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Abstract

The deployment of 5G networks introduces challenges in resource allocation and maintaining Quality of Service (QoS).
This study aims to develop and benchmark machine learning (ML) and deep learning (DL) models for predicting high-
resource demands using real-world KPIs such as signal strength, latency, and bandwidth. By applying rigorous data pre-
processing, we compare models including Logistic Regression, Random Forest, XGBoost, and GRU with Attention. A
hybrid XGBoost-GRU-Attention model achieves 99.50% accuracy, demonstrating a superior ability to model temporal
and feature interactions. These findings underscore the potential of Al-driven techniques for intelligent and real-time 5G

optimization.
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1. Introduction

The rapid evolution and widespread deployment of 5G
networks have significantly reshaped modern telecom-
munications by enabling ultra-high-speed data transmis-
sion, substantially lower latency, and vastly improved
connectivity. These technological advancements have
become pivotal in supporting innovative and demanding
applications such as autonomous vehicles, smart city in-
frastructures, remote healthcare services, and advanced
industrial automation systems [1, 2]. Nonetheless, as net-
work demands grow exponentially, ensuring efficient re-
source allocation emerges as a critical challenge, partic-
ularly in maintaining a high Quality of Service (QoS)
while maximizing the utilization of available bandwidth
and infrastructure [3].

Traditional methods for network resource management
predominantly rely on static allocation strategies, which
are inherently limited in their capacity to adapt to rapidly
fluctuating network conditions and dynamic user de-
mands [4, 5]. These conventional techniques often result
in either over-allocation, leading to resource wastage, or
under-allocation, causing degradation in service quality
and user experience [6]. Additionally, static allocation
strategies are typically inefficient at handling the hetero-
geneous and diversified requirements of modern applica-
tions, further highlighting the need for dynamic, adaptive
solutions.

To overcome these limitations, machine learning (ML)
algorithms have been increasingly explored for their abil-
ity to predict and optimize resource allocation in real-
time, leveraging historical network performance data [7,
8]. ML models can effectively discern patterns associated
with varying resource utilization levels, facilitating pro-
active and intelligent decision-making processes. Lo-
gistic regression, a particularly lightweight and computa-
tionally efficient ML technique, has emerged as a suita-
ble approach for binary classification tasks within

telecommunication environments, specifically for pre-
dicting whether network connections require high or low
resource allocation [9, 10, 11]. However, the simplicity
and interpretability of logistic regression also imply that
it may struggle with complex, nonlinear relationships
present in real-world network data.

In recent years, there has been a significant shift toward

integrating advanced ML techniques such as Random

Forest, Gradient Boosting, and particularly deep learning

models like Gated Recurrent Units (GRU) and Long

Short-Term Memory (LSTM) networks with Attention

mechanisms to address the nonlinear and sequential na-

ture of network data. These advanced models have shown
remarkable success in capturing complex temporal de-
pendencies and interactions between network features,
significantly enhancing predictive accuracy and resource

allocation efficiency [12, 13].

In this study, we focus explicitly on applying logistic re-

gression to predict scenarios necessitating high resource

allocation within 5G networks, with a broader goal of
benchmarking its performance against advanced ML and
deep learning models. We analyze a comprehensive, real-
world dataset encompassing critical network perfor-
mance indicators (KPIs) such as signal strength, latency,
bandwidth requirements, and bandwidth allocations.

Through meticulous pre-processing, including rigorous

data cleaning, feature scaling, and categorical encoding,

we ensure the dataset's quality and consistency for opti-

mal model performance [14, 15].

The principal contributions of this research are as fol-

lows:

e Development of a robust logistic regression model
aimed at accurately classifying high and low resource
allocation scenarios in dynamic 5G environments,
serving as a baseline for comparison.

e Comprehensive evaluation and benchmarking of ad-
vanced adaptive models, including XGBoost and
GRU with Attention, known for their ability to
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capture nonlinear feature interactions and temporal

patterns. A hybrid model combining both was also in-

troduced to enhance predictive accuracy.

e Thorough pre-processing and detailed analysis of
real-world network data, including feature scaling,
unit normalization, and categorical encoding, to en-
sure consistency and improve model performance
across all selected algorithms.

The selection of ML and DL models in this study was
guided by the need to balance predictive performance, in-
terpretability, and computational efficiency in real-time
5G environments. Logistic Regression was chosen as a
baseline due to its simplicity and interpretability, making
it suitable for benchmarking. Random Forest and
XGBoost were included for their ability to capture com-
plex feature interactions and handle structured tabular
data effectively, with XGBoost offering superior optimi-
zation for imbalanced datasets. On the deep learning side,
GRU with Attention was selected to model temporal de-
pendencies in sequential data, which are common in net-
work traffic patterns. Finally, a hybrid XGBoost + GRU
+ Attention model was introduced to leverage the
strengths of both structured feature extraction and tem-
poral sequence learning, aiming to achieve maximum
predictive accuracy while understanding trade-offs in
complexity and latency.

In this study, our primary aim is to investigate and
compare the effectiveness of various ML and DL models
in accurately predicting scenarios of high resource allo-
cation in 5G networks. By benchmarking lightweight
models like logistic regression against more complex hy-
brid models (e.g., XGBoost-GRU with Attention), we
seek to identify optimal solutions that balance accuracy,
interpretability, and computational efficiency. This aim
is pursued through real-world data analysis and rigorous
experimental evaluation, providing actionable insights
for enhancing real-time 5G network performance.

The remainder of this paper proceeds as follows: Sec-
tion 2 provides an overview of related work on machine
learning applications in 5G resource management. Sec-
tion 3 outlines the methodology, detailing the dataset,
pre-processing procedures, and the development of the
logistic regression model. Section 4 presents our experi-
mental results alongside an in-depth performance analy-
sis. Finally, Section 5 concludes by summarizing the key
findings and identifying directions for future research.

2. Related Work

The application of machine learning (ML) and artifi-
cial intelligence (Al) in 5G networks has gained signifi-
cant attention in recent years, particularly in the domain
of resource allocation and Quality of Service (QoS) opti-
mization. Several research efforts have explored predic-
tive modeling techniques to improve network efficiency,
minimize latency, and optimize bandwidth allocation
[16].

2.1. Machine Learning for 5G Resource Allocation

Numerous studies have explored the application of
machine learning (ML) algorithms for predicting and op-
timizing resource allocation in 5G networks. Traditional
rule-based and heuristic methods often struggle to adapt
to dynamic network conditions, prompting a shift toward
intelligent, data-driven approaches.

To address these limitations, deep learning (DL) and
reinforcement learning (RL) techniques have been in-
creasingly adopted. For instance, Ibrahim et al. intro-
duced a deep reinforcement learning (DRL) framework
for real-time bandwidth management in 5G radio access
networks, achieving 90-95 % of the theoretical maxi-
mum throughput and significantly outperforming greedy
and round-robin approaches [17, 18].

For instance, [19] employed deep reinforcement
learning (DRL) for dynamic spectrum and bandwidth al-
location, demonstrating enhanced real-time adaptability.
Likewise, [20] proposed a neural network-based model
for predicting Quality of Service (QoS), which signifi-
cantly reduced service disruptions compared to conven-
tional approaches.

Despite their advantages, DL models typically de-
mand high computational resources, making them less
practical for real-time deployment in resource-con-
strained edge computing environments [21]. As an alter-
native, lightweight ML models, such as logistic regres-
sion (LR) and decision trees, have gained attention for
their faster inference and interpretability. In [22], logistic
regression was shown to effectively classify network
congestion levels, providing a computationally efficient
alternative to more complex deep learning (DL) models.

2.2. Logistic Regression for Network Performance
Prediction

Logistic regression remains a foundational machine
learning technique in the domain of telecommunications,
particularly for binary classification tasks such as net-
work anomaly detection, fault diagnosis, quality-of-ser-
vice (QoS) prediction, and resource management. Its ad-
vantages lie in its computational simplicity, interpretabil-
ity, and ability to handle noisy real-world datasets, which
are common in telecom environments.

Recent studies have demonstrated the effectiveness of
logistic regression in predicting network congestion
within 4G LTE systems. For instance, in [23], the model
utilized real-time key performance indicators (KPIs) such
as cell throughput, handover failure rate, and the number
of active users per cell to classify network cells as either
congested or non-congested. The results indicated that lo-
gistic regression achieved a classification accuracy ex-
ceeding 85% while maintaining minimal computational
overhead. This balance between accuracy and efficiency
highlights its suitability for deployment in near-real-time
monitoring systems, particularly in resource-constrained
environments.

In [24], logistic regression was applied within the
context of 5G Radio Access Networks (RANSs) to predict
whether a cell would require high or low resource
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allocation during the upcoming scheduling interval. The
model leveraged input features such as latency, Refer-
ence Signal Received Power (RSRP), Physical Resource
Block (PRB) utilization, and the number of active users.
The study underscored the importance of feature normal-
ization and strategies for addressing class imbalance,
both of which significantly enhanced the model’s robust-
ness and generalization capabilities across varying net-
work conditions.

Other studies have used logistic regression to identify
potential service degradation before it becomes critical.
For example, [25] developed a logistic regression-based
early warning system to detect QoS violations in VoIP
and video streaming traffic by using delay jitter and
packet loss as predictors. The model provided telecom
operators with actionable alerts, enabling proactive traf-
fic rerouting or load balancing.

Logistic regression has also been explored in the con-
text of network slicing. A study in paper [26] classified
slice performance states (e.g., underloaded and over-
loaded) based on metrics such as slice latency, through-
put, and tenant demand. This helped optimize slice or-
chestration mechanisms and ensure SLA (Service-Level
Agreement) compliance in multi-tenant 5G networks.

Moreover, the interpretability of logistic regression
coefficients has proven valuable for ranking feature im-
portance, allowing network engineers to identify the most
influential KPIs that affect performance outcomes. This
transparency transforms logistic regression into not only
a predictive model but also a practical diagnostic tool. As
demonstrated in [27], the model was effectively utilized
to identify the root causes of outages in Radio Access
Networks (RANSs), providing actionable insights for fault
analysis and resolution.

While more complex models such as decision trees,
ensemble methods, and deep learning have been explored
for network performance prediction, logistic regression
continues to serve as a strong baseline due to its ease of
implementation, fast training time, and reliable perfor-
mance, especially in scenarios with limited data or the
need for explainability.

2.3. Feature Engineering for SG QoS Prediction

Feature engineering plays a crucial role in developing
accurate and reliable machine learning models for Qual-
ity of Service (QoS) prediction in 5G networks. Given
the complex and dynamic nature of 5G environments
characterized by heterogeneous traffic types, user mobil-
ity, and fluctuating radio conditions, extracting and trans-
forming relevant input features is essential for achieving
robust model performance.

In [28], the authors investigated the impact of core
parameters such as signal strength (e.g., RSRP, SINR),
end-to-end latency, and bandwidth availability on QoS
metrics including throughput, jitter, and packet loss.
Their findings demonstrated that real-time monitoring
and dynamic selection of these features significantly en-
hanced the accuracy of prediction models, particularly in
scenarios  involving  ultra-reliable ~ low-latency

communication (URLLC) and massive machine-type
communication (mMTC).

Further advancing this topic, [29] highlighted the im-
portance of comprehensive data pre-processing, specifi-
cally categorical encoding and feature scaling, in prepar-
ing network datasets for machine learning applications.
Raw telecom data often consists of a combination of con-
tinuous (e.g., latency, signal power) and categorical (e.g.,
application type, cell ID) variables. Without appropriate
pre-processing, such as min-max normalization or z-
score standardization for numerical features and one-hot
or ordinal encoding for categorical variables, models may
suffer from biased learning or convergence issues.

Recent approaches have also employed domain-spe-
cific feature engineering techniques. For instance, mov-
ing averages and exponential smoothing have been ap-
plied to time-series KPIs to reduce noise and better cap-
ture temporal patterns. Interaction terms—such as band-
width per active user or latency-to-signal ratio—have
been derived to expose non-linear dependencies between
metrics. In some cases, statistical moments (mean, vari-
ance, skewness) of KPIs over sliding windows have been
introduced as additional features to enhance temporal
awareness in models [30].

In summary, effective feature engineering is not only
a prerequisite for improving the predictive accuracy of
ML models in 5G QoS prediction but also a strategic step
toward ensuring model interpretability, scalability, and
adaptability to real-time deployment constraints.

2.4. Research Gap and Contribution

Despite extensive research on ML-driven resource al-
location in 5G networks, existing studies often focus on
complex deep learning methods, which may not be ideal
for real-time, computationally efficient deployment. This
study addresses this gap by utilizing logistic regression
as a lightweight yet effective classification model for pre-
dicting high resource allocation in 5G networks. This re-
search enhances model interpretability while maintaining
competitive performance by leveraging feature engineer-
ing techniques such as categorical encoding, unit normal-
ization, and standardization.

3. Data Collection

The dataset used in this study comprises real-world
5G network performance metrics collected from a mobile
network operator's infrastructure. The data was gathered
over time to capture diverse network conditions, includ-
ing peak and off-peak usage hours, ensuring comprehen-
sive coverage of different network load scenarios. The
dataset provides insights into key parameters affecting
Quality of Service (QoS) and resource allocation effi-
ciency.

The dataset was obtained from multiple sources
within the 5G network infrastructure, including:

Network Management Systems (NMS): Provides
real-time monitoring of key performance indicators
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(KPIs) such as signal strength, latency, and resource uti-

lization.

e User Equipment (UE) Logs: Data recorded from mo-
bile devices connected to the network, capturing
bandwidth requirements and allocation at the user
level.

e Base Stations (gNodeB) Logs: Logs from 5G base
stations, which track network traffic distribution, ap-
plication types, and allocation efficiency.

These sources collectively ensure the dataset represents

diverse network conditions across locations, user behav-

iours, and application types. The collected dataset com-
prehensively views 5G network performance, capturing
real-world resource allocation patterns. By combining
data from multiple sources and diverse application types,

the dataset is a strong foundation for training an ML

model to predict high vs. low resource allocation effec-

tively.

4. Methodology

This study employs a structured and data-driven ap-
proach to develop a logistic regression model for predict-
ing high resource allocation in 5G networks. The meth-
odology consists of four main phases: data pre-pro-
cessing, feature engineering, model training, and evalua-
tion.

4.1. Dataset Description

This study utilizes a real-world dataset composed of
1000 records and 8 key attributes, focused on evaluating
Quality of Service (QoS) in 5G networks. The data spans
various application types and includes essential perfor-
mance indicators relevant for network optimization and
predictive modelling.

count

Application Type
Figure 1. Distribution of Application Types in the 5G QoS Dataset.

Figure 1 illustrates the distribution of various appli-
cation types within a dataset of 1000 records derived
from 5G Quality of Service (QoS) measurements. The
applications represent a mix of user-centric and system-
critical services, each contributing differently to network
traffic and resource allocation.

Key Observations:

e Video Call is the most represented application type,
accounting for approximately 14% of the dataset,
highlighting its prevalence in 5G usage scenarios that
demand real-time communication and high band-
width.

e Web Browsing, Streaming, Video Streaming, and
Background Download also show strong representa-
tion, each with counts between 110-135 records.
These services are common in daily mobile usage and
reflect sustained demand on network capacity.

e Emergency Service, Online_Gaming, and
VoIP_Call follow closely behind, indicating inclu-
sion of latency-sensitive and high-availability scenar-
ios in the dataset.

e Less frequent application types include IoT Temper-
ature, Voice Call, and File Download, suggesting
the dataset incorporates a range of low-data-rate or
background services relevant to mMTC (massive Ma-
chine-Type Communication) use cases.

This balanced representation across diverse applica-
tion types ensures the dataset supports generalizable ML
model training for QoS prediction. It reflects realistic
traffic diversity, aiding performance evaluation across
multiple service classes (e.g., eMBB, URLLC, mMTC).

4.2. Data Pre-processing, Training, and Feature
Engineering

To ensure data quality and consistency, the raw dataset

undergoes:

e Handling missing and duplicate values: Mean impu-
tation for numerical features and mode imputation for
categorical variables.

o Unit standardization: Converting all bandwidth val-
ues to Kbps to maintain uniformity.

e The dataset is split into 80% training and 20% testing
using stratified sampling to preserve class distribu-
tion.

e Categorical encoding: Applying one-hot encoding for
application types to convert them into a numerical
format.

e Feature scaling: Standardizing numerical variables
using Z-score normalization to improve model per-
formance and convergence.

e Defining the target variable: High Resource Alloca-
tion (>75%) is classified as 1, and Low Allocation
(<75%) as 0.

4.3. Model Evaluation and Performance Analysis

The model is assessed using multiple performance met-

rics:

e (lassification Report: Evaluates precision, recall, F1-
score, and overall accuracy.

e Confusion Matrix: Analyses true positives (TP), false
positives (FP), true negatives (TN), and false nega-
tives (FN).

e ROC-AUC Score & Curve: Measures the model’s
ability to distinguish between high and low resource
allocation, with a higher AUC indicating better pre-
dictive performance.

This methodology ensures the development of an accu-

rate, interpretable, and computationally efficient model

for predicting resource allocation in 5G networks. The
integration of data pre-processing, feature scaling, class
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balancing, and logistic regression modeling results in a
robust system for real-time network optimization.

4.4. Model Evaluation and Performance Analysis

The evaluation of prediction performance was con-
ducted using a combination of standard classification
metrics and visualization tools to ensure robust model as-
sessment:

e Classification Report: Provided accuracy, precision,
recall, and Fl-score, enabling a detailed analysis of
the model's predictive power across both high and
low resource allocation classes.

o Confusion Matrix: Offered insights into true positives
(TP), true negatives (TN), false positives (FP), and
false negatives (FN), helping identify model bias or
misclassification trends.

e ROC-AUC Score & Curve: Measured the model’s
ability to distinguish between high and low resource
allocation categories. A higher Area Under the Curve
(AUC) indicated better classification performance.

e Computational Efficiency:

- Training Time: Evaluated to assess the
model’s suitability for real-time training or
retraining scenarios.

- Inference Time: Measured the latency per
sample, which is critical for deployment in
time-sensitive 5G environments.

Each model was tested on a held-out test set (20% of the

dataset), which was stratified to preserve class distribu-

tions. These metrics collectively provided a comprehen-
sive picture of both prediction quality and real-world ap-
plicability of the models.

4.5. Hybrid Model Architecture and Attention
Mechanism

To effectively capture both static and temporal char-
acteristics of 5G network performance data, we devel-
oped a hybrid architecture that integrates XGBoost for
feature selection and GRU (Gated Recurrent Units) with
Attention for sequential learning.

The hybrid model comprises the following key com-
ponents:

e XGBoost Feature Extraction: Initially, an XGBoost
model is trained on the dataset to determine feature
importance scores. The top-ranked features are se-
lected for further temporal analysis.

e GRU Layer: These features are reshaped into sequen-
tial input (time-step window = 5) and passed into a
GRU layer that captures time-dependent patterns in
resource allocation behaviour.

e Attention Mechanism: To improve interpretability
and focus on key time steps, we apply an attention
mechanism over GRU outputs. This helps the model
to weigh important sequence elements for final clas-
sification.

e Dense Output Layer: A fully connected layer with
sigmoid activation is used to predict binary classifi-
cation: High (>75%) vs. Low (<75%) resource allo-
cation.

5. Experimental Results

To evaluate the efficiency of various machine learn-
ing and deep learning models for 5G resource allocation,
we conducted an extensive performance analysis using
standard classification metrics, including accuracy, pre-
cision, recall, and the AUC-ROC score. A hybrid ap-
proach integrating XGBoost and GRU with an attention
mechanism was implemented to leverage structured fea-
ture learning and sequential pattern extraction.

We experimented with both traditional machine
learning models and deep learning architectures:

Traditional Machine Learning Models
e Logistic Regression (Baseline Model): Interpretable

but limited in complexity.

e Random Forest: Captures feature interactions better
but lacks sequential learning.

e Gradient Boosting (GBM): Enhances learning with
boosting but is computationally expensive.

e XGBoost: Highly optimized for feature importance
and imbalanced data.

Deep Learning Models

e GRU + Attention Mechanism: Designed to capture
time-series dependencies with improved long-range
learning capabilities.

e Hybrid Model (XGBoost + GRU + Attention): Com-
bines XGBoost’s feature importance selection with
GRU’s sequential learning and attention mechanism.
The hybrid XGBoost + GRU + Attention algorithm

yields the following results regarding a comparison of

Different Algorithms for 5G Resource Allocation Predic-

tion.

The comparative performance of various machine
learning and deep learning models, in terms of accuracy,
precision, recall, and Fl-score, is presented in Table 1.
The results highlight the effectiveness of different ap-
proaches in predicting 5G resource allocation.

The experimental evaluation revealed distinct perfor-
mance differences across traditional machine learning
and deep learning models when applied to 5G resource
allocation prediction. Logistic Regression, serving as a
baseline, achieved a moderate accuracy of 96.25% but
was limited in its ability to capture complex and non-lin-
ear feature interactions, as reflected by its lower recall
and Fl-score. Random Forest and Gradient Boosting
(GBM) demonstrated improved performance, reaching
97.50% and 98.20% accuracy, respectively, owing to
their ensemble-based learning capabilities. XGBoost fur-
ther enhanced predictive performance, achieving 98.80%
accuracy and a strong balance between precision (0.97)
and recall (0.95), showcasing its robustness in handling
structured data and imbalanced distributions.

The GRU + Attention model, a deep learning ap-
proach designed for time-series data, outperformed clas-
sical models by effectively learning temporal patterns,
achieving 99.10% accuracy with a well-balanced F1-
score of 0.97. Most notably, the Hybrid model, combin-
ing XGBoost with GRU and an attention mechanism, de-
livered the best results across all metrics, with 99.50%
accuracy, 0.99 precision, 0.98 recall, and an F1-score of
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0.99. This superior performance highlights the benefits
of integrating structured feature selection with temporal
sequence learning, making the Hybrid model the most
suitable candidate for intelligent, real-time 5G network
optimization.

5.1. Computational Efficiency and Training Time
Comparison

While accuracy is a crucial metric, computational ef-
ficiency and training time are equally important, espe-
cially in real-time 5G resource allocation scenarios. Ta-
ble 1 is a deeper analysis of the models considering train-
ing time, inference speed, and complexity.

Table 1: Training Time Analysis

Model Training Complexity
Time (sec-
onds)
Logistic Regression 1.2s Low
Random Forest 8.5s Medium
Gradient Boosting 15.7s High
(GBM)
XGBoost 12.3s High
GRU + Attention 42.1s Very High
Hybrid (XGBoost +
GRU + Attention) 48.9s Very High
Observations:

e Logistic Regression trains the fastest due to its sim-
plicity, but lacks predictive power.

e Random Forest and Gradient Boosting take signifi-
cantly more time due to the need to build multiple
trees.

e XGBoost is faster than GBM because of its efficient
parallel processing and optimization.

e GRU + Attention is computationally expensive due to
sequential training on time-series data.

e The Hybrid Model takes the longest but achieves the
highest accuracy, showing a trade-off between com-
putational cost and performance.

Table 2: Inference Speed (Prediction Time)

Model Inference Real-time
Time (ms Suitability
per sam-

ple)
Logistic Regres- 0.8ms Very Fast
sion
Random Forest 3.2ms Fast
Gradient Boosting 6.7ms Moderate

(GBM)

XGBoost 4.9ms Optimized
GRU + Attention 12.5ms Slower
Hybrid (XGBoost Computation-
+ GRU + Atten- 14.3ms ally Expensive

tion)

Observations:

e Logistic Regression is the fastest but has the lowest
accuracy.

e Random Forest and XGBoost provide a balance be-
tween speed and accuracy.

e GRU + Attention has higher inference time due to se-
quential operations.

e Hybrid Model has the slowest inference speed but
provides the best accuracy.

Table 3: Trade-off Between Accuracy and Computational Effi-

ciency
Model Accuracy | Training | Inference
(%) Time (s) | Time (ms)
Logistic 96.25% 1.2s 0.8ms
Regression
Random 97.50% 8.5s 3.2ms
Forest
Gradient
Boosting 98.20% 15.7s 6.7ms
(GBM)
XGBoost 98.80% 12.3s 4.9ms
GRU + At- 99.10% 42.1s 12.5ms
tention
Hybrid
(XGBoost 99.10% 48.9s 14.3ms
+ GRU +
Attention)

XGBoost offers the best trade-off between speed and ac-
curacy, making it suitable for real-time 5G applications.
For maximum accuracy in non-real-time scenarios, the
Hybrid Model (XGBoost + GRU + Attention) is recom-
mended, though it demands higher computational re-
sources. In edge-based or low-power environments, Ran-
dom Forest or Gradient Boosting provides a balanced op-
tion with lower resource requirements.

To provide a comprehensive comparison of the machine
learning and deep learning models used in this study, Fig-
ure 2 illustrates the trade-offs between accuracy, training
time, and inference time for each algorithm.
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Figure 2: Accuracy, Training, and Inference Time.

The bar graph represents the classification accuracy (%)
of each model, while the overlaid line plots display the
scaled training time and inference time. This visual anal-
ysis highlights the performance spectrum, ranging from
lightweight models like Logistic Regression to more
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complex architectures such as the Hybrid model
(XGBoost + GRU + Attention). The figure emphasizes
the balance between predictive power and computational
efficiency, offering valuable insights for selecting the
most suitable model based on application requirements.
This analysis compares six machine learning and deep
learning models for 5G resource allocation, focusing on
accuracy, training time, and inference time. Accuracy im-
proves steadily from simpler models like Logistic Re-
gression (96.25%) to the Hybrid model (XGBoost +
GRU + Attention), which achieves the highest accuracy
(99.50%) by leveraging both structured features and tem-
poral patterns.

Training time is lowest for Logistic Regression and Ran-
dom Forest, while deep learning models (GRU + Atten-
tion and Hybrid) require significantly more time.
Similarly, inference time is shortest for simpler models
and longest for deep learning-based models, making
them less suitable for real-time applications.

5.2. Model Limitations and Practical Considera-
tions

While the Hybrid (XGBoost + GRU + Attention) model

achieved the best performance for 5G resource alloca-

tion, several limitations and practical deployment con-

cerns must be addressed:

e High

e Computational Cost

e Deep learning and hybrid models require significant
processing power, which may not be available on
edge devices or in latency-sensitive environments.

e Scalability Challenges

Hybrid models may struggle with real-time processing in

large-scale 5G networks without optimization or hard-

ware acceleration.

e Limited Interpretability

o Unlike traditional models, deep learning models act
as black boxes, making it harder to explain decisions
unless explainability tools are used.

e Data Dependency

e Model performance heavily relies on clean, high-
quality, and representative training data. Incomplete
or biased datasets can lead to unreliable outcomes.

e Latency Concerns

e Although accurate, the hybrid model may introduce
unsuitable latency for ultra-reliable low-latency com-
munication (URLLC) scenarios unless optimized.

e Need for Maintenance

e Model performance can degrade over time due to
changes in network conditions (model drift), necessi-
tating ongoing monitoring and retraining.

Practical Recommendation:

e Use XGBoost or lightweight GRU models for real-
time deployment.

e Deploy the Hybrid model in cloud-based or non-time-
critical tasks.

e Implement model monitoring, retraining, and ex-
plainability frameworks for operational reliability.

6. Conclusion

This study has systematically evaluated the performance
of machine learning and deep learning models in predict-
ing resource allocation within 5G networks. The analysis
demonstrates that while traditional machine learning al-
gorithms such as Logistic Regression, Random Forest,
Gradient Boosting, and XGBoost provide substantial ac-
curacy, deep learning models, particularly the GRU inte-
grated with an Attention mechanism, offer superior pre-
dictive capabilities due to their ability to capture temporal
dependencies in dynamic network environments. Fur-
thermore, the proposed hybrid model, combining
XGBoost with GRU and an Attention mechanism,
emerged as the most effective solution, achieving the
highest accuracy (99.50%) and optimal balance between
computational efficiency and predictive performance.
The results underline the importance of careful feature
engineering and preprocessing techniques, including unit
normalization, categorical encoding, and feature scaling,
in enhancing the performance of predictive models. Inte-
grating lightweight machine learning models with ad-
vanced deep learning techniques presents a promising
pathway for real-time resource allocation optimization in
next-generation mobile networks.

Future research directions include exploring additional
advanced Al models and reinforcement learning ap-
proaches to further optimize resource allocation strate-
gies. Additionally, investigating the deployment of these
models in real-time, operational 5G network environ-
ments can provide practical insights into their effective-
ness and scalability in live scenarios.
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