5 3

Complex 97.5 11253.5 17.5
Large 118 3937 411.5

500 Key-value 76 905.9 5
Complex 107.5 4713.4 12

Large 71.5 6343.1 7649
1000 Key-value 90 1480 6

Complex 103 8406.5 13.5
Large 65.5 13397.5 20235

2000 Key-value 82.5 2702 6
Complex 118.5 20833 19.5

Large 78 - 148684
10000 Key-value 92.5 11755.5 13

Complex 118.5 - 107.5
Large 63 - >100000

Looking at stability of operations, Realtime

Database managed to successfully complete all delete
operations regardless of number of records in database.
Cloud Firestore however failed to delete the data for
large records in number above 2000 and for the
complex data model in the 10000 record test due to
OutOfMemory exception which happened for the most
of the multiple-records tests.

5. Conclusions

The article presents performance tests of selected cloud
databases in CRUD operations.

The results obtained in all conducted tests indicate
that Realtime Database outperforms Cloud Firestore in
terms of efficiency. The only area where Cloud
Firestore is favored is reading from a complex database
with multiple records. In all other cases, the differences
in execution time of operations are more than twice as
large.

As for single-record operations, the performance of
cloud databases is similar for all of the conducted
operations. In both Realtime Database and Cloud
Firestore there is slight increase in execution time for
large-sized record database model, expect for reading a
single record. However, compared to local database, the
difference is visible as SQLite performs single-record
operations nearly instantly, when cloud databases have
respond time within 50-150 milliseconds. When
comparing the results of cloud databases with the local
one, it is important to consider the fact that in cloud
databases, the execution time of operations includes

both the data processing time and the server response
time, which is doubled due to the query and response
time. On the other hand, local databases do not have
such limitations, which allows them to execute certain
queries instantly, especially for smaller amounts of data.

When it comes to working with large number of data
cloud databases manage to outperform local database in
generating and deleting database for objects of 1KB
size. The result depends on the database, as Realtime
Database performs better in simple database model,
whereas Cloud Firestore is optimized for complex
model and performs exceptionally well in reading
database for that type of data. However, it works worse
with a simple key-value data model. Another thing to
consider is the size limit of operations, as in the
research, especially for number of records exceeding
2000, server happened to throw the OutOfMemory
exception which make it unable to process big amount
of data at the same time, which is not happening in
SQLite. For the Cloud Firebase the maximum number
of operations for a single transaction can’t exceed 500
[9] and for the Realtime Database the limits are only for
maximum size of a single response, which is 256MB
and write rate at 1000 writes/second [10].

When assessing the performance of cloud databases,
it is essential to take into account the conditions that
exist in mobile devices. Significant variations in
operation times can be attributed to factors such as
network stability, connection quality, distance from the
cloud server, or server latency. Moreover, when
operating with a larger number of records, there is a
chance of reaching the concurrent data transmission
limit, resulting in exceptions within the application.
However, when utilizing SQLite database with the
Room library and the MVVC model implementation,
such issues do not occur, and queries for a larger
number of records can take over 10 minutes.
Additionally, Firebase services impose limitations on
data size, as observed in Realtime Database, or daily
limits on read, write, and delete operations, as seen in
Cloud Firestore. Utilizing paid tiers would allow
examining how operation times change with a larger
number of records, a scenario commonly encountered in
advanced IT systems where data volume can reach
several million entries.

Summarizing all the points presented above,
Realtime Database performs better in basic operations
than Cloud Firestore, however Cloud Firestore is more
optimized for complex data structure. Both of the cloud
databases perform worse than local one in single-record
operations but can outperform it if working at large
number of data. The user has to bear in mind the limits
of a single call according to the documentation.

References

[1] W. Al Shehri, Cloud Database Database as a Service,
International Journal of Database Management Systems
5(2) (2013) 1-12.

Journal of Computer Sciences Institute 29 (2023) 360-365

365

[2] D. Hammes, H. Medero, H. Mitchell, Comparison of
NoSQL and SQL Databases in the Cloud, SAIS 2014
Proceedings (2014) 12-20.

[3] Y. Li, S. Manoharan, A performance comparison of SQL
and NoSQL databases, IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing,
PACRIM, Victoria, BC, Canada, August 27-August 29,
2013, IEEE (2013) 15-19.

[4] M. Ohyver, J. V. Moniaga, I. Sungkawa, B. E. Subagyo,
I. A. Chandra, The Comparison Firebase Realtime
Database and MySQL Database Performance using
Wilcoxon Signed-Rank Test, Procedia Computer Science
157 (2019) 396-405.

[5] C. H. Lee, Z. W. Shih, A Comparison of NoSQL and
SQL Databases over the Hadoop and Spark Cloud
Platforms using Machine Learning Algorithms, 2018
IEEE International Conference on Consumer Electronics-
Taiwan, ICCE-TW, Taichung, Taiwan, May 19-May 21,
2018, IEEE (2018) 1-2.

[6] A. T. KABAKUŞ, A Performance Comparison of SQLite
and Firebase Databases from A Practical Perspective,
Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7(1)
(2019) 314-325.

[7] D. Inupakutika, G. Rodriguez, D. Akopian, P. Lama, P.
Chalela, A. G. Ramirez, On the Performance of Cloud-
Based mHealth Applications: A Methodology on
Measuring Service Response Time and a Case Study,
IEEE Access 10 (2022) 53208-53224.

[8] M. F. Younis, Z. S. Alwan, Monitoring the performance
of cloud real-time databases: A firebase case study, 2023
Al-Sadiq International Conference on Communication
and Information Technology, AICCIT, Al-Muthana, Iraq,
July 4-July 6, 2023, IEEE (2023) 240-245.

[9] Usage and limits | Firestore | Firebase,
https://firebase.google.com/docs/firestore/quotas?hl=en
[15.06.2023]

[10] Realtime Database Limits | Firebase Realtime Database,
https://firebase.google.com/docs/database/usage/limits?hl
=en [15.06.2023]

https://firebase.google.com/docs/firestore/quotas?hl=en
https://firebase.google.com/docs/database/usage/limits?hl=en
https://firebase.google.com/docs/database/usage/limits?hl=en

