
JCSI 33 (2024) 306–312

Received: 28 June 2024

Accepted: 10 July 2024

306

Performance analysis of coroutines and other concurrency techniques in

Kotlin language for I/O operations

Analiza wydajności współprogramów i innych metod przetwarzania
współbieżnego w języku Kotlin dla operacji wejścia/wyjścia

Michał Grabowiec*, Sebastian Wiktor, Jakub Smołka

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

This article focuses on analyzing the performance of coroutines and other concurrent processing techniques in Kotlin

language for input/output operations. For this purpose, coroutines, traditional threads, thread pool and virtual threads were

put together. An appropriate application was created and test scenarios were developed. A series of tests were conducted,

followed by an analysis of the obtained results. These results indicate that coroutines and thread pool exhibit the highest

performance, highlighting their importance in optimizing concurrent processing in the Kotlin language.

Keywords: Kotlin; coroutines; concurrent processing

Streszczenie

Artykuł skupia się na analizie wydajności współprogramów i innych metod przetwarzania współbieżnego w języku Kotlin
dla operacji wejścia/wyjścia. W tym celu zestawiono ze sobą współprogramy, tradycyjne wątki, pulę wątków oraz wątki
wirtualne. Stworzono odpowiednią aplikację i opracowano scenariusze badawcze. Przeprowadzona została seria testów,
a następnie analiza otrzymanych wyników. Otrzymane wyniki wskazują, że współprogramy i pula wątków cechują się
największą wydajnością, co stanowi istotne zagadnienie w kontekście optymalizacji przetwarzania współbieżnego w ję-
zyku Kotlin.

Słowa kluczowe: Kotlin; współprogramy; przetwarzanie współbieżne

*Corresponding author

Email address: s97060@pollub.edu.pl (M. Grabowiec)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

The rapid advancement of technology elevates expecta-

tions for both computer hardware performance as well as

the efficiency of software running on it. In response to

these needs programming languages keep introducing

and improving various concurrent processing techniques

that allow different operations to be performed at the

same time, making full use of available resources and re-

ducing program execution time. Processing a huge num-

ber of input-output operations or handling multiple que-

ries to an external system at the same time requires ap-

propriate approach and choosing the best possible solu-

tion. In the case of the Kotlin language, one of the inno-

vative, although not entirely new approaches to concur-

rent programming are coroutines.

The concept of coroutines has already appeared in the

literature in 1958, described by Melvin Conway [1], but

it is not as popular and widely used as other methods of

concurrent processing. In addition to the aforementioned

coroutines, Kotlin being interoperable with multiple lan-

guages running on JVM (Java Virtual Machine) offers

other traditional approaches for concurrent data pro-

cessing, such as traditional threads, thread pools or vir-

tual threads. Due to rapidly growing popularity of the Ko-

tlin language [2] and the limited amount of scientific

work on coroutines, it is important to examine their per-

formance compared to the other concurrent processing

techniques. Evaluating the effectiveness and benefits of

these approaches is crucial for software developers in

a dynamic, fast-paced environment, as they must choose

the most efficient solutions and optimize their applica-

tions performance This analysis can provide valuable in-

sights into selecting best concurrent programming tech-

nique in the context of Kotlin language.

2. Literature review

Since its introduction in 2011 [3], Kotlin remains a rela-

tively young programming language. The concept of Ko-

tlin coroutines, introduced even later, has not yet been

extensively studied in terms of performance compared to

other solutions within the language.

Given that Kotlin is directly derived from Java and

runs on the Java Virtual Machine [4]. It is reasonable to

review studies comparing the performance of coroutines

with solutions implemented in Java or Scala. Im-

portantly, a 2020 paper by Everlönn and Gakis demon-

strates that Kotlin and Java exhibit very similar perfor-

mance, with no significant differences in code execution

speed. This result can be expected due to highly opti-

mized nature of Java Virtual Machine [5]. In a 2021 pa-

per, Chauhan, Kumar, Sethia, and Alam conducted a per-

formance analysis of Kotlin coroutines by comparing

them with the RxJava library. The results of their study

clearly indicate that coroutines are a more efficient ap-

proach [6]. Researchers Koval, Alistarh and Elizarov in

their 2022 paper implemented coroutines into their buffer

mailto:s97060@pollub.edu.pl

Journal of Computer Sciences Institute 33 (2024) 306-312

307

channel algorithm achieving a tenfold improvement in

performance [7]. Given the versatility of the coroutines

concept across different programming languages a 2020

paper by Shafi, Hashmi, Subramoni and Panda demon-

strated that using coroutines in Python to implement an

RDMA-based communication library achieved better

performance than using alternative approaches [8].

A 2010 article by Stadler, Wurthinger and Wimmer

demonstrated that their proposed implementation of

coroutines on the Java Virtual Machine manages re-

sources better, offering higher performance than compet-

ing JRuby Fibers-based threads [9]. The results of

Beronić, Modric, Mihaljević and Radovan's work indi-
cated that Kotlin-based coroutines are more efficient than

traditional Java threads [10].

Summarizing the review of the scientific literature on

the topic of coroutines, it is reasonable to hypothesize

that Kotlin coroutines may offer higher performance and

greater efficiency than other available concurrent pro-

cessing techniques.

3. Test application

This section details the development of a test application

designed to evaluate the performance of Kotlin

coroutines. The application compares different methods

of performing I/O (input/output) operations on files and

processing HTTP requests to an external REST API.

These methods were implemented using various dis-

patchers provided by Kotlin coroutines implementation

as well as thread pool, virtual threads and traditional

threads.

3.1. Application structure

The application consists of two primary classes: File-

ReadWriteTest and RestApiTest. Each class has an asso-

ciated State class, which contains the variables and meth-

ods needed to set up the benchmarks. This class includes

variables such as the number of operations to be executed

simultaneously, the path of the directory containing files

for the read/write benchmark and the endpoint URL for

the network I/O benchmark. It also includes methods to

initialize the required data for the read/write benchmark

and to set up the HTTP client for the network I/O one.

This design approach effectively separates the code being

measured from the code responsible for setting up the

benchmark. Both the FileReadWriteTest and Re-

stApiTest classes contain 5 test methods, which are de-

tailed in section 3.2. The API used in the tests was imple-

mented locally, on the same computer. It was a simple

Rest API with single endpoint handling GET type re-

quests that retrieved a simple, dynamically generated list

of 5 tasks to do and returned it as a JSON (JavaScript

Object Notation) object. API was created using the .NET

6.0 framework and Visual Studio 2022.

3.2. Test methods

Each test method implements a different approach to per-

forming I/O operations:

1. coroutinesDispatcherIOTest: This method utilizes

coroutines running on an IO dispatcher specifically

designed to handle input/output operations such as

file handling or network operations in the most effi-

cient matter. These coroutines are executed by

a shared pool of threads (consisting of 64 threads by

default) running inside the dispatcher [11]. The code

of this method in both variants is shown in Figure

1 and Figure 2.

2. coroutinesDispacherDefaultTest: This method em-

ploys coroutines running on the default dispatcher

which is backed by a shared pool of threads. The max-

imum number of threads in this pool is equal to the

number of CPU cores, but it is ensured to have at least

two threads. This setup ensures efficient utilization of

available resources, particularly for CPU-intensive

operations [12].

3. threadPoolTest: This method creates a fixed pool of

threads internally to perform I/O operations. The

number of threads can be specified by the developer

and be any value, but in the test application the num-

ber is set to match the available CPU cores.

4. threadsTest: This method initiates a new thread for

each I/O operation. In the benchmark, the number of

threads created equals the number of operations per-

formed.

5. virtualThreadsTest: This method utilizes lightweight

virtual threads, implemented by the Java runtime ra-

ther than the operating system. By leveraging optimi-

zations provided by the JVM, virtual threads can help

in reducing memory and CPU usage while facilitating

the concurrent execution of multiple operations [13].

Figure 1: Code of coroutinesDispatcherIOTest method in FileRead-

WriteTest class.

Figure 2: Code for the coroutinesDispatcherIOTest method in the Re-

stApiTest class.

Journal of Computer Sciences Institute 33 (2024) 306-312

308

4. Research methods

To analyze the performance of coroutines and other con-

current processing techniques in the context of input/out-

put operations, two test cases were defined and imple-

mented:

• sending requests to an external Rest API,

• reading from and writing to 1 MB files on the device.

Both test cases were implemented using different ap-

proaches described in the section 3.2. A series of bench-

marks was conducted to measure execution time as well

as resource consumption of the application code. These

benchmarks are detailed in the following section. The ap-

plication code was developed using Kotlin version 2.0.0

in the IntelliJ IDEA 2024.1.2 integrated development en-

vironment. The kotlinx.coroutines library version 1.9.0-

RC was utilized to implement coroutines-based solu-

tions, and the application was executed using the Java

Development Kit version 22.0.1. Benchmarks were con-

ducted on a computer with the specifications shown in

Table 1.

Table 1: Test computer configuration

Component Specification

Operating system Windows 11 Pro 23H2

Processor
AMD Ryzen 5 5600X 6

cores, 12 threads

Memory 16 GB, DDR4, 3600MHz

Hard drive
Kingston KC3000 M.2 PCIe

4.0 NVMe

4.1. Usage of resources

To gauge resource consumption accurately, the emphasis

was placed on measuring CPU utilization and machine

memory usage throughout the execution of the code im-

plementing the test cases outlined in section 4. For this

purpose, a software called VisualVM was used. This is

an advanced tool designed to monitor and analyze appli-

cations running on the JVM platform. Its capabilities in-

clude tracking heap memory consumption, monitoring

CPU utilization or tracking the number of threads being

used. The tool measures these metrics in in real time and

by using appropriate plugins allows them to be exported,

enabling reliable analysis of the results.

4.2. Execution time

In the context of an application performance, one of the

most crucial factors is the program execution time, which

serves as a key evaluation criterion, particularly for ap-

plications requiring responsiveness, high throughput and

efficient use of system resources. In order to conduct ex-

ecution time benchmarks, the JMH (Java Microbench-

mark Harness) library developed by Oracle was em-

ployed. Developers of this tool considered the intricate

process of code optimization by the Java Virtual Ma-

chine's compiler, ensuring a series of repeatable and reli-

able tests. Furthermore, the JMH's maintenance and de-

velopment by the same team as the JVM offers added re-

liability, as the tool's developers possess deep insights

into the JVM's internal operations, which ensures that the

user gets the most reliable results. The benchmark was

configured to measure the average execution time of each

tested method enabling the assessment of input/output

operation performance. Prior to actual measurement, the

benchmark undergoes a warm-up phase consisting of 10

iterations that allows JVM to perform its JiT (Just in

Time) compilation and other optimization techniques,

stabilizing the state of the Java Virtual Machine before

the benchmark begins. Subsequently, the measurement

phase, also consisting of 10 iterations, follows. Results

are reported in milliseconds. The configuration of the

performance test is shown in Figure 3.

Figure 3: JMH benchmark configuration.

5. Results

This section presents the results of the conducted tests

obtained through the research methods and scenarios de-

scribed previously. The results of the execution time

measurement for each concurrent processing approach

are depicted in the form of bar charts containing infor-

mation about the average execution time of operations.

The graphs are shown in Figures 4-11. Additionally, Ta-

ble 2 illustrates resource consumption during file read

and write operations for 5000 iterations. During the sec-

ond scenario, tests involving sending requests to an ex-

ternal indicated negligible resource consumption across

all methods. Given their minimal relevance to the overall

research, these findings were omitted from the results.

The absence of tests for the method based on virtual

threads within the same test scenario stemmed from the

constraints imposed by the HttpClient library utilized for

handling the API calls.

Table 2: Resource consumption during execution of 5000 itera-

tions of reading and writing a file

Technique CPU usage

[%]

Memory

usage

[MB]

Dispatcher Default 46,6 765

Dispatcher IO 13,1 751

Threads 41,1 1575

Thread Pool 8,8 392

Virtual Threads 54 1162

Journal of Computer Sciences Institute 33 (2024) 306-312

309

Figure 4: Average execution time of 500 iterations: file read/write.

Figure 5: Average execution time of 1000 iterations: file read/write.

Figure 6: Average execution time of 2000 iterations: file read/write.

Figure 7: Average execution time of 5000 iterations: file read/write.

0

50

100

150

200

250

300

350

m
s/

o
p

Processing method

Average execution time of 500 iterations:

file read/write

Dispatcher Default Dispatcher IO

Thread Pool Threads

Virtual Threads

0

100

200

300

400

500

600

700

m
s/

o
p

Processing method

Average execution time of 1000

iterations: file read/write

Dispatcher Default Dispatcher IO

Thread Pool Threads

Virtual Threads

0

200

400

600

800

1000

1200

1400

1600

1800

m
s/

o
p

Processing method

Average execution time of 2000

iterations: file read/write

Dispatcher Default Dispatcher IO

Thread Pool Threads

Virtual Threads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
s/

o
p

Processing method

Average execution time of 5000

iterations: file read/write

Dispatcher Default Dispatcher IO

Thread Pool Threads

Virtual Threads

Journal of Computer Sciences Institute 33 (2024) 306-312

310

Figure 8: Average execution time of 500 iterations: Rest API.

Figure 9: Average execution time of 1000 iterations: Rest API.

Figure 10: Average execution time of 2000 iterations: Rest API.

Figure 11: Average execution time of 5000 iterations: Rest API.

0

10

20

30

40

50

60

m
s/

o
p

Processing method

Average execution time of 500 iterations:

Rest API

Dispatcher Default Dispatcher IO

Thread Pool Threads

0

10

20

30

40

50

60

70

80

90

100

m
s/

o
p

Processing method

Average execution time of 1000

iterations: Rest API

Dispatcher Default Dispatcher IO

Thread Pool Threads

0

20

40

60

80

100

120

140

160

180

m
s/

o
p

Processing method

Average execution time of 2000

iterations: Rest API

Dispatcher Default Dispatcher IO

Thread Pool Threads

0

50

100

150

200

250

300

350

400

450

m
s/

o
p

Processing method

Average execution time of 5000

iterations: Rest API

Dispatcher Default Dispatcher IO

Thread Pool Threads

Journal of Computer Sciences Institute 33 (2024) 306-312

311

6. Discussion of results

The study shows that the most efficient approach for han-

dling input-output operations in Rest API applications is

through the use of coroutines using an IO dispatcher. The

execution times in this case were consistently the lowest

across various numbers of iterations and were, respec-

tively: 18.7 ms/op, 30.6 ms/op, 52.2 ms/op and 95.9

ms/op. Following closely behind is the usage of a thread

pool, which yielded execution times of: 21.7 ms/op, 36.5

ms/op, 62.1 ms/op and 119.1 ms/op. On average, the ex-

ecution time difference between these two approaches

was 16.2% in favoring coroutines with the IO dispatcher.

Coroutines utilizing the default dispatcher ranked third in

terms of execution speed, trailing behind the thread pool

by only 6% on average. However, they were considerably

slower than coroutines with the input/output dispatcher

by 26%. Traditional threads emerged as the least efficient

performers across all scenarios, exhibiting the highest ex-

ecution times for varying numbers of iterations. They

lagged significantly behind coroutines with the IO dis-

patcher, being 2.6 times slower for 500 iterations and

a staggering 4.3 times less efficient for 5000 iterations.

As mentioned in the previous section, the resource con-

sumption for the operations performed in this test sce-

nario were negligible and their analysis has no bearing on

determining which approach is the most efficient.

The research conducted in accordance with the sec-

ond test scenario revealed that the most efficient method

for processing files is the use of thread pool for which the

execution times were respectively: 229.7 ms/op, 449.8

ms/op, 991.6 ms/op and for 5000 iterations 2457.4 ms/op.

Slightly inferior performance was demonstrated by

coroutines based on the IO dispatcher, with execution

times of 258.5 ms/op, 503.5 ms/op, 1025.9 ms/op, and

2579.6 ms/op. On average, coroutines in this configura-

tion performed operations 8.2% slower than the thread

pool. Coroutines using the default dispatcher yielded re-

sults similar to those based on the IO dispatcher, with

slight differences of 10 ms and 12 ms faster for 500 and

1000 iterations respectively, but executing operations

longer by 50 ms and 66 ms for 2000 and 5000 iterations

Virtual threads achieved results similar to coroutines for

500 and 1000 iterations, but at 2000 and 5000 iterations,

they were slower than the IO dispatcher-based coroutines

by 12.1% and 13.2% respectively. Once again, traditional

threads emerged as the least efficient performers, with

significantly longer execution times for all iteration vari-

ants. These times surpassed those of thread pool opera-

tions by 32.9%, 43.2%, 56.3%, and 67.4% respectively.

During performance testing of file processing, re-

source consumption was measured for each approach.

The lowest average CPU usage was observed when pro-

cessing using a thread pool and coroutines using the de-

fault dispatcher, at 8.8% and 13.1% respectively. Tradi-

tional threads utilized an average of 41.1% of the CPU,

slightly outperforming coroutines based on the default

dispatcher (46.6% average CPU usage), with virtual

threads utilizing the most resources at an average of 54%

of CPU resources. Memory usage exhibited significant

variation among the tested techniques. The thread pool

consumed the least memory at 392 MB. Both coroutines

variants required a similar amount of memory, with 765

MB and 751 MB respectively, while threads and virtual

threads consumed the most memory at 1575 MB and

1165 MB respectively.

7. Conclusions

The purpose of this paper was to analyze the performance

of coroutines and other concurrent processing techniques

within the Kotlin language for input/output operations.

The literature review highlighted that coroutines

could be among the most efficient techniques for concur-

rent processing of IO operations in JVM environment.

To comprehensively explore the paper's topic, two

test scenarios were developed and prepared. These sce-

narios consisted of implementing test methods, develop-

ing test methodology as well as selecting appropriate

tools to measure each concurrent processing technique

accurately. The chosen tools were specifically selected

for their precision in measurement, an essential aspect

given the context of the Java Virtual Machine. This ap-

proach ensured that the evaluation process was robust

and capable of providing reliable insights into the perfor-

mance of various concurrent processing techniques.

The analysis of the test results revealed that IO dis-

patcher-based coroutines achieved the second-best per-

formance in file processing scenario and emerged as the

top performer in testing methods involving sending

HTTP requests to the Rest API. Meanwhile, the thread

pool-based method showed equally impressive results,

excelling as the most efficient approach for file pro-

cessing and ranking second in handling the Rest API re-

quests. Notably, both methods exhibited the lowest utili-

zation of CPU and memory resources. Coroutines based

on the default dispatcher also demonstrated satisfactory

performance, trailing slightly behind the two top-per-

forming techniques in each test scenario. Traditional

threads and virtual threads delivered the poorest results,

significantly lagging behind other solutions. These meth-

ods required the most CPU and memory resources, with

the performance gap widening with each increase in the

number of iterations.

Additionally, the flexibility afforded by the ability to

use different dispatchers positions coroutines as the most

versatile among all concurrent processing methods. This

inherent flexibility enables effective utilization across

a wide range of tasks, further solidifying their appeal as

a preferred approach in various programming scenarios.

Based on the research conducted and the analysis of

the results, it was demonstrated that coroutines, along

with thread pools, stand out as the most efficient methods

of concurrent processing in the Kotlin language, particu-

larly for input/output operations. Future research could

explore the performance of coroutines and other concur-

rent processing techniques in more diverse and complex

scenarios, such as real-time data processing or large-scale

distributed systems. Expanding the scope to include these

areas could provide deeper insights into the scalability

and robustness of coroutines under different workloads.

Journal of Computer Sciences Institute 33 (2024) 306-312

312

References

[1] R. Elizarov, M. Belyaev, M. Akhin, I. Usmanov, Kotlin

coroutines: design and implementation, Proceedings of the

2021 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming

and Software (Onward! '21) (2021) 68–84,

https://doi.org/10.1145/3486607.3486751.

[2] Octoverse: The state of open source and rise of AI in 2023,

https://github.blog/2023-11-08-the-state-of-open-source-

and-ai/, [23.05.2024].

[3] D. Gotseva, Y. Tomov, P. Danov, Comparative study Java

vs Kotlin, In 27th National Conference With International

Participation (2019) 86–89,

https://doi.org/10.1109/TELECOM48729.2019.8994896.

[4] D. Jemerov, S. Isakova, Kotlin in Action, Manning

Publications, New York, 2016.

[5] N. Everlönn, S. Gakis, Java and Kotlin, a performance

comparison, Bachelor thesis, Kristianstad University,

Kristianstad, 2020.

[6] K. Chauhan, S. Kumar, D. Sethia, M. N. Alam,

Performance Analysis of Kotlin Coroutines on Android in

a Model-View-Intent Architecture pattern, In 2021 2nd

International Conference for Emerging Technology

(INCET) (2021) 1–6,

http://dx.doi.org/10.1109/INCET51464.2021.9456197.

[7] N. Koval, D. Alistarh, R. Elizarov, Fast And Scalable

Channels In Kotlin Coroutines, Proceedings of the 28th

ACM SIGPLAN Annual Symposium on Principles and

Practice of Parallel Programming (2023) 107–118,

https://doi.org/10.48550/arXiv.2211.04986.

[8] A. Shafi, J. M. Hashmi, H. Subramoni, D. K. Panda, Blink:

Towards Efficient RDMA-based Communication

Coroutines for Parallel Python Applications, In 2020 IEEE

27th International Conference on High Performance

Computing, Data, and Analytics (HiPC) (2020) 111–120,

http://dx.doi.org/10.1109/HiPC50609.2020.00025.

[9] L. Stadler, T. Wurthinger, C. Wimmer, Efficient

Coroutines for the Java Platform, Proceedings of the 8th

International Conference on Principles and Practice of

Programming in Java (2010) 20–28,

http://dx.doi.org/10.1145/1852761.1852765.

[10] D. Beronić, L. Modrić, B. Mihaljević, A. Radovan,
Comparison of Structured Concurrency Constructs in Java

and Kotlin – Virtual Threads and Coroutines, In 2022 45th

Jubilee International Convention on Information,

Communication and Electronic Technology (MIPRO)

(2022) 1466–1471,

https://doi.org/10.23919/MIPRO55190.2022.9803765.

[11] Kotlin language documentation: Dispatcher IO,

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-

coroutines-core/kotlinx.coroutines/-dispatchers/-i-o.html,

[29.05.2024].

[12] Kotlin language documentation: Default dispatcher,

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-

coroutines-core/kotlinx.coroutines/-dispatchers/-

default.html, [29.05.2024].

[13] Power of Java Virtual Threads: A Deep Dive into Scalable

Concurrency, https://kiranukamath.medium.com/power-

of-java-virtual-threads-a-deep-dive-into-scalable-

concurrency-18fa4d382f9c, [29.05.2024].

https://doi.org/10.1145/3486607.3486751
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://doi.org/10.1109/TELECOM48729.2019.8994896
http://dx.doi.org/10.1109/INCET51464.2021.9456197
https://doi.org/10.48550/arXiv.2211.04986
http://dx.doi.org/10.1109/HiPC50609.2020.00025
http://dx.doi.org/10.1145/1852761.1852765
https://doi.org/10.23919/MIPRO55190.2022.9803765
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-i-o.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-i-o.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kiranukamath.medium.com/power-of-java-virtual-threads-a-deep-dive-into-scalable-concurrency-18fa4d382f9c
https://kiranukamath.medium.com/power-of-java-virtual-threads-a-deep-dive-into-scalable-concurrency-18fa4d382f9c
https://kiranukamath.medium.com/power-of-java-virtual-threads-a-deep-dive-into-scalable-concurrency-18fa4d382f9c

