
JCSI 33 (2024) 298–305

Received: 21 June 2024

Accepted: 10 July 2024

298

Performance analysis of working with relational and non-relational data-

bases in Java applications

Analiza wydajności pracy z relacyjnymi i nierelacyjnymi bazami danych

w aplikacjach Java

Krzysztof Caban*, Paweł Czuchryta, Beata Pańczyk

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The article presents a performance analysis of connections to both relational and non-relational databases, critical com-

ponents of the functionality of modern web applications. The study is concerned with evaluating the advantages of man-

ually integrated database drivers compared to the comprehensive Spring Data module. In addition, the impact of the

Spring Framework on the performance of drivers responsible for database connections was investigated. Based on the

results obtained, there are performance benefits for CRUD operations when adding drivers manually and using the Spring

Framework for JDBC and MongoDB drivers.

Keywords: Spring Framework; Java; performance; database drivers

Streszczenie

Artykuł przedstawia analizę wydajności połączeń zarówno z relacyjnymi, jak i nierelacyjnymi bazami danych, krytycz-
nymi komponentami funkcjonalności współczesnych aplikacji internetowych. Badanie dotyczy oceny zalet ręcznie zin-
tegrowanych sterowników baz danych w porównaniu do kompleksowego modułu Spring Data. Ponadto zbadano wpływ
Spring Framework na wydajność sterowników odpowiedzialnych za połączenia z bazami danych. Na podstawie uzyska-

nych wyników stwierdzono, że istnieją korzyści w zakresie wydajności dla operacji CRUD w przypadku ręcznego doda-
wania sterowników i korzystania ze Spring Framework dla sterowników JDBC i MongoDB.

Słowa kluczowe: Spring Framework; Java; wydajność; sterowniki bazodanowe

*Corresponding author

Email address: krzysztof.caban@pollub.edu.pl (K. Caban)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

Nowadays, databases are crucial for the operation of

computer programs, particularly web-based applications

that now dominate the world. Most of these applications

store data; therefore, databases are critical for proper op-

eration. Developments in technology and development

tools lead to an increase in user demands on applications

for faster data processing, which makes the performance

of the connection between the application and the data-

base important. This interfacing is made possible by the

use of dedicated drivers, which act as an interface be-

tween the application and database.

Currently, one of the critical criteria used to classify

databases is by their structure either relational or non-re-

lational. The decision to use either a relational or a non-

relational database is naturally informed by the nature of

the information being held. Relational databases are used

where data to be stored has well-defined and structural

relationships plus the requirement to carry out transac-

tions to maintain consistency. An excellent example of

such a database, based on relational storage, is a well-

known MySQL [1] system. Non-relational databases are

preferred in operation cases with massive datasets, the

variability of patterns, priority of scalability, flexibility,

and speed of access to information. MongoDB [2] is one

of the very well-known databases with non-relational

storage mechanisms [3].

In the case of database connection drivers, they can

be used either as discrete libraries or more extensive

modules consisting of a wide range of other different

drivers in implementing one. For instance, in the writing

of a Java [4] application, they can be included in the pro-

ject using a tool, such as the Maven. Developed applica-

tions based on the Spring [5] development framework

can include the Spring Data [6] module as a set of tools

and libraries for connecting to relational and non-rela-

tional databases.

The paper discusses the problem of optimal usage in

terms of connection to the relational and non-relational

databases. The study will examine the advantages of

manually integrated database drivers against the benefits

of selecting the more robust Spring Data module. These

studies are related to whether use of the Spring frame-

work positively affects drivers responsible for connecting

to databases.

2. Related work

This chapter provides a review of the available literature

on the comparative analysis of programming frameworks

used in Java and Spring applications to communicate

with relational and non-relational databases. Given the

limited number of publications on this topic, it was cho-

sen as the subject of this paper.

mailto:krzysztof.caban@pollub.edu.pl

Journal of Computer Sciences Institute 33 (2024) 298-305

299

In the article "Spring Framework Reliability Investi-

gation Against Database Bridging Layer Using Java Plat-

form" a comparative analysis of development frame-

works used to communicate with relational databases

was conducted [7]. The study tested the performance of

Hibernate [8], Java Database Connection (JDBC) [9] and

MyBatis Framework using a customized web service

written in Spring. The study tested only the operation of

obtaining data from the application using a prepared test

script. Based on the results, it was possible to determine

that the MyBatis and Hibernate frameworks achieved

comparable results, while JDBC proved to be the least

efficient solution.

In the publication "Performance Evaluation of Trans-

parent Persistence Layer in Java Applications" authors

compared performance between Apache Object Rela-

tional Bridge (OJB), Hibernate and Hibernate combined

with Spring [10]. The study tested CRUD (create, read,

update, delete) operations for a single database and a dis-

tributed solution. Tests were performed for a range of ob-

jects from 0 to 1000 with increment by 50, and the com-

pletion time of the operations was compared. The tests

showed that the combination of Hibernate and Spring

provided the best stability and performance of the opera-

tions performed at the expense of higher memory usage

caused by the use of the two frameworks.

The publication "Multi-Platform Performance Analy-

sis for CRUD Operations in Relational Databases from

Java Programs using Spring Data JPA" focuses on eval-

uating the performance of several leading relational data-

base management systems in the context of interaction

with Java applications using the JPA development frame-

work [11]. The research focused on comparing the per-

formance of CRUD operations. Tests were performed for

different record counts 1000, 10000, 50000, in order to

identify the optimal database depending on the usage sce-

nario. Analysis of the results showed that the MySQL da-

tabase proved to be the most versatile. SQLServer, on the

other hand, achieved the highest performance in the con-

text of data read operations. Interesting conclusions

emerged in the context of the Oracle database, which ob-

tained results below the average presented by other solu-

tions. This analysis provides information to make a deci-

sion on the database used based on the type and number

of operations.

The articles focused either on comparing perfor-

mance between different databases based on one of the

available communication solutions or pay attention to a

single communication method and present its capabili-

ties. Therefore, the present study focuses on comparing

different communication methods with relational and

non-relational databases.

3. Material and methods

For this study, a comprehensive analysis of the perfor-

mance of various database connection solutions was car-

ried out. To get the full picture, several versions of the

application were prepared using different configurations.

Applications were prepared in the default driver

configuration without any changes that might affect the

optimisation.

When working with relational databases, the follow-

ing configurations were used:

• JDBC in a Java application,

• JDBC in a Java + Spring application,

• Hibernate in a Java application,

• Hibernate in a Java + Spring application,

• Application with Spring Data JDBC module,

• Application with Spring Data JPA module.

In the context of performance testing of non-rela-

tional database connection solutions, the following ap-

proaches were used:

• MongoDB [12] driver in a Java application,

• MongoDB driver in a Java + Spring application,

• Application with the Spring Data MongoDB mod-

ule.

To test the application, relational and non-relational

database schemas were developed to store information

about the furniture wholesaler's product range. As de-

picted in Figure 1, the relational database schema is struc-

tured into four tables. The primary table, 'furniture', holds

detailed information about each piece of furniture. Com-

plementary tables include the 'manufacturer' table, which

catalogues information about the manufacturers, the

'type' table, which classifies the types of furniture, and

the 'material' table, which describes the materials used in

the furniture. For comprehensive testing, the database

was populated with 10,000 records.

Figure 1: Database schema.

3.1. Testing scenarios

In order to benchmark performance, several scenarios

were prepared which were executed for each of the pre-

pared application configurations. The tests checked the

execution time of HTTP requests and the use of CPU and

RAM. The test scenarios were prepared in JMeter.

Test scenarios I-V for HTTP requests were prepared

and run for different numbers of query repetitions of 1,

10, 100, 1 000 and 10 000 by one user:

• Scenario I – GET method – the user downloads all

available records in the database.

• Scenario II – GET method – the user retrieves a single

record.

• Scenario III – POST method – the user creates a new

record.

• Scenario IV – PUT method – the user edits a single

record in the database based on id.

• Scenario V – DELETE method – the user deletes

a single record from the database.

Journal of Computer Sciences Institute 33 (2024) 298-305

300

In order to measure the consumption of resources, ad-

ditional test scenarios were prepared. Each of them was

executed for 2 minutes continuously and with different

numbers of concurrent users 1, 10 and 100, respectively

– at a constant throughput of 150 requests per second.

• Scenario VI – GET method – downloading a single

record from the database.

• Scenario VII – POST method – adding a new record

to the database.

3.2. Test environment

Docker [13] containers were used to make the application

operation independent of the platform on which the tests

were executed. The structure included 2 Docker contain-

ers:

• Java application container,

• Database container.

The hardware specifications used in this research can

be seen in Table 1.

Table 1: Test platform specification

Component Description

CPU Intel Core i5-13400F

RAM 32GB DDR4

Operating system Windows 11 Home

Java 21

Spring Boot 3.2.4

JDBC 8.3.0

Hibernate 6.4.4

MongoDB driver 4.11.2

MongoDB 7.0.7

MySQL 8.4.0

4. Results

This chapter presents the results obtained from the re-

search conducted on the performance analysis of data-

base connections, both relational and non-relational.

These results are presented in the form of graphs, show-

ing the average measurement values for the different test

scenarios. To facilitate the analysis, the data has been di-

vided into subsections, each focusing on a specific data-

base connection driver. This division allows the perfor-

mance of different solutions to be compared, i.e. manu-

ally attaching drivers versus off-the-shelf solutions, and

the impact of using the Spring Framework on the perfor-

mance of the drivers tested. In average test time graphs,

different colours represent the number of queries per-

formed during a single test. In resource usage graphs, col-

ours represent the number of concurrent users during the

test.

4.1. JDBC driver

Figures 2-6 show the average times obtained in scenarios

I-V for applications using the JDBC driver. The worst

times can be observed in the Spring Data JDBC module

application, while the best times were observed in the

Spring application with a manually supplied JDBC

driver.

Figure 2: Average execution time in Scenario I (GET ALL).

Figure 3: Average execution time in Scenario II (GET ONE).

Figure 4: Average execution time in Scenario III (POST).

Journal of Computer Sciences Institute 33 (2024) 298-305

301

Figure 5: Average execution time in Scenario IV (PUT).

Figure 6: Average execution time in Scenario V (DELETE).

Figures 7-10 show the average resource consumption

(RAM and CPU) in scenarios VI-VII for applications us-

ing the JDBC driver. It can be observed that the overall

resource consumption of applications with manually

added drivers is lower than the off-the-shelf Spring Data

JDBC solution. The lowest average resource consump-

tion can be distinguished here by the Spring + manually

added JDBC application.

Figure 7: Average CPU usage in Scenario VI (GET).

Figure 8: Average RAM usage in Scenario VI (GET).

Figure 9: Average CPU usage in Scenario VII (POST).

Figure 10: Average CPU usage in Scenario VII (POST).

4.2. Hibernate driver

Figures 11-15 show the average times obtained in scenar-

ios I-V for applications using the Hibernate driver. In the

case of the Hibernate driver, the best times could be ob-

served for the application with the off-the-shelf Spring

Data JPA module. By far the worst in these tested scenar-

ios was the Spring application with a manually attached

Hibernate driver.

Journal of Computer Sciences Institute 33 (2024) 298-305

302

Figure 11: Average execution time in Scenario I (GET ALL).

Figure 12: Average execution time in Scenario II (GET ONE).

Figure 13: Average execution time in Scenario III (POST).

Figures 16-19 show the average resource consump-

tion (RAM and CPU) in scenarios VI-VII for applications

using the Hibernate driver. Again, the application with

the ready-made Spring Data JPA module performed best

and showed the lowest resource consumption. Also, as in

scenarios I-V, the Spring application with manually

added Hibernate proved to be the worst one and showed

the highest average resource consumption, especially in

the test case with 100 users.

Figure 14: Average execution time in Scenario IV (PUT).

Figure 15: Average execution time in Scenario V (DELETE).

Figure 16: Average CPU usage in Scenario VI (GET).

Journal of Computer Sciences Institute 33 (2024) 298-305

303

Figure 17: Average RAM usage in Scenario VI (GET).

Figure 18: Average CPU usage in Scenario VII (POST).

Figure 19: Average RAM usage in Scenario VII (POST).

4.3. MongoDB driver

Figures 20-24 show the average times obtained in scenar-

ios I-V for applications using the MongoDB driver. Very

similar to the situation with the JDBC driver, the appli-

cations with the manually added MongoDB driver

showed the lowest average times in the tests performed.

The worst application was the one with the ready-made

Spring Data MongoDB solution, and the best was the

Spring application with the manually attached driver.

Figure 20: Average execution time in Scenario I (GET ALL).

Figure 21: Average execution time in Scenario II (GET ONE).

Figure 22: Average execution time in Scenario III (POST).

Figures 25-28 show the average resource consump-

tion (RAM and CPU) in scenarios VI-VII for applications

Journal of Computer Sciences Institute 33 (2024) 298-305

304

using the MongoDB driver. In the performance tests, the

Spring application with the manually added MongoDB

driver also won, showing the lowest average consump-

tion of RAM and CPU resources.

Figure 23: Average execution time in Scenario IV (PUT).

Figure 24: Average execution time in Scenario V (DELETE).

Figure 25: Average CPU usage in Scenario VI (GET).

Figure 26: Average RAM usage in Scenario VI (GET).

Figure 27: Average CPU usage in Scenario VII (POST).

Figure 28: Average RAM usage in Scenario VII (POST).

5. Conclusion

From the results, it can be concluded that, for two out of

three drivers, manual integration provided better perfor-

mance than the out-of-the-box solution provided by the

Spring Data module. Performance improvement was also

observed in drivers integrated into the context of an

Journal of Computer Sciences Institute 33 (2024) 298-305

305

application based on the Spring Framework, which im-

plies a positive impact on efficiency of solution.

The results affirmed that the applications which used

the Spring framework and manually attached driver, per-

formed better in terms of response time and resource con-

sumption compared to that of applications written in Java

and Spring with use of Spring Data module. (14 of the

tested 21 variants). Exception was the Spring Data JPA

module, which ran faster than its counterparts.

The other important finding was that the worst per-

formance results among those obtained were created by

combining a Hibernate manually added driver with an ap-

plication based on the Spring Framework. This is likely

because all the solutions were tested in their default con-

figuration.

It is also important to remember that such drivers can

be further adjusted to improve the obtained performance

of applications. Further research could attempt to find the

best possible configuration for tested drivers. Once com-

pleted, further tests might be performed in order to select

the best configuration in comparison to the Spring Data

module. This process would provide researchers with

valuable data in assessment of the value of a custom-

made data layer in comparison to well-known and estab-

lished parts of Spring Framework.

References

[1] MySQL, https://www.mysql.com/, [08.11.2023].

[2] MongoDB: The Developer Data Platform,

https://www.mongodb.com/, [08.11.2023].

[3] Best NoSQL Databases Software in 2023, https://6sense.

com/tech/nosql-databases, [08.11.2023].

[4] Java| Oracle, https://www.java.com/pl/, [08.11.2023].

[5] Introduction to Spring Framework,

https://docs.spring.io/spring-

framework/docs/3.2.x/spring-framework-

reference/html/overview.html, [08.11.2023].

[6] Spring Data, https://spring.io/projects/spring-data,

[07.12.2023].

[7] A. Ginanjar, M. Hendayun, Spring Framework Reliability

Investigation Against Database Bridging Layer Using Java

Platform, Procedia Computer Science 161 (2019) 1036-

1045, https://doi.org/10.1016/j.procs.2019.11.214.

[8] Your relational data. Objectively. - Hibernate ORM,

https://hibernate.org/orm/, [08.11.2023].

[9] Java JDBC API, https://docs.oracle.com/javase/8/docs/

technotes/guides/jdbc/, [08.11.2023].

[10] Z. Zhiyu, C. Zhiang, Performance Evaluation of

Transparent Persistence Layer in Java Applications,

Proceedings of the International Conference on Cyber-

Enabled Distributed Computing and Knowledge

Discovery (2010) 21-26,

https://doi.org/10.1109/CyberC.2010.15.

[11] A. M. Bonteanu, C. Tudose, A. M. Anghel, Multi-Platform

Performance Analysis for CRUD Operations in Relational

Databases from Java Programs using Spring Data JPA,

Proceedings of the 13th International Symposium on

Advanced Topics in Electrical Engineering (ATEE)

(2023) 1-6, https://doi.org/

10.1109/ATEE58038.2023.10108212.

[12] Start Developing with MongoDB - MongoDB Drivers,

https://www.mongodb.com/docs/drivers/, [17.01.2024].

[13] Docker Documentation: Docker overview,

https://docs.docker.com/get-started/overview/,

[08.11.2023].

https://www.mysql.com/
https://www.mongodb.com/
https://6sense.com/tech/nosql-databases
https://6sense.com/tech/nosql-databases
https://www.java.com/pl/
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/overview.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/overview.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/overview.html
https://spring.io/projects/spring-data
https://doi.org/10.1016/j.procs.2019.11.214
https://hibernate.org/orm/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://doi.org/10.1109/CyberC.2010.15
https://doi.org/10.1109/ATEE58038.2023.10108212
https://doi.org/10.1109/ATEE58038.2023.10108212
https://www.mongodb.com/docs/drivers/
https://docs.docker.com/get-started/overview/

