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Abstract 

The deployment of 5G networks introduces challenges in resource allocation and maintaining Quality of Service (QoS). 

This study aims to develop and benchmark machine learning (ML) and deep learning (DL) models for predicting high-

resource demands using real-world KPIs such as signal strength, latency, and bandwidth. By applying rigorous data pre-

processing, we compare models including Logistic Regression, Random Forest, XGBoost, and GRU with Attention. A 

hybrid XGBoost-GRU-Attention model achieves 99.50% accuracy, demonstrating a superior ability to model temporal 

and feature interactions. These findings underscore the potential of AI-driven techniques for intelligent and real-time 5G 

optimization. 
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1. Introduction 

The rapid evolution and widespread deployment of 5G 

networks have significantly reshaped modern telecom-

munications by enabling ultra-high-speed data transmis-

sion, substantially lower latency, and vastly improved 

connectivity. These technological advancements have 

become pivotal in supporting innovative and demanding 

applications such as autonomous vehicles, smart city in-

frastructures, remote healthcare services, and advanced 

industrial automation systems [1, 2]. Nonetheless, as net-

work demands grow exponentially, ensuring efficient re-

source allocation emerges as a critical challenge, partic-

ularly in maintaining a high Quality of Service (QoS) 

while maximizing the utilization of available bandwidth 

and infrastructure [3]. 

Traditional methods for network resource management 

predominantly rely on static allocation strategies, which 

are inherently limited in their capacity to adapt to rapidly 

fluctuating network conditions and dynamic user de-

mands [4, 5]. These conventional techniques often result 

in either over-allocation, leading to resource wastage, or 

under-allocation, causing degradation in service quality 

and user experience [6]. Additionally, static allocation 

strategies are typically inefficient at handling the hetero-

geneous and diversified requirements of modern applica-

tions, further highlighting the need for dynamic, adaptive 

solutions. 

To overcome these limitations, machine learning (ML) 

algorithms have been increasingly explored for their abil-

ity to predict and optimize resource allocation in real-

time, leveraging historical network performance data [7, 

8]. ML models can effectively discern patterns associated 

with varying resource utilization levels, facilitating pro-

active and intelligent decision-making processes. Lo-

gistic regression, a particularly lightweight and computa-

tionally efficient ML technique, has emerged as a suita-

ble approach for binary classification tasks within 

telecommunication environments, specifically for pre-

dicting whether network connections require high or low 

resource allocation [9, 10, 11]. However, the simplicity 

and interpretability of logistic regression also imply that 

it may struggle with complex, nonlinear relationships 

present in real-world network data. 

In recent years, there has been a significant shift toward 

integrating advanced ML techniques such as Random 

Forest, Gradient Boosting, and particularly deep learning 

models like Gated Recurrent Units (GRU) and Long 

Short-Term Memory (LSTM) networks with Attention 

mechanisms to address the nonlinear and sequential na-

ture of network data. These advanced models have shown 

remarkable success in capturing complex temporal de-

pendencies and interactions between network features, 

significantly enhancing predictive accuracy and resource 

allocation efficiency [12, 13]. 

In this study, we focus explicitly on applying logistic re-

gression to predict scenarios necessitating high resource 

allocation within 5G networks, with a broader goal of 

benchmarking its performance against advanced ML and 

deep learning models. We analyze a comprehensive, real-

world dataset encompassing critical network perfor-

mance indicators (KPIs) such as signal strength, latency, 

bandwidth requirements, and bandwidth allocations. 

Through meticulous pre-processing, including rigorous 

data cleaning, feature scaling, and categorical encoding, 

we ensure the dataset's quality and consistency for opti-

mal model performance [14, 15]. 

The principal contributions of this research are as fol-

lows: 

• Development of a robust logistic regression model 

aimed at accurately classifying high and low resource 

allocation scenarios in dynamic 5G environments, 

serving as a baseline for comparison. 

•  Comprehensive evaluation and benchmarking of ad-

vanced adaptive models, including XGBoost and 

GRU with Attention, known for their ability to 
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capture nonlinear feature interactions and temporal 

patterns. A hybrid model combining both was also in-

troduced to enhance predictive accuracy. 

• Thorough pre-processing and detailed analysis of 

real-world network data, including feature scaling, 

unit normalization, and categorical encoding, to en-

sure consistency and improve model performance 

across all selected algorithms. 

The selection of ML and DL models in this study was 

guided by the need to balance predictive performance, in-

terpretability, and computational efficiency in real-time 

5G environments. Logistic Regression was chosen as a 

baseline due to its simplicity and interpretability, making 

it suitable for benchmarking. Random Forest and 

XGBoost were included for their ability to capture com-

plex feature interactions and handle structured tabular 

data effectively, with XGBoost offering superior optimi-

zation for imbalanced datasets. On the deep learning side, 

GRU with Attention was selected to model temporal de-

pendencies in sequential data, which are common in net-

work traffic patterns. Finally, a hybrid XGBoost + GRU 

+ Attention model was introduced to leverage the 

strengths of both structured feature extraction and tem-

poral sequence learning, aiming to achieve maximum 

predictive accuracy while understanding trade-offs in 

complexity and latency. 

In this study, our primary aim is to investigate and 

compare the effectiveness of various ML and DL models 

in accurately predicting scenarios of high resource allo-

cation in 5G networks. By benchmarking lightweight 

models like logistic regression against more complex hy-

brid models (e.g., XGBoost-GRU with Attention), we 

seek to identify optimal solutions that balance accuracy, 

interpretability, and computational efficiency. This aim 

is pursued through real-world data analysis and rigorous 

experimental evaluation, providing actionable insights 

for enhancing real-time 5G network performance. 

The remainder of this paper proceeds as follows: Sec-

tion 2 provides an overview of related work on machine 

learning applications in 5G resource management. Sec-

tion 3 outlines the methodology, detailing the dataset, 

pre-processing procedures, and the development of the 

logistic regression model. Section 4 presents our experi-

mental results alongside an in-depth performance analy-

sis. Finally, Section 5 concludes by summarizing the key 

findings and identifying directions for future research. 

 

2. Related Work 

The application of machine learning (ML) and artifi-

cial intelligence (AI) in 5G networks has gained signifi-

cant attention in recent years, particularly in the domain 

of resource allocation and Quality of Service (QoS) opti-

mization. Several research efforts have explored predic-

tive modeling techniques to improve network efficiency, 

minimize latency, and optimize bandwidth allocation 

[16]. 

2.1. Machine Learning for 5G Resource Allocation 

Numerous studies have explored the application of 

machine learning (ML) algorithms for predicting and op-

timizing resource allocation in 5G networks. Traditional 

rule-based and heuristic methods often struggle to adapt 

to dynamic network conditions, prompting a shift toward 

intelligent, data-driven approaches. 

To address these limitations, deep learning (DL) and 

reinforcement learning (RL) techniques have been in-

creasingly adopted. For instance, Ibrahim et al. intro-

duced a deep reinforcement learning (DRL) framework 

for real-time bandwidth management in 5G radio access 

networks, achieving 90–95 % of the theoretical maxi-

mum throughput and significantly outperforming greedy 

and round-robin approaches [17, 18]. 

For instance, [19] employed deep reinforcement 

learning (DRL) for dynamic spectrum and bandwidth al-

location, demonstrating enhanced real-time adaptability. 

Likewise, [20] proposed a neural network-based model 

for predicting Quality of Service (QoS), which signifi-

cantly reduced service disruptions compared to conven-

tional approaches. 

Despite their advantages, DL models typically de-

mand high computational resources, making them less 

practical for real-time deployment in resource-con-

strained edge computing environments [21]. As an alter-

native, lightweight ML models, such as logistic regres-

sion (LR) and decision trees, have gained attention for 

their faster inference and interpretability. In [22], logistic 

regression was shown to effectively classify network 

congestion levels, providing a computationally efficient 

alternative to more complex deep learning (DL) models. 

 

2.2. Logistic Regression for Network Performance 

Prediction 

Logistic regression remains a foundational machine 

learning technique in the domain of telecommunications, 

particularly for binary classification tasks such as net-

work anomaly detection, fault diagnosis, quality-of-ser-

vice (QoS) prediction, and resource management. Its ad-

vantages lie in its computational simplicity, interpretabil-

ity, and ability to handle noisy real-world datasets, which 

are common in telecom environments. 

Recent studies have demonstrated the effectiveness of 

logistic regression in predicting network congestion 

within 4G LTE systems. For instance, in [23], the model 

utilized real-time key performance indicators (KPIs) such 

as cell throughput, handover failure rate, and the number 

of active users per cell to classify network cells as either 

congested or non-congested. The results indicated that lo-

gistic regression achieved a classification accuracy ex-

ceeding 85% while maintaining minimal computational 

overhead. This balance between accuracy and efficiency 

highlights its suitability for deployment in near-real-time 

monitoring systems, particularly in resource-constrained 

environments. 

In [24], logistic regression was applied within the 

context of 5G Radio Access Networks (RANs) to predict 

whether a cell would require high or low resource 
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allocation during the upcoming scheduling interval. The 

model leveraged input features such as latency, Refer-

ence Signal Received Power (RSRP), Physical Resource 

Block (PRB) utilization, and the number of active users. 

The study underscored the importance of feature normal-

ization and strategies for addressing class imbalance, 

both of which significantly enhanced the model’s robust-
ness and generalization capabilities across varying net-

work conditions. 

Other studies have used logistic regression to identify 

potential service degradation before it becomes critical. 

For example, [25] developed a logistic regression-based 

early warning system to detect QoS violations in VoIP 

and video streaming traffic by using delay jitter and 

packet loss as predictors. The model provided telecom 

operators with actionable alerts, enabling proactive traf-

fic rerouting or load balancing. 

Logistic regression has also been explored in the con-

text of network slicing. A study in paper [26] classified 

slice performance states (e.g., underloaded and over-

loaded) based on metrics such as slice latency, through-

put, and tenant demand. This helped optimize slice or-

chestration mechanisms and ensure SLA (Service-Level 

Agreement) compliance in multi-tenant 5G networks. 

Moreover, the interpretability of logistic regression 

coefficients has proven valuable for ranking feature im-

portance, allowing network engineers to identify the most 

influential KPIs that affect performance outcomes. This 

transparency transforms logistic regression into not only 

a predictive model but also a practical diagnostic tool. As 

demonstrated in [27], the model was effectively utilized 

to identify the root causes of outages in Radio Access 

Networks (RANs), providing actionable insights for fault 

analysis and resolution. 

While more complex models such as decision trees, 

ensemble methods, and deep learning have been explored 

for network performance prediction, logistic regression 

continues to serve as a strong baseline due to its ease of 

implementation, fast training time, and reliable perfor-

mance, especially in scenarios with limited data or the 

need for explainability. 

2.3. Feature Engineering for 5G QoS Prediction 

Feature engineering plays a crucial role in developing 

accurate and reliable machine learning models for Qual-

ity of Service (QoS) prediction in 5G networks. Given 

the complex and dynamic nature of 5G environments 

characterized by heterogeneous traffic types, user mobil-

ity, and fluctuating radio conditions, extracting and trans-

forming relevant input features is essential for achieving 

robust model performance. 

In [28], the authors investigated the impact of core 

parameters such as signal strength (e.g., RSRP, SINR), 

end-to-end latency, and bandwidth availability on QoS 

metrics including throughput, jitter, and packet loss. 

Their findings demonstrated that real-time monitoring 

and dynamic selection of these features significantly en-

hanced the accuracy of prediction models, particularly in 

scenarios involving ultra-reliable low-latency 

communication (URLLC) and massive machine-type 

communication (mMTC). 

Further advancing this topic, [29] highlighted the im-

portance of comprehensive data pre-processing, specifi-

cally categorical encoding and feature scaling, in prepar-

ing network datasets for machine learning applications. 

Raw telecom data often consists of a combination of con-

tinuous (e.g., latency, signal power) and categorical (e.g., 

application type, cell ID) variables. Without appropriate 

pre-processing, such as min-max normalization or z-

score standardization for numerical features and one-hot 

or ordinal encoding for categorical variables, models may 

suffer from biased learning or convergence issues. 

Recent approaches have also employed domain-spe-

cific feature engineering techniques. For instance, mov-

ing averages and exponential smoothing have been ap-

plied to time-series KPIs to reduce noise and better cap-

ture temporal patterns. Interaction terms—such as band-

width per active user or latency-to-signal ratio—have 

been derived to expose non-linear dependencies between 

metrics. In some cases, statistical moments (mean, vari-

ance, skewness) of KPIs over sliding windows have been 

introduced as additional features to enhance temporal 

awareness in models [30]. 

In summary, effective feature engineering is not only 

a prerequisite for improving the predictive accuracy of 

ML models in 5G QoS prediction but also a strategic step 

toward ensuring model interpretability, scalability, and 

adaptability to real-time deployment constraints. 

 

2.4. Research Gap and Contribution 

Despite extensive research on ML-driven resource al-

location in 5G networks, existing studies often focus on 

complex deep learning methods, which may not be ideal 

for real-time, computationally efficient deployment. This 

study addresses this gap by utilizing logistic regression 

as a lightweight yet effective classification model for pre-

dicting high resource allocation in 5G networks. This re-

search enhances model interpretability while maintaining 

competitive performance by leveraging feature engineer-

ing techniques such as categorical encoding, unit normal-

ization, and standardization. 

 

3. Data Collection 

The dataset used in this study comprises real-world 

5G network performance metrics collected from a mobile 

network operator's infrastructure. The data was gathered 

over time to capture diverse network conditions, includ-

ing peak and off-peak usage hours, ensuring comprehen-

sive coverage of different network load scenarios. The 

dataset provides insights into key parameters affecting 

Quality of Service (QoS) and resource allocation effi-

ciency. 

The dataset was obtained from multiple sources 

within the 5G network infrastructure, including: 

Network Management Systems (NMS): Provides 

real-time monitoring of key performance indicators 



Journal of Computer Sciences Institute 37 (2025) 371-378 

 

374 

(KPIs) such as signal strength, latency, and resource uti-

lization. 

• User Equipment (UE) Logs: Data recorded from mo-

bile devices connected to the network, capturing 

bandwidth requirements and allocation at the user 

level. 

• Base Stations (gNodeB) Logs: Logs from 5G base 

stations, which track network traffic distribution, ap-

plication types, and allocation efficiency. 

These sources collectively ensure the dataset represents 

diverse network conditions across locations, user behav-

iours, and application types. The collected dataset com-

prehensively views 5G network performance, capturing 

real-world resource allocation patterns. By combining 

data from multiple sources and diverse application types, 

the dataset is a strong foundation for training an ML 

model to predict high vs. low resource allocation effec-

tively. 

4. Methodology 

This study employs a structured and data-driven ap-

proach to develop a logistic regression model for predict-

ing high resource allocation in 5G networks. The meth-

odology consists of four main phases: data pre-pro-

cessing, feature engineering, model training, and evalua-

tion. 

4.1. Dataset Description 

This study utilizes a real-world dataset composed of 

1000 records and 8 key attributes, focused on evaluating 

Quality of Service (QoS) in 5G networks. The data spans 

various application types and includes essential perfor-

mance indicators relevant for network optimization and 

predictive modelling. 

 

Figure 1. Distribution of Application Types in the 5G QoS Dataset. 

Figure 1 illustrates the distribution of various appli-

cation types within a dataset of 1000 records derived 

from 5G Quality of Service (QoS) measurements. The 

applications represent a mix of user-centric and system-

critical services, each contributing differently to network 

traffic and resource allocation. 

Key Observations: 

• Video_Call is the most represented application type, 

accounting for approximately 14% of the dataset, 

highlighting its prevalence in 5G usage scenarios that 

demand real-time communication and high band-

width. 

• Web_Browsing, Streaming, Video_Streaming, and 

Background_Download also show strong representa-

tion, each with counts between 110–135 records. 

These services are common in daily mobile usage and 

reflect sustained demand on network capacity. 

• Emergency_Service, Online_Gaming, and 

VoIP_Call follow closely behind, indicating inclu-

sion of latency-sensitive and high-availability scenar-

ios in the dataset. 

• Less frequent application types include IoT_Temper-

ature, Voice_Call, and File_Download, suggesting 

the dataset incorporates a range of low-data-rate or 

background services relevant to mMTC (massive Ma-

chine-Type Communication) use cases. 

This balanced representation across diverse applica-

tion types ensures the dataset supports generalizable ML 

model training for QoS prediction. It reflects realistic 

traffic diversity, aiding performance evaluation across 

multiple service classes (e.g., eMBB, URLLC, mMTC). 

4.2. Data Pre-processing, Training, and Feature 

Engineering 

To ensure data quality and consistency, the raw dataset 

undergoes: 

• Handling missing and duplicate values: Mean impu-

tation for numerical features and mode imputation for 

categorical variables. 

• Unit standardization: Converting all bandwidth val-

ues to Kbps to maintain uniformity. 

• The dataset is split into 80% training and 20% testing 

using stratified sampling to preserve class distribu-

tion. 

• Categorical encoding: Applying one-hot encoding for 

application types to convert them into a numerical 

format. 

• Feature scaling: Standardizing numerical variables 

using Z-score normalization to improve model per-

formance and convergence. 

• Defining the target variable: High Resource Alloca-

tion (≥75%) is classified as 1, and Low Allocation 
(<75%) as 0. 

 

4.3. Model Evaluation and Performance Analysis 

The model is assessed using multiple performance met-

rics: 

• Classification Report: Evaluates precision, recall, F1-

score, and overall accuracy. 

• Confusion Matrix: Analyses true positives (TP), false 

positives (FP), true negatives (TN), and false nega-

tives (FN). 

• ROC-AUC Score & Curve: Measures the model’s 
ability to distinguish between high and low resource 

allocation, with a higher AUC indicating better pre-

dictive performance. 

This methodology ensures the development of an accu-

rate, interpretable, and computationally efficient model 

for predicting resource allocation in 5G networks. The 

integration of data pre-processing, feature scaling, class 
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balancing, and logistic regression modeling results in a 

robust system for real-time network optimization. 

4.4. Model Evaluation and Performance Analysis 

The evaluation of prediction performance was con-

ducted using a combination of standard classification 

metrics and visualization tools to ensure robust model as-

sessment: 

• Classification Report: Provided accuracy, precision, 

recall, and F1-score, enabling a detailed analysis of 

the model's predictive power across both high and 

low resource allocation classes. 

• Confusion Matrix: Offered insights into true positives 

(TP), true negatives (TN), false positives (FP), and 

false negatives (FN), helping identify model bias or 

misclassification trends. 

• ROC-AUC Score & Curve: Measured the model’s 
ability to distinguish between high and low resource 

allocation categories. A higher Area Under the Curve 

(AUC) indicated better classification performance. 

• Computational Efficiency: 

- Training Time: Evaluated to assess the 

model’s suitability for real-time training or 

retraining scenarios. 

- Inference Time: Measured the latency per 

sample, which is critical for deployment in 

time-sensitive 5G environments. 

Each model was tested on a held-out test set (20% of the 

dataset), which was stratified to preserve class distribu-

tions. These metrics collectively provided a comprehen-

sive picture of both prediction quality and real-world ap-

plicability of the models. 

4.5. Hybrid Model Architecture and Attention 

Mechanism 

To effectively capture both static and temporal char-

acteristics of 5G network performance data, we devel-

oped a hybrid architecture that integrates XGBoost for 

feature selection and GRU (Gated Recurrent Units) with 

Attention for sequential learning. 

The hybrid model comprises the following key com-

ponents: 

• XGBoost Feature Extraction: Initially, an XGBoost 

model is trained on the dataset to determine feature 

importance scores. The top-ranked features are se-

lected for further temporal analysis. 

• GRU Layer: These features are reshaped into sequen-

tial input (time-step window = 5) and passed into a 

GRU layer that captures time-dependent patterns in 

resource allocation behaviour. 

• Attention Mechanism: To improve interpretability 

and focus on key time steps, we apply an attention 

mechanism over GRU outputs. This helps the model 

to weigh important sequence elements for final clas-

sification. 

• Dense Output Layer: A fully connected layer with 

sigmoid activation is used to predict binary classifi-

cation: High (≥75%) vs. Low (<75%) resource allo-
cation. 

5. Experimental Results 

To evaluate the efficiency of various machine learn-

ing and deep learning models for 5G resource allocation, 

we conducted an extensive performance analysis using 

standard classification metrics, including accuracy, pre-

cision, recall, and the AUC-ROC score. A hybrid ap-

proach integrating XGBoost and GRU with an attention 

mechanism was implemented to leverage structured fea-

ture learning and sequential pattern extraction. 

We experimented with both traditional machine 

learning models and deep learning architectures: 

Traditional Machine Learning Models 

• Logistic Regression (Baseline Model): Interpretable 

but limited in complexity. 

• Random Forest: Captures feature interactions better 

but lacks sequential learning. 

• Gradient Boosting (GBM): Enhances learning with 

boosting but is computationally expensive. 

• XGBoost: Highly optimized for feature importance 

and imbalanced data. 

Deep Learning Models 

• GRU + Attention Mechanism: Designed to capture 

time-series dependencies with improved long-range 

learning capabilities. 

• Hybrid Model (XGBoost + GRU + Attention): Com-

bines XGBoost’s feature importance selection with 
GRU’s sequential learning and attention mechanism. 
The hybrid XGBoost + GRU + Attention algorithm 

yields the following results regarding a comparison of 

Different Algorithms for 5G Resource Allocation Predic-

tion. 

The comparative performance of various machine 

learning and deep learning models, in terms of accuracy, 

precision, recall, and F1-score, is presented in Table 1. 

The results highlight the effectiveness of different ap-

proaches in predicting 5G resource allocation. 

The experimental evaluation revealed distinct perfor-

mance differences across traditional machine learning 

and deep learning models when applied to 5G resource 

allocation prediction. Logistic Regression, serving as a 

baseline, achieved a moderate accuracy of 96.25% but 

was limited in its ability to capture complex and non-lin-

ear feature interactions, as reflected by its lower recall 

and F1-score. Random Forest and Gradient Boosting 

(GBM) demonstrated improved performance, reaching 

97.50% and 98.20% accuracy, respectively, owing to 

their ensemble-based learning capabilities. XGBoost fur-

ther enhanced predictive performance, achieving 98.80% 

accuracy and a strong balance between precision (0.97) 

and recall (0.95), showcasing its robustness in handling 

structured data and imbalanced distributions. 

The GRU + Attention model, a deep learning ap-

proach designed for time-series data, outperformed clas-

sical models by effectively learning temporal patterns, 

achieving 99.10% accuracy with a well-balanced F1-

score of 0.97. Most notably, the Hybrid model, combin-

ing XGBoost with GRU and an attention mechanism, de-

livered the best results across all metrics, with 99.50% 

accuracy, 0.99 precision, 0.98 recall, and an F1-score of 
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0.99. This superior performance highlights the benefits 

of integrating structured feature selection with temporal 

sequence learning, making the Hybrid model the most 

suitable candidate for intelligent, real-time 5G network 

optimization. 

 

5.1. Computational Efficiency and Training Time 

Comparison 

While accuracy is a crucial metric, computational ef-

ficiency and training time are equally important, espe-

cially in real-time 5G resource allocation scenarios. Ta-

ble 1 is a deeper analysis of the models considering train-

ing time, inference speed, and complexity. 

Table 1: Training Time Analysis 

Model Training 

Time (sec-

onds) 

Complexity 

Logistic Regression 1.2s Low 

Random Forest 8.5s Medium 

Gradient Boosting 

(GBM) 

15.7s High 

XGBoost 12.3s High 

GRU + Attention 42.1s Very High 

Hybrid (XGBoost + 

GRU + Attention) 

 

48.9s 

 

Very High 

 

Observations: 

• Logistic Regression trains the fastest due to its sim-

plicity, but lacks predictive power. 

• Random Forest and Gradient Boosting take signifi-

cantly more time due to the need to build multiple 

trees. 

• XGBoost is faster than GBM because of its efficient 

parallel processing and optimization. 

• GRU + Attention is computationally expensive due to 

sequential training on time-series data. 

• The Hybrid Model takes the longest but achieves the 

highest accuracy, showing a trade-off between com-

putational cost and performance. 

Table 2: Inference Speed (Prediction Time) 

Model Inference 

Time (ms 

per sam-

ple) 

Real-time 

Suitability 

Logistic Regres-

sion 

0.8ms Very Fast 

Random Forest 3.2ms Fast 

Gradient Boosting 

(GBM) 

6.7ms  Moderate 

XGBoost 4.9ms Optimized 

GRU + Attention 12.5ms Slower 

Hybrid (XGBoost 

+ GRU + Atten-

tion) 

 

14.3ms 

Computation-

ally Expensive 

 

 

 

Observations: 

• Logistic Regression is the fastest but has the lowest 

accuracy. 

• Random Forest and XGBoost provide a balance be-

tween speed and accuracy. 

• GRU + Attention has higher inference time due to se-

quential operations. 

• Hybrid Model has the slowest inference speed but 

provides the best accuracy. 

Table 3: Trade-off Between Accuracy and Computational Effi-

ciency 

Model Accuracy 

(%) 

Training 

Time (s) 

Inference 

Time (ms) 

Logistic 

Regression 

96.25% 1.2s 0.8ms 

Random 

Forest 

97.50% 8.5s 3.2ms 

Gradient 

Boosting 

(GBM) 

 

98.20% 

 

15.7s 

  

6.7ms 

XGBoost 98.80% 12.3s 4.9ms 

GRU + At-

tention 

99.10% 42.1s 12.5ms 

Hybrid 

(XGBoost 

+ GRU + 

Attention) 

 

99.10% 

 

48.9s 

 

14.3ms 

 

XGBoost offers the best trade-off between speed and ac-

curacy, making it suitable for real-time 5G applications. 

For maximum accuracy in non-real-time scenarios, the 

Hybrid Model (XGBoost + GRU + Attention) is recom-

mended, though it demands higher computational re-

sources. In edge-based or low-power environments, Ran-

dom Forest or Gradient Boosting provides a balanced op-

tion with lower resource requirements. 

To provide a comprehensive comparison of the machine 

learning and deep learning models used in this study, Fig-

ure 2 illustrates the trade-offs between accuracy, training 

time, and inference time for each algorithm.  

 

 

Figure 2: Accuracy, Training, and Inference Time. 

The bar graph represents the classification accuracy (%) 

of each model, while the overlaid line plots display the 

scaled training time and inference time. This visual anal-

ysis highlights the performance spectrum, ranging from 

lightweight models like Logistic Regression to more 
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complex architectures such as the Hybrid model 

(XGBoost + GRU + Attention). The figure emphasizes 

the balance between predictive power and computational 

efficiency, offering valuable insights for selecting the 

most suitable model based on application requirements. 

This analysis compares six machine learning and deep 

learning models for 5G resource allocation, focusing on 

accuracy, training time, and inference time. Accuracy im-

proves steadily from simpler models like Logistic Re-

gression (96.25%) to the Hybrid model (XGBoost + 

GRU + Attention), which achieves the highest accuracy 

(99.50%) by leveraging both structured features and tem-

poral patterns. 

Training time is lowest for Logistic Regression and Ran-

dom Forest, while deep learning models (GRU + Atten-

tion and Hybrid) require significantly more time.  

Similarly, inference time is shortest for simpler models 

and longest for deep learning-based models, making 

them less suitable for real-time applications. 

 

5.2. Model Limitations and Practical Considera-

tions 

While the Hybrid (XGBoost + GRU + Attention) model 

achieved the best performance for 5G resource alloca-

tion, several limitations and practical deployment con-

cerns must be addressed: 

• High  

• Computational Cost 

• Deep learning and hybrid models require significant 

processing power, which may not be available on 

edge devices or in latency-sensitive environments. 

• Scalability Challenges 

Hybrid models may struggle with real-time processing in 

large-scale 5G networks without optimization or hard-

ware acceleration. 

• Limited Interpretability 

• Unlike traditional models, deep learning models act 

as black boxes, making it harder to explain decisions 

unless explainability tools are used. 

• Data Dependency 

• Model performance heavily relies on clean, high-

quality, and representative training data. Incomplete 

or biased datasets can lead to unreliable outcomes. 

• Latency Concerns 

• Although accurate, the hybrid model may introduce 

unsuitable latency for ultra-reliable low-latency com-

munication (URLLC) scenarios unless optimized. 

• Need for Maintenance 

• Model performance can degrade over time due to 

changes in network conditions (model drift), necessi-

tating ongoing monitoring and retraining. 

Practical Recommendation: 

• Use XGBoost or lightweight GRU models for real-

time deployment. 

• Deploy the Hybrid model in cloud-based or non-time-

critical tasks. 

• Implement model monitoring, retraining, and ex-

plainability frameworks for operational reliability. 

6. Conclusion 

This study has systematically evaluated the performance 

of machine learning and deep learning models in predict-

ing resource allocation within 5G networks. The analysis 

demonstrates that while traditional machine learning al-

gorithms such as Logistic Regression, Random Forest, 

Gradient Boosting, and XGBoost provide substantial ac-

curacy, deep learning models, particularly the GRU inte-

grated with an Attention mechanism, offer superior pre-

dictive capabilities due to their ability to capture temporal 

dependencies in dynamic network environments. Fur-

thermore, the proposed hybrid model, combining 

XGBoost with GRU and an Attention mechanism, 

emerged as the most effective solution, achieving the 

highest accuracy (99.50%) and optimal balance between 

computational efficiency and predictive performance. 

The results underline the importance of careful feature 

engineering and preprocessing techniques, including unit 

normalization, categorical encoding, and feature scaling, 

in enhancing the performance of predictive models. Inte-

grating lightweight machine learning models with ad-

vanced deep learning techniques presents a promising 

pathway for real-time resource allocation optimization in 

next-generation mobile networks. 

Future research directions include exploring additional 

advanced AI models and reinforcement learning ap-

proaches to further optimize resource allocation strate-

gies. Additionally, investigating the deployment of these 

models in real-time, operational 5G network environ-

ments can provide practical insights into their effective-

ness and scalability in live scenarios. 
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