
JCSI 32 (2024) 246–250

Received: 23 June 2024

Accepted: 10 July 2024

246

Comparative analysis of the Express.js and ElysiaJS frameworks in the

context of web application development

Analiza porównawcza szkieletów programistycznych Express.js i ElysiaJS

w kontekście tworzenia aplikacji internetowych

Damian Henryk Kostrzewa*, Marek Miłosz

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

JavaScript-based programming frameworks allow more and more web applications to be built, aiming to become the

fastest platform for a particular application. The aim of this paper is, among other things, to conduct study to obtain

performance results of two server-based programming libraries in the application of an online transaction database struc-

ture. The database structure, the TPC-C benchmark queries and the Bombardier HTTP(S) query measurement tool were

used to perform the tests. The research thesis "The Express.js framework has better performance than ElysiaJS in terms

of TPS measurement tests in TCP-C structure" was set. The results obtained did confirm the thesis.

Keywords: Bombardier; ElysiaJS; Express.js; TPC-C

Streszczenie

Szkielety programistyczne oparte o język JavaScript umożliwiają budowanie coraz to wiecej aplikacji internetowych

dążąc tym samym do uzyskania miana najszybszej platformy w konkretnym zastosowaniu. Celem artykułu jest między
innymi przeprowadzenie badań, które pozwolą na uzyskanie wyników wydajności dwóch serwerowych bibliotek progra-

mistycznych w zastosowaniu struktury bazy danych transakcji online. Do wykonania testów wykorzystano strukturę bazy
danych, zapytania benchmarku TPC-C oraz narzędzie pomiarowe do zapytań HTTP(S) Bombardier. Postawiono tezę
badawczą „Szkielet programistyczny Express.js jest bardziej wydajny niż ElysiaJS pod względem testów pomiaru TPS
w strukturze TCP-C”. Otrzymane wyniki potwierdziły postawioną tezę.

Słowa kluczowe: Bombardier; ElysiaJS; Express.js; TPC-C

*Corresponding author

Email address: damian.kostrzewa@pollub.edu.pl (D. H. Kostrzewa)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

Building web applications has always been a challenge

for developers who are looking to achieve the best possi-

ble performance or optimization results. However, new

solutions and entire execution environments are being

created to handle these problems, one such environment

is Bun and Node.js, on which the JavaScript program-

ming frameworks ElysiaJS and Express.js are based to

build a better web application than others. These frame-

works are used for the server side of the application, han-

dling all the necessary logic to communicate with the da-

tabase and additional functionality that often goes be-

yond the page, such as online payments or Application

Programming Interface (API) servers. One of the most

important aspects of any web application is that the data,

user information [1] or actions performed on the site are

recorded in a database. As the functionality of a web ap-

plication increases, so does the amount of data stored in

the database, which also results in a greater load on the

application server side itself [2], which has to handle the

communication between the user and the very collection

of data it is accessing.

To test the performance of the development frame-

work, automated HTTP(S) query tools can be used or

performance tests from trusted organizations such as the

Transaction Processing Performance Council [3] can be

used. This will allow reliable results to be obtained in

a specific day-to-day application of a web application, as

well as obtaining information on the latency of queries

made between server-side points and the database.

The purpose of this paper is to benchmark two server-

based development frameworks in identical but separated

environments and to obtain information on which one

achieves better performance for a specific application, in

this case a transaction service.

2. Purpose and scope of work

The purpose of analysing two development frameworks,

ElysiaJS and Express.js, is to conduct a study to answer

the thesis “The Express.js framework has better perfor-

mance than ElysiaJS in terms of TPS measurement tests

in TCP-C structure”, TPS measurement tests in the con-

text of web application development are crucial for de-

termining the overall bandwidth of requests between the

application and the database. Measurement criteria in-

clude support for HTTP requests, memory management,

scalability and ease of configuration in development on

prepared databases and datasets. The analysis will also

consider aspects of the tool ecosystem, documentation,

community support and developer feedback. Results of

the analysis will provide recommendations on the appro-

priate type of application for each framework, taking into

mailto:damian.kostrzewa@pollub.edu.pl

Journal of Computer Sciences Institute 32 (2024) 246-250

247

account differences in flexibility, modularity and availa-

ble resources.

3. Literature review

The initial question is whether both programming frame-

works are capable of creating an application for a specific

type of application. The technical documentation of both

Express.js and ElysiaJS [4-5], specifies that they are min-

imalistic and flexible frameworks based on the Node.js

and Bun run-time environment [6-7]. Performance is the

most important consideration for developers when choos-

ing a platform. Node.js, known for its event-driven, non-

blocking input/output model, has stood the test of time as

a solid and efficient choice for handling multiple concur-

rent calls as presented in [8]. Looking at the differences

that are offered by the two environments, Node.js has an

”ecosystem” designed to control events and handle con-

current connections thanks to its non-blocking I/O model.

Bun, on the other hand, directly declared at the outset that

the main goal is the speed and performance of the envi-

ronment, while to determine which framework based on

which execution environment is better for specific archi-

tectures it is necessary to use performance tests prepared

for real-world problems.

The database server has a major role in transactional

testing for a specific architecture, thanks to the research

provided by the article [9] that provides new insights and

findings about the performance comparison between

SQL and NoSQL databases. Study conducted an investi-

gation on various operations such as read, write, delete,

instantiate, and iterate on both types of databases. The re-

sults indicate that not all NoSQL databases outperform

SQL databases, and the performance varies depending on

the operation. communication between the server side

and the database resource is needed, this communication

is the most resource-intensive in terms of execution op-

erations. When the case involves huge data sets that bank

or warehouse applications can store, the necessary opti-

mization must be applied to the server-side link with the

database. Seemingly small optimizations can translate

into a surprising end result, because everything must be

multiplied by the amount of data that can be executed in

a given second, this unit is called transactions per second.

According to the article [10], it is possible to obtain in-

formation to optimize ”Create, Read, Update, Delete”
(CRUD) queries and indicate when to use parameterized

queries and when it is better to bet on performance and

resources.

Although everything comes to performance measure

that is crucial to determine which of backend server

frameworks (ElysiaJS and Express.js) performs better,

thanks to paper [11] which compared two types of TPC

benchmarks and conclude comparison of various I/O

characteristics of the two traces, including request types,

sizes, spatial and temporal locality it is possible to choose

benchmark that will meet expectations in terms of

throughput, latency and terms of realistic workload sim-

ulation and accurate performance evaluation. The litera-

ture review helped to select appropriate research methods

and practices for the execution of the tests and the final

presentation of the results.

4. Research methods

Two suitable test methods were undertaken to perform

the tests in order to obtain meaningful results. All tests

were carried out according to the table of hardware and

software specifications in Table 1.

Table 1: Environment specifications of hardware and software

Parameter Specification
Operating system Windows 10 64-bit

Processor Intel Core i7-11850H @ 2.50GHz
RAM SO-DIMM DDR4 64GB 3200MHz
SSD PM9A1 NVMe Samsung 512GB

Internet Wi-Fi 6 AX201 160MH

In addition, both development frameworks, i.e. ElysiaJS

and Express.js, used the following versions of the in-

stalled packages as listed in Table 2.

Table 2: Specification of framework versions and packages

Specification ElysiaJS Express.js

Node version 21.11.1 21.11.1

Express.js version - 4.19.2

NPM version - 10.2.4

Bun version 1.1.8 -

ElysiaJS version 1.0 -

MySQL driver ver-

sion

3.9.7 3.9.7

The latest stable versions of the frameworks were used,

and all dependencies were updated to their most recent

versions.

4.1. Database and queries

The database implementation will use the MySQL rela-

tional database version 8.2.12, with the XAMPP package

version 3.3.0 installed, which will simply and securely

reflect the schema presented by the TPC-C test assump-

tions. The database used will be unambiguous for both

development environments, thus avoiding time measure-

ment errors. Each programming framework will operate

on a newly created database structure as specified in Fig-

ure 1 filled with uniform and pre-prepared data correct

due to TPC-C documentation.

Figure 1. TPC-C Database schema.

Presented in Figure 1 schema assumes 9 entities, each

warehouse (W) under minimum assumptions has 10 pre-

defined districts (table District), and each district has

Journal of Computer Sciences Institute 32 (2024) 246-250

248

3,000 customers (table Customer) assigned to it, for a to-

tal of 30,000 customers. Each customer has the ability to

order from a catalog of 100,000 products (table Item).

There is also an order entity, which can be divided into 3

different entities and contains at least 30,000 orders per

warehouse (W), all due to the need for a kind of buffer

for this entity, the order has a predecessor as new-order,

and a successor order-line, through which it is possible to

queue orders and possibly modify the inventory of the

warehouse, each warehouse has to have at least 300,000

records. Added to the whole is the history entity, which

is intended only for inserting records. The tables in this

database have unique assumptions, the item entity is

read-only, warehouse, district, customer and stock are

read and write, and new-order is write, read and insert

because it is used as the previously mentioned buffer. Or-

der and order-line receive introductions and can be read

occasionally.

4.2. Queries

Each transaction is a group of queries required to com-

plete action in online web transaction in warehouse, some

of which require almost every possible data manipulation

method on database. Implementation may vary depend-

ing on optimalization in code, thus transaction queries

will be described as following:

• Payment transaction: First, a database transaction is

started. Next, the store's annual balance total is up-

dated, and then the store's address data and name are

retrieved. The next step is to update the annual total

of the district balances and retrieve the address data

and the district name. Depending on the value of by-

name, if byname is true, the customers with the given

name are counted and the customer data based on the

name is retrieved; if byname is false, the customer

data based on ID is retrieved. The customer's balance

is updated. If the customer has a special credit type

(contains 'BC'), additional customer data is retrieved,

new customer data is formatted, and then the balance

sheet and customer data are updated. If the customer

does not have a special credit type, only the customer

balance sheet is updated. Finally, a new record is in-

serted in the transaction history table.

• New order transaction: Initially, customer and store

data are retrieved, such as customer discount, name,

credit type and store tax. Next, the district data is re-

trieved, including the next order ID and district tax.

The next step is to update the district's next order ID.

New records are then inserted into the orders and new

orders table. For each order line, the data is processed:

the supplier's warehouse, item ID and quantity are re-

trieved, and then the item data such as price, name

and additional information is retrieved. After this, the

warehouse data, such as the quantity in stock and ad-

ditional distribution information, are retrieved, and

then the quantity in stock is updated. Based on the

item and warehouse data, the type of brand (original

or generic) is determined. The order line amount is

calculated, taking into account taxes and discounts,

and then a record is inserted into the order line table.

Each of these operations is performed in a loop for all

order lines until all the data has been processed and

stored in the database.

• Order status transaction: First, the namecnt variable

is initialized. If byname is true, the number of cus-

tomers with the given name, district and store identi-

fier is counted and then the data of these customers,

such as balance, first name, middle name and identi-

fier, is retrieved. The customer from the middle of the

list is selected for further processing. If byname is

false, the customer's data is retrieved based on its ID,

district ID and warehouse. The data of the last order

and the order line data are then retrieved and dis-

played.

• Delivery transaction: The DIST_PER_WARE con-

stant is set to 10, and then the storage ID is displayed.

Then, for each d_id from 1 to DIST_PER_WARE,

the following operations are performed: Starting by

querying the new order IDs for the given district id

and warehouse id, if there are no results, the iteration

moves to the next district id. The first order id in the

new order table from the query results is retrieved,

then the corresponding new order is removed based

on the order id in the new order table, district id and

warehouse id. The order customer id for the relevant

new order id, district id and warehouse id are re-

trieved, then the order carrier id for the order is up-

dated based on the order id, district id and warehouse

id. The delivery date for the order line is then updated

based on the order id in the new order, district id and

warehouse id table. The total amounts for the order

line are calculated, and the customer balance is up-

dated with the order line total. Finally, information on

the operations performed for the district and new or-

der is displayed. Each cycle of the loop processes the

data for the following districts in the warehouse.

• Stock level transaction: First, the value of

d_next_o_id is taken from the district table as order

id for the specified warehouse id and district id. Next,

the number of different items whose stock is below

the specified threshold is counted. The query includes

the order line and stock table, where the conditions

are warehouse id, district id, order id, and item id and

quantity in stock. The result is stored in the stock co-

unt variable.

4.3. Bombardier method

The first method involves checking the requests per sec-

ond, latency and throughput rate and is performed using

Bombardier's HTTP(S) benchmark tool [12]. The test

simulates real-world scenarios to provide a comprehen-

sive assessment of each framework's capabilities.

Method was prepared in such way to simulate different

types of web application workloads with different con-

current connections and amount of requests. Each frame-

work will be run 10 times to ensure statistical

Journal of Computer Sciences Institute 32 (2024) 246-250

249

significance. The following parameters were used for the

Bombardier test:

• Concurrent connections: 25, 50, 100

• Amount of requests: 10000, 100000, 1000000

Each group of tests will run only on payment transaction

query due to complexity of queries used in that transac-

tion. Therefore, worth mentioning is fact that during tests

object “createPool” will be used with property connec-
tionLimit set to 100. The reason for that is concurrent

connections boundary won’t be exceeded during tests.

4.4. TPC-C method

The method of using the TPC-C benchmark is to perform

N number of queries per transactional endpoint in 60 sec-

onds, the measure thus obtained, hereafter referred to as

tpmC, will allow a reliable and relative result to be ob-

tained in a real-world example of query application and

database structure usage.

Each of the tests will be repeated 10 times to obtain

reliable results for calculating the statistics of the average

number of queries per 60 seconds for the ElysiaJS and

Express.js development framework. By comparing the

results of the two programming frameworks against the

individual operations performed on the database in a bar

chart, it will be possible to identify clear performance dif-

ferences. Request endpoints are followed with similar

code in both frameworks as shown in Listing 1.

Listing 1. Code example of tpmC transaction query in ElysiaJS

5. Study results

5.1. Bombardier results

The tests, which were conducted according to a specific

methodology, produced reproducible and reliable results,

as can be seen in the averaged Table 2, each group of pa-

rameters, i.e. 25 concurrent connections per 10000 re-

quests, 50 concurrent connections per 100000 requests

etc., was performed 10 times for each development

framework.

As a result, the average latency results shown in Fig-

ure 2 were achieved. Equally important information is the

fact of the examined average standard deviation, which

for the Express.js framework behaves over the three pa-

rameter groups in a range between 6 and 12 ms, where

the compared ElysiaJS development framework from

11.5 to 58 ms. The comparison suggests significantly bet-

ter optimization of the Express.js language, when han-

dling multiple queries simultaneously.

Figure 2. Summary of average latency results for each variant of test.

Another of the parameters analyzed is the average num-

ber of queries per second. When comparing the results in

Figure 3, one can see an almost twofold difference in per-

formance over the trials.

Figure 3. Summary of average request results for each variant of test.

5.2. TPC-C results

In the following part of the study, a single execution of

each transaction query was performed, repeated 10 times.

The difference in proceeding with the TPC-C method is

due to the execution of a given transaction for 60 seconds

until the N result, which is the number of transactions

performed, that in other words tpmC. According to the

collated data shown in Figure 4, it is possible to indicate

which transactional queries were executed the slowest

and which the fastest. The transactional process with the

highest number of executions in a full minute is the stock

level operation, with a score in the range of 236 to 255

thousand, to check the stock level. On the other hand, the

process with the fewest executions is "order status" with

a score in the range of 200 to 300 transactions made, serv-

ing to filter the data to check the status of an order and

returning the corresponding data.

Journal of Computer Sciences Institute 32 (2024) 246-250

250

Figure 4. Average tpmC per transaction query between ElysiaJS and

Express.js.

The study used asynchronous unit query execution until

the transaction was complete, meaning that each query

had only one connection to the database at a time.

6. Conclusions

The research was aimed at identifying which web frame-

work is suitable for a specific and demanding application

such as an online transaction service. The Bun runtime

environment and the framework based on it, ElysiaJS,

was intended and according to existing tests, to be a faster

combination than NodeJS and Express.js. However, it ap-

pears that in practical use, the Express.js development

framework dominates the still relatively recent environ-

ments and their development frameworks or does not dif-

fer in performance in any significant way from them. It

is also worth taking into account the seniority of the com-

peting technologies, as the Bun environment in its offi-

cial version 1.0 was released on September 8, 2023,

where NodeJS has been on the market since 27 May

2009. Years of optimization and fine-tuning of the Ex-

press.js framework structure led to the effects observed

in the Bombardier tool test.

An aspect that raises the topic of discussion is the re-

sult of study 5.2 in which the comparison of tpmC aver-

ages obtained is close to each other despite the results of

study 5.1, which suggests significant performance and

optimization differences between the two developer

frameworks. However, despite the deceptively similar

performance specificities of the two methods, the key dif-

ference is in the behaviour and implementation of the

backend server-side functions. Queries performed with

the Bombardier load tool used a parameter to simulate

parallel connections in a given time unit, in addition to

which the createPool object's connectionLimit property

was defined to correspond to the maximum number of

concurrent connections; in order to avoid unsuccessful

repetitions, this limit was set to 100. In contrast, the TPC-

C method operated each time on a single connection in a

given loop revolution.

Based on the testing performed and analysis of the

compared results, it can be concluded that Express.js is

optimized for parallel handling of multiple queries and

prepared for applications to projects using extensive data

structures. Thus, ElysiaJS shows statistically better per-

formance when handling single queries, suggesting per-

formance potential. In response to the research thesis

posed, "The Express.js framework has better perfor-

mance than ElysiaJS in terms of TPS measurement tests

in TCP-C structure", the research showed that for han-

dling multiple and parallel queries Express.js outper-

forms ElysiaJS by almost double, while for single queries

the differences in TPS are similar or marginally greater

for ElysiaJS.

Bibliography

[1] G. D. Samaraweera, J. M. Chang, Security and Privacy

Implications on Database Systems in Big Data Era:

A Survey, IEEE Transactions on Knowledge and Data

Engineering 33 (2019) 239–258,

https://doi.org/10.1109/TKDE.2019.2929794.

[2] A. Lith, J. Mattsson, Investigating storage solutions for

large data - a comparison of well performing and scalable

data storage solutions for real time extraction and batch

insertion of data, Chalmers University of Technology,

2010.

[3] TPC-C Benchmark Standard Specification Revision 5.11,

Transaction Processing Performance Council (2010),

https://www.tpc.org/tpcc, [08.06.2024].

[4] Documentation of the programming framework, ElysiaJS,

https://elysiajs.com/, [16.11.2023].

[5] Documentation of the programming framework,

Express.js, https://expressjs.com/, [16.11.2023].

[6] Documentation of the run-time environment, Bun,

https://bun.sh/docs, [01.03.2024].

[7] Documentation of the run-time environment, Node.js,

https://nodejs.org/docs/latest-v21.x/api/index.html,

[01.03.2024].

[8] J. R. Wilson, Node.js the Right Way:Practical Server Side

Javascript that Scales, The Pragmatic Bookshelf, Raleigh,

2013.

[9] A. D. Díaz Erazo, M. Raúl Morales Morales, V. K. Pineda

Chávez, S. Leonardo Morales Cardoso, Comparative

Analysis of performance for SQL and NoSQL Databases,

In 2022 17th Iberian Conference on Information Systems

and Technologies (CISTI) (2022) 1-14,

https://doi.org/10.23919/CISTI54924.2022.9820292.

[10] T. Seser, V. Pleština, F. Marjanica, Performance analysis

of SQL Prepared Statements in CRUD operations, In 2022

7th International Conference on Smart and Sustainable

Technologies (SpliTech), (2022) 1-5,

https://doi.org/10.23919/SpliTech55088.2022.9854303.

[11] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons,

R. Johnson, I. Pandis, R. Stoica, TPC-E vs. TPC-C:

Characterizing the new TPC-E benchmark via an I/O

comparison study, ACM Sigmod Record 39 (2011) 5-10,

https://doi.org/10.1145/1942776.1942778.

[12] Documentation of http web tool, Bombardier,

https://pkg.go.dev/github.com/codesenberg/bombardier,

[08.06.2024].

https://doi.org/10.1109/TKDE.2019.2929794
https://www.tpc.org/tpcc
https://elysiajs.com/
https://expressjs.com/
https://bun.sh/docs
https://nodejs.org/docs/latest-v21.x/api/index.html
https://doi.org/10.23919/CISTI54924.2022.9820292
https://doi.org/10.23919/SpliTech55088.2022.9854303
https://doi.org/10.1145/1942776.1942778
https://pkg.go.dev/github.com/codesenberg/bombardier

