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Abstract 

This article analyzes the potential of using artificial intelligence for object detection in edge computing environments, 

which are gaining importance with the growing number of Internet of Things devices. The focus is on evaluating algo-

rithms in terms of accuracy, speed, and energy efficiency. The goal is to identify solutions that minimize latency, which 

is crucial for autonomous systems and surveillance. Experiments were conducted on three devices using YOLO, SSD, 

and Faster R-CNN models. The results highlight the most effective object detection methods in edge computing, support-

ing the development of industry and IoT. 
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Streszczenie 

W artykule przeanalizowano potencjał wykorzystania sztucznej inteligencji w detekcji obiektów w środowiskach edge 
computing, które zyskują na znaczeniu wraz ze wzrostem liczby urządzeń Internetu Rzeczy. Skupiono się na ocenie 
algorytmów pod kątem dokładności, szybkości oraz efektywności energetycznej. Celem było zidentyfikowanie rozwiązań 
minimalizujących latencję, istotną w systemach autonomicznych i monitoringu. Testy przeprowadzono na trzech urzą-
dzeniach z wykorzystaniem modeli YOLO, SSD i Faster R-CNN. Wyniki wskazują najskuteczniejsze metody detekcji 
obiektów w edge computing, wspierające rozwój przemysłu i IoT. 
Słowa kluczowe: przetwarzanie brzegowe; detekcja obiektów; Internet Rzeczy 

*Corresponding author 

Email address: jakub.kozlowski.701@gmail.com (J. Kozłowski) 

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction 

With the rapid development of the Internet of Things 

and the growing demand for real-time data processing ap-

plications, object detection systems in edge computing 

environments are becoming increasingly important. In 

many cases, sending data to the cloud is inefficient or 

even impossible due to the need for low latency, limited 

network bandwidth, or concerns related to data privacy. 

A good example is urban surveillance systems, which 

must quickly detect dangerous situations, or autonomous 

vehicles, which cannot wait for a response from a remote 

server to make an emergency braking decision. 

In the era of digitalization and the fourth industrial 

revolution, the role of edge computing is becoming cru-

cial, especially in areas such as autonomous transporta-

tion, smart cities, Industry 4.0, and medicine. Local data 

processing, without the need to send it to the cloud, not 

only increases security but most importantly enables 

near-instant decision-making. 

However, designing edge computing systems in-

volves many constraints. Low computing power, limited 

memory, and the need to minimize energy consumption 

require careful selection of both algorithms and hard-

ware. The key challenge is to find the right balance be-

tween accuracy, performance, and energy efficiency. It is 

also worth emphasizing that edge environments are 

highly diverse – from smartphones, through embedded 

platforms such as Raspberry Pi, to advanced systems like 

Nvidia Jetson Nano – which further affects the approach 

to implementing algorithms. 

This article focuses in particular on algorithms that 

enable fast object detection, such as YOLO, SSD, or 

Faster R-CNN. Their efficiency in edge environments is 

crucial, for example, in real-time monitoring systems, 

medical diagnostics, industrial quality control, and many 

IoT solutions. 

The aim of this article is to analyze the performance 

of various edge devices in image processing and to eval-

uate the suitability of selected object detection models for 

real-world applications. The results of this research may 

contribute to the development of more efficient and en-

ergy-saving solutions that can be applied both in industry 

and educational environments. 

2. Literature Review 

The rapid development of hardware technologies such as 

NVIDIA Jetson processors, Raspberry Pi with Neural 

Compute Stick, and various FPGA platforms has signifi-

cantly contributed to the evolution of object detection al-

gorithms. Algorithms like YOLO and Faster R-CNN, 

which were originally designed for powerful computing 

platforms, are now increasingly implemented on smaller, 

resource-constrained devices. This is particularly im-

portant in the context of edge computing, where local 

data processing is crucial for applications requiring low 

latency and fast response times, such as video 
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surveillance, autonomous vehicles, and real-time object 

detection systems. 

The literature review focuses on five key studies that 

comprehensively analyze the performance of object de-

tection algorithms on edge devices. The studies highlight 

important aspects such as inference time, detection accu-

racy, and energy consumption, which are essential for se-

lecting the appropriate algorithm and hardware platform 

for a given application. 

In the article Benchmark Analysis of YOLO Perfor-

mance on Edge Intelligence Devices [1], the authors ex-

amine the efficiency of running the YOLO algorithm on 

various edge platforms, including NVIDIA Jetson Nano, 

Jetson Xavier NX, and Raspberry Pi 4B with Intel Neural 

Compute Stick 2. The study shows that the Jetson Xavier 

NX provides the highest computing performance, mak-

ing it suitable for more demanding tasks. On the other 

hand, the Raspberry Pi 4B combined with the NCS2 

demonstrates lower power consumption, which is advan-

tageous for mobile and energy-efficient applications. The 

paper emphasizes that selecting the appropriate platform 

should always depend on whether the priority is maxi-

mum performance or minimal energy consumption  

The article Performance Analysis of Deep Learning-

Based Object Detection Algorithms on COCO Bench-

mark [2] presents a comparison of popular object detec-

tion algorithms, such as Faster R-CNN, Mask R-CNN, 

and DyHead, based on the COCO dataset. The research 

indicates that the DyHead algorithm achieved the best de-

tection results, particularly in complex detection scenar-

ios. However, algorithms like NAS-FPN and Detec-

torRS, although highly effective, require significantly 

more computational resources. The authors also empha-

size that the final choice of algorithm should always con-

sider the application's specific requirements, especially in 

the context of edge devices with limited computational 

capabilities.  

The article Edge Computing by M. Satyanarayanan 

[3] provides a broader context for the importance of edge 

computing, which is essential for the operation of real-

time systems, including those based on object detection. 

The author highlights that edge computing enables local 

data processing, significantly reducing latency and im-

proving system responsiveness, which is particularly im-

portant for applications such as autonomous systems and 

video monitoring. However, the paper points out that the 

main challenge remains optimizing algorithms to work 

effectively on devices with limited computational re-

sources.  

The article Deep Learning for Edge Computing Ap-

plications: A State-of-the-Art Survey [4] presents an ex-

tensive overview of the current trends and challenges in 

applying deep learning in edge computing. The authors 

discuss advanced optimization techniques, such as model 

compression and distributed computing, which are key to 

adapting algorithms to the limited computing and energy 

capacities of edge devices. This article is particularly val-

uable in the context of object detection, as it offers prac-

tical solutions for improving the efficiency and perfor-

mance of algorithms in edge environments. 

The article Object Detection using YOLO: Chal-

lenges, Architectural Successors, Datasets and Applica-

tions [5] thoroughly discusses the evolution of the YOLO 

algorithm, starting from YOLOv1 to its most recent ver-

sions, which have significantly improved both detection 

accuracy and processing speed. The authors analyze the 

challenges of detecting small objects and objects on com-

plex backgrounds and emphasize the importance of using 

datasets such as COCO for training models adapted to 

real-world conditions. Particular attention is paid to the 

operation of YOLO on edge devices, where optimizing 

the model is necessary to maintain a balance between de-

tection quality and real-time processing speed.  

The review of the literature clearly shows that object 

detection algorithms in edge computing environments 

must be carefully adapted to the hardware limitations of 

devices such as cameras, sensors, or embedded systems. 

The choice of model depends not only on accuracy but 

also on processing speed and energy consumption. 

YOLO remains one of the most commonly used algo-

rithms due to its speed and versatility, but its deployment 

on edge devices still requires continuous improvements 

and optimization. 

Future research directions in this field should focus 

on simplifying network architectures, using automatic 

optimization techniques, and precisely adapting algo-

rithms to specific devices. This will enable the develop-

ment of edge computing systems that are fast, energy-ef-

ficient, and capable of operating in real-time conditions. 

3. Purpose of the Study 

The aim of this research is to evaluate the performance of 

object detection algorithms in the context of edge com-

puting, with particular attention to their deployment on 

various hardware platforms. The study seeks to identify 

challenges related to resource optimization, including 

CPU, RAM, GPU, and power consumption, and to pro-

pose recommendations for improving the efficiency of 

these algorithms. The research will be divided into six 

stages: 

• selecting appropriate algorithms for testing,  

• selecting three edge computing platforms represent-

ing different device types (smartphones, single-

board computers, and desktop computers) and eval-

uating their technical specifications, 

• preparing the testing environment, 

• conducting performance tests using the selected al-

gorithms on each platform, 

• recording test results, including task execution time, 

resource utilization, and power consumption, 

• analyzing the results, with particular focus on the ef-

fectiveness of the algorithms across different hard-

ware platforms. 
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4. Research methodology 

4.1. Research Tools 

Object detection is one of the key challenges in the field 

of image processing, and it has gained particular im-

portance thanks to the rapid development of neural net-

works and deep learning techniques. The ability to detect 

objects quickly and accurately is critical in many modern 

applications, such as autonomous driving, traffic moni-

toring, industrial automation, and security systems. In 

edge computing environments, where real-time pro-

cessing and limited hardware resources are major con-

straints, choosing the right detection algorithms becomes 

even more crucial. 

In recent years, various object detection architectures 

have been developed, significantly improving both detec-

tion speed and accuracy. Among these, three models have 

become particularly popular and have been widely imple-

mented in edge and cloud-based solutions: YOLO, SSD, 

and Faster R-CNN. 

• YOLO (You Only Look Once) is one of the most 

widely recognized architectures for object detec-

tion. The model is known for its exceptional speed, 

thanks to its unique approach that treats object de-

tection as a regression problem over a single grid. 

Each grid cell predicts both the class and the bound-

ing box coordinates in one step. YOLO provides a 

favorable trade-off between speed and accuracy, 

which makes it ideal for applications requiring low 

latency, such as pedestrian detection in autonomous 

vehicles or monitoring traffic signs in real time [6]. 

• SSD (Single Shot MultiBox Detector) is another 

model that performs object detection in a single 

step. Unlike YOLO, SSD uses multiple feature 

maps to detect objects at different scales, which im-

proves its ability to handle objects of various sizes. 

Its main advantage is fast detection with relatively 

good accuracy, which is why SSD is often chosen 

for edge computing applications, such as mobile-

based augmented reality systems and smart city sen-

sors, where quick responses are essential [7]. 

• Faster R-CNN is considered one of the most accu-

rate object detection architectures. The model oper-

ates in two stages: first, it extracts image features 

using a convolutional network, and then it uses a Re-

gion Proposal Network (RPN) to generate object 

proposals. Each proposal is then classified and pre-

cisely localized. Faster R-CNN achieves very high 

accuracy but requires significant computational re-

sources, which makes it less suitable for low-power 

edge devices. However, it remains valuable in sce-

narios where high precision is critical, such as med-

ical imaging or security systems with strict accuracy 

requirements [8]. 

These three models were selected for this study be-

cause they represent a diverse spectrum of object detec-

tion strategies from highly optimized for speed to those 

prioritizing accuracy. The choice allows for a 

comprehensive comparison of their performance on edge 

devices under varying computational constraints. 

All selected models were trained on the COCO da-

taset, which is one of the most widely used datasets in the 

field of object detection. COCO contains thousands of 

images representing everyday scenes and objects, with 

detailed annotations for detection, segmentation, and 

keypoint recognition. The diversity and realism of this 

dataset make it particularly suitable for developing and 

testing algorithms intended for real-world applications 

[9]. 

For this study, the STOP sign was selected as the de-

tection object. This choice is not accidental, it is based on 

the distinctive shape, color contrast, and critical im-

portance of traffic signs in transportation and safety sys-

tems. STOP signs are present in various environments, 

from urban intersections to rural roads, and detecting 

them accurately is crucial for applications such as driver 

assistance systems, autonomous vehicles, and traffic 

monitoring. Additionally, STOP signs often appear near 

other objects (trees, buildings, vehicles), making their de-

tection a realistic challenge for object detection algo-

rithms. 

4.2. Research Platforms 

The study was conducted on three different edge compu-

ting platforms to reflect the diversity of devices com-

monly used in real-world scenarios. The selected plat-

forms vary in terms of computational power, memory, 

and intended usage, which allows for a meaningful eval-

uation of how object detection algorithms perform across 

a wide range of hardware. 

a) Motorola Moto G50 

The Motorola Moto G50 is a smartphone that represents 

a category of mobile edge devices. Smartphones are 

widely used in edge computing, particularly in real-time 

applications such as pedestrian tracking, environmental 

monitoring, mobile health diagnostics, and smart city 

management. Testing on this device simulates typical 

mobile edge scenarios, where computational resources 

are limited, but low latency and portability are critical. 

Table 1 shows the technical specifications of the 

Motorola Moto G50. 

Table 1: Motorola Moto G50 – technical specifications 

Technical specifications Motorola Moto G50 

CPU Qualcomm Snapdragon 480 

RAM 4 GB 

Operating system Android 13 

GPU Adreno 619 

b) Router NanoPI R5c 

The NanoPi R5c is a compact single-board computer 

commonly used in networking and IoT edge solutions. Its 

low power consumption and ability to locally process 

data make it suitable for applications such as smart home 

systems, industrial automation, or edge gateways for dis-

tributed sensor networks. Evaluating performance on this 

device reflects use cases where local processing is needed 

to reduce latency and bandwidth usage in distributed 
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systems. Table 2 presents the technical specifications of 

the NanoPI R5c. 

Table 2: NanoPI R5c – technical specifications 

Technical specifications NanoPI R5c 

CPU Rockchip RK3568B2 

RAM 4 GB 

Operation system FriendlyWrt 

GPU GPU Mali-G52 MP2 

c) Lenovo Thinkpad T480 

The Lenovo ThinkPad T480 is a mobile workstation that 

represents more powerful edge computing platforms ca-

pable of handling more complex tasks. This type of de-

vice is often used in edge applications that require on-site 

data analysis, including real-time video processing in sur-

veillance systems or advanced quality control in manu-

facturing. Testing on this device helps evaluate whether 

heavier algorithms can realistically run outside of cen-

tralized data centers. Table 3 presents the technical spec-

ifications of the Lenovo Thinkpad T480. 

Table 3: Lenovo Thinkpad T480 – technical specifications 

Technical specifications Lenovo Thinkpad T480 

CPU Intel Core i5-8350U 

RAM 32 GB 

Operating system Linux Mint 22 

GPU Intel HD Graphics 620 

4.3. Experimental Setup  

The work involved the implementation and evaluation of 

selected object detection algorithms on three representa-

tive edge computing devices. Given the increasing de-

mand for intelligent processing directly on edge devices, 

this study aims to assess how these models perform in 

terms of accuracy, inference speed, and resource con-

sumption under realistic conditions. The PyTorch frame-

work was chosen for its flexibility and efficient support 

for deploying deep learning models across diverse hard-

ware platforms. The implementation process was divided 

into several stages to ensure systematic preparation, exe-

cution, and analysis of the experiments: 

• Environment Preparation - Each tested device 

was carefully prepared with all necessary software 

components for running deep learning algorithms. 

This included installing the Python interpreter, the 

PyTorch framework, and additional packages such 

as NumPy, OpenCV, torchvision, and psutil. These 

tools facilitated image loading and processing, as 

well as system resource monitoring during infer-

ence. 

• Model Configuration - Three widely-used object 

detection models: YOLO, SSD, and Faster R-CNN 

were employed. Versions available in public librar-

ies that are designed to work efficiently on devices 

with limited computational resources were selected. 

This approach allowed the models to run without 

modifications to their architectures, ensuring a fair 

and practical evaluation of their out-of-the-box per-

formance on edge hardware. 

• Test Routine Implementation - To compare model 

performance across devices, a set of test scripts was 

developed enabling: 

a) Loading of models and test images. 

b) Measurement of single-image processing times 

to assess latency. 

c) Recording of results in a structured CSV for-

mat for subsequent analysis. 

The test dataset consisted of representative im-ages 

with varying complexity levels, ensuring uniform 

and realistic testing conditions. 

• Hardware Resource Monitoring - Throughout the 

tests, critical hardware resources such as CPU, 

RAM, and GPU usage were monitored using the 

psutil library, which tracks processor load, memory 

occupancy, and active process durations. On de-

vices equipped with suitable drivers and sensors, 

power consumption data was also recorded. This 

was particularly important for mobile and single-

board computers where energy efficiency is a key 

parameter. 

• Data Analysis - The collected data was analyzed to 

evaluate each model’s detection effectiveness using 
metrics including processing time, accuracy, and re-

source efficiency. This analysis allowed detailed 

comparison of the models’ strengths and weak-
nesses regarding their applicability to edge compu-

ting scenarios. 

• Conclusions and Recommendations - Based on 

the experimental results, the relative efficiency of 

each algorithm on edge devices was assessed. The 

models were compared in terms of detection accu-

racy, processing speed, and resource consumption, 

which enabled identification of optimal solutions 

for systems with constrained computing power. Key 

trade-offs between detection precision, inference la-

tency, and energy usage were highlighted, providing 

guidance for practical implementation. 

For example, during testing, an image containing a STOP 

sign under various lighting conditions was processed in-

dividually by each model on all devices. The inference 

time, resource usage, and detection accuracy were rec-

orded and analyzed. This practical scenario illustrates 

how the setup captures real-time performance and accu-

racy trade-offs relevant for edge applications like traffic 

sign detection in autonomous vehicles or smart city mon-

itoring. 

4.4. Comparative Metrics 

The research was conducted based on accordance with a 

predefined research methodology, involving the meas-

urement of three key parameters: processing time, accu-

racy and resource efficiency. The aim of this research 

was to evaluate the performance of selected object 



Journal of Computer Sciences Institute 37 (2025) 379-390 

 

383 

 

detection models under different edge computing device 

conditions. The tests were carried out on three different 

platforms, which provided a complete picture of the per-

formance of the algorithms in diverse environments. The 

following aspects were taken into account in the study: 

a) Processing Time 

Measuring processing time was one one of the key com-

ponents of the study, as algorithm response time is criti-

cal in edge computing systems, where delays can affect 

application performance. 

Preprocessing time - The time taken to prepare the model 

for inference was measured, which included loading the 

model, preprocessing the image (e.g., changing resolu-

tion, normalizing) and setting up the environment. 

• Inference time - The main measure, denoting the 

time it takes the algorithm to process the image and 

make a prediction. 

• Final time - Included all operations related to post-

processing of results, such as detection filtering, 

drawing frames around objects or calculating results 

(e.g., precision, recall). 

• Latency - The total delay from the time the image 

enters the system to the time the results are obtained. 

Measuring the times is crucial in assessing which models 

are best suited for applications requiring low latency, 

such as object detection in real time on edge devices. 

b) Accuracy 

The accuracy of object recognition was assessed using 

detection quality indicators, particularly the Confidence 

index, which indicates how confident the model is about 

its prediction. 

• Confidence - The average value of the confidence 

index for all object detections in the image was 

measured. 

• Number of correct detections - The number of cor-

rectly identified objects was determined in relation 

to all detected objects, which allowed the effective-

ness of the models to be assessed in various test sce-

narios. 

• Number of incorrect recognitions - The number of 

incorrectly identified objects was measured contain-

ing elements resembling the target object. 

c) Resource Efficiency 

Monitoring resource efficiency has made it possible to 

assess how different models affect computing power, 

memory and energy consumption, which is crucial in the 

context of edge devices, which typically have limited re-

sources. 

• Power consumption - Using power consumption 

monitoring tools, it was measured how much power 

the device was consuming during image processing. 

• CPU and RAM consumption - By measuring CPU 

consumption, it was possible to assess how in-

tensely each model was taxing the device's CPU. 

• CPU temperature – It was monitored to determine 

how intensely the models were loading the hard-

ware.  

5. Results 

The colors used in the tables are significant: green indi-

cates the NanoPI R5c device, purple represents the 

Motorola Moto G50, and maroon refers to the Lenovo 

Thinkpad T480. Figure 1 presents the relationship be-

tween detection rate and false positives for the analyzed 

models, with colors indicating the average confidence 

score. These visualizations provide insight into the per-

formance of each model variant, revealing the balance 

between correct detections and false alarms. The size and 

positioning of each point allow for evaluation of both ef-

fectiveness and computational efficiency across different 

hardware platforms. 

 

Figure 1: Detection results on the NanoPi R5c device. 

Figure 2 presents the same type of analysis as Figure 1, 

focusing this time on the Motorola Moto G50 device. 

While the structure of the plot remains consistent, illus-

trating the relationship between detection rate and false 

positives, with color encoding the average confidence, 

the data were collected entirely on a mobile platform. 

This comparison highlights how the models behave un-

der more constrained computational resources, character-

istic of smartphones. Observing shifts in confidence lev-

els, detection accuracy, and the distribution of false pos-

itives offers valuable insight into the limitations and ca-

pabilities of edge devices like the Moto G50 when run-

ning object detection algorithms. 
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Figure 2: Detection results on the Motorola Moto G50 device. 

Figure 3 shows the same set of results as the previous 

figures, this time obtained on the Lenovo ThinkPad 

T480. As a laptop-class device with significantly more 

computing power, the T480 allows for smoother execu-

tion of detection models. The visualization highlights 

how increased hardware capabilities affect detection ac-

curacy, confidence scores, and the rate of false positives, 

offering a useful point of reference when comparing mo-

bile and embedded platforms to standard computing en-

vironments. 

 

Figure 3: Detection results on the Lenovo Thinkpad T480 device. 

Figure 4 presents latency measurements for selected ob-

ject detection models tested on three different hardware 

platforms. This analysis provides a comprehensive un-

derstanding of the trade-offs between model complexity, 

inference speed, and hardware limitations. Consequently, 

it offers valuable insights into which models are most 

suitable for deployment in specific contexts, whether on 

resource-constrained edge devices, moderately powered 

mobile platforms, or more advanced laptop systems, 

thereby supporting informed decision-making for practi-

cal applications of object detection technology. 

 

 

Figure 4: Latency of Models on Different Devices. 

Figures 5–10 compare the models in terms of resource 

efficiency, including energy consumption, memory us-

age, and hardware optimization. This analysis highlights 

how effectively the models use resources during infer-

ence, which is crucial for devices with limited capabili-

ties. It helps identify the most suitable models for differ-

ent environments, from edge devices to mobile platforms 

and laptops. 

 

Figure 5: CPU Temperature by Model on the NanoPi R5c device. 
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Figure 6: CPU and RAM Usage by Model on the NanoPi R5c device. 

Figures 5 and 6 present the CPU temperature as well as 

CPU and RAM usage for various object detection models 

running on the NanoPi R5c device. Analyzing these pa-

rameters allows assessment of how each model impacts 

the computational load and thermal behavior of this edge 

device, which is characterized by limited processing 

power and cooling capabilities. These results are im-

portant for understanding which models can operate effi-

ciently without risking overheating or excessive energy 

consumption in a resource-constrained environment. 

Monitoring these metrics also helps identify potential 

bottlenecks that could affect real-time performance. 

 

Figure 7: Energy Usage and CPU Temperature by Model on the Moto 

G50 device. 

 

Figure 8: CPU and RAM Usage by Model on the Moto G50 device. 

Figures 7 and 8 show energy consumption, CPU temper-

ature, and memory usage for models tested on the 

Motorola Moto G50 smartphone. These figures provide 

a detailed view of how each model balances performance 

with power efficiency on a mobile platform, where bat-

tery life is a critical factor. The analysis highlights varia-

tions in energy demands and thermal output among mod-

els, which directly influence user experience through de-

vice responsiveness and battery longevity. Additionally, 

the memory usage data offer insight into the models’ 
footprint on limited mobile resources, helping to identify 

those that maintain optimal operation without causing 

slowdowns or excessive power drain. This comprehen-

sive assessment is essential for selecting models suitable 

for real-world mobile applications. 

 

Figure 9: Energy Usage and CPU Temperature by Model  

on the Thinkpad T480 device. 
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Figure 10: CPU and RAM Usage by Model on the Thinkpad T480  

device. 
Figures 9 and 10 illustrate energy consumption, CPU 

temperature, and RAM usage for models running on the 

ThinkPad T480 laptop. The data reflect the resource de-

mands on a more powerful system, providing insight into 

model efficiency in less constrained environments. 

The performance metrics in Tables 4–6 relate to dif-

ferent ratios, such as CPU/Energy, RAM/Energy or Con-

fidence/Latency. This makes it possible to analyse in de-

tail the impact of individual parameters on the perfor-

mance of the models, allowing them to be optimised in 

the context of different resources. 

Table 4: Performance metrics on the NanoPi R5c device 

Model 
Confi-

dence / 

Latency 

Latency / 

Model Size 

ssd300_vgg16 0.000138 50.0 

ssdlite320_mobilenet_v3_large 0.001342 55.5 

FasterRCNN_MobileNet_V3_Large 0.000167 78.6 

yolov8s 0.000161 262.2 

yolov5su 0.000191 270.8 

yolo11s 0.000181 274.0 

yolov8n 0.000495 290.3 

yolo11n 0.000557 299.9 

FasterRCNN_ResNet50 0.000020 302.6 

yolov5nu 0.000546 316.2 

yolov9s 0.000177 352.1 

yolov10s 0.000161 353.2 

yolov10n 0.000436 369.4 

yolov9t 0.000460 416.1 

Table 5a: Performance metrics on the Motorola Moto G50 device 

Model (1) (2) (3) (4) 

yolo11n 3.1 2.1 30.3 29.7 

yolov5nu 2.8 2.4 32.3 28.9 

yolov8n 2.9 2.7 31.5 27.6 

yolov9t 2.8 3.1 32.2 29.3 

mobilenet_v3_large 2.7 3.2 33.5 27.1 

yolov10n 2.9 3.5 31.2 28.3 

yolov5su 2.9 3.7 31.2 27.8 

yolo11s 2.7 4.0 34.0 33.8 

yolov8s 2.9 5.7 31.5 28.7 

yolov9s 2.9 6.5 31.0 28.4 

yolov10s 2.9 8.3 30.5 28.4 

ssd300_vgg16 2.8 13.9 27.7 29.7 

MobileNet_V3_Large 2.5 14.0 31.1 25.4 

ResNet50 2.6 64.1 23.9 24.6 

Legend: 

1. Energy / Confidence 

2. Energy Consumption (J) 

3. CPU / Energy 

4. RAM / Energy 

Table 5b: Performance metrics on the Motorola Moto G50 device 

Model (5) (6) (7) 

yolo11n 0.51 0.001170 142.8 

yolov5nu 0.48 0.000973 177.6 

yolov8n 0.42 0.000876 164.1 

yolov9t 0.54 0.000753 254.3 

mobilenet_v3_large 0.20 0.000790 94.3 

yolov10n 0.47 0.000670 240.7 

yolov5su 0.15 0.000661 78.1 

yolo11s 0.13 0.000555 89.1 

yolov8s 0.12 0.000414 101.7 

yolov9s 0.18 0.000369 169.4 

yolov10s 0.17 0.000289 197.0 

ssd300_vgg16 0.02 0.000175 39.4 

MobileNet_V3_Large 0.03 0.000169 77.9 

ResNet50 0.02 0.000038 160.4 

Legend: 

5. Model Size / Energy 

6. Confidence / Latency 

7. Latency / Model Size 

Table 6a: Performance metrics on the Lenovo Thinkpad T480 device 

Model (1) (2) (3) (4) 

mobilenet_v3_large 24.7 4.5 3.1 0.6 

yolov5nu 26.9 4.6 2.9 0.4 

yolov8n 26.8 4.6 2.9 0.4 

yolov8s 27.3 6.6 2.7 0.4 

yolov5su 25.1 6.6 3.1 0.5 

yolov10n 27.2 7.0 3.4 0.4 

yolo11n 27.3 7.0 3.5 0.4 

yolo11s 26.5 8.2 3.0 0.5 
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yolov10s 27.2 10.0 3.1 0.4 

ssd300_vgg16 26.0 13.6 2.9 0.6 

MobileNet_V3_Large 25.5 15.3 1.7 0.7 

yolov9t 26.4 18.0 3.8 0.4 

yolov9s 26.4 20.6 3.5 0.5 

ResNet50 25.5 75.0 1.7 0.7 

The legend for Tables 6a and 6b is identical to that of 

Tables 5a and 5b and therefore has not been repeated. 

Table 6b: Performance metrics on the Lenovo Thinkpad T480 device 

Model (5) (6) (7) 

mobilenet_v3_large 1.84 0.005273 14.1 

yolov5nu 4.64 0.004947 34.9 

yolov8n 3.86 0.004734 30.4 

yolov8s 1.15 0.003410 12.4 

yolov5su 1.30 0.003189 16.2 

yolov10n 4.38 0.003156 51.1 

yolo11n 4.56 0.003113 53.7 

yolo11s 1.31 0.002678 18.5 

yolov10s 1.55 0.002210 25.8 

ssd300_vgg16 0.18 0.001675 4.1 

MobileNet_V3_Large 0.33 0.001567 8.4 

yolov9t 5.05 0.001204 159.0 

yolov9s 1.65 0.001080 57.8 

ResNet50 0.16 0.000320 19.0 

6. Discussion 

6.1. Detection Result 

The article analyzes object detection results obtained on 

three different devices: NanoPI R5c, Motorola Moto G50 

and Thinkpad T480. They were compared in terms of 

four key parameters: Confidence, number of correct de-

tections, number of incorrect detections and model size. 

Most of the models show a high level of detection 

confidence between 0.89 and 0.98, indicating their ability 

to accurately recognise objects. The yolo11n model rec-

orded the lowest Confidence value (0.8935), while 

ssdlite320_mobilenet_v3_large achieved the highest 

value (0.9776). Models with higher Confidence, such as 

FasterRCNN_ResNet50 (0.9705) and FasterRCNN_Mo-

bileNet_V3_Large (0.9711), theoretically provide higher 

prediction quality. 

An interesting observation is that some models, such 

as FasterRCNN_ResNet50, yolov8s and yolov9s, 

achieve correct detections above 100% (106.54%, 

103.74% and 103.74%, respectively). This indicates the 

presence of false positives, i.e. cases, in which models 

incorrectly classify objects outside the analysed set as 

correct. For this reason, despite their high Confidence, 

their practical usefulness may be limited in environments 

requiring higher precision. 

In contrast, models such as yolov5su (Confidence: 

0.9142, correct detections: 101.87%) or yolov9t (Confi-

dence: 0.9079, correct detections: 101.87%) show more 

balanced results, with a relatively low number of False 

positives. These are examples of models that combine 

well high precision with a low number of misclassifica-

tions, making them more effective in applications requir-

ing reliability. 

Models with correct detections well below 100%, 

such as ssd300_vgg16 (59.81%) and ssdlite320_mo-

bilenet_v3_large (41.12%), do not meet high detection 

standards and have limited effectiveness in practice, alt-

hough their Confidence remains high. 

The models differ significantly in terms of the num-

ber of erroneous detections. The best results in this cate-

gory were achieved by the models yolov9t (3 wrong de-

tections) and yolov5nu (5 wrong detections), which at the 

same time maintain a high ratio of correct detections. In 

contrast, models such as FasterRCNN_ResNet50 (46 er-

roneous detections) and FasterRCNN_Mo-

bileNet_V3_Large (43 erroneous detections), despite 

high detection confidence, are less effective in environ-

ments where detection errors are crucial. 

In terms of model size, yolov9t (4.74 MB) and 

yolov5nu (5.31 MB) are the most compact, making them 

ideal for use on edge computing devices with limited re-

sources.  In contrast, the FasterRCNN_ResNet50 (159.28 

MB) and ssd300_vgg16 (135.96 MB) models require sig-

nificantly more memory, limiting their use on devices 

with lower computing power. 

6.2. Processing Time Results 

Analysing the average image processing times, including 

preparation, inference and postprocessing times, there are 

several significant differences between the models that 

affect the object detection performance on the different 

devices. 

Latency time for different models shows marked dif-

ferences, depending on the type of model and the device 

on which it is run. YOLO models generally achieve lower 

latency times, making them more efficient in real-time 

detection. 

In contrast, more advanced models, such as the 

FasterRCNN_ResNet50 and ssd300_vgg16, have higher 

latency, which may affect their suitability in resource-

constrained systems. 

YOLO models, such as yolov5su, yolov5nu, and 

yolo11n, offer the best latency times. For yolov5su, the 

latency on the NanoPi R5c device is 4,798.67 ms and on 

the Motorola device is 1,383.40 ms. yolov5nu and 

yolov8n also show short latency times of 1,679.09 ms 

and 1,814.28 ms on the NanoPi R5c, and 943.05 ms and 

1,025.74 ms on the Motorola, respectively. In the case of 

yolov9s, the latency on the Motorola device is 2,487.11 

ms, while on the T480 it reaches 849.09 ms, making it 

one of the less efficient in this group. 

Compared to YOLO models, the more advanced 

Faster R-CNN models show noticeably higher latency 

times. FasterRCNN_ResNet50 on a NanoPi R5c device 

achieves a latency time of 48,204.22 ms, a significant dif-

ference from YOLO models such as yolov5su (4,798.67 

ms) or yolov9s (5,168.67 ms). Even on a Motorola de-

vice, the FasterRCNN_ResNet50 still requires 25,555.80 

ms to process an image, making it one of the slowest 
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models. The ssd300_vgg16 also shows higher latency, at 

6,804.04 ms on the NanoPi R5c and 5,355.55 ms on the 

Motorola, making it slower than most YOLO models, but 

faster to process than the Faster R-CNN. 

 SSD architectures perform significantly better in 

terms of latency compared to Faster R-CNN models, alt-

hough they are still slower than most YOLO models. On 

the NanoPi R5c device, the ssd300_vgg16 model 

achieves a processing time of 6,804.04 ms, making it 

slower than YOLOv5su and YOLOv9s, but still faster 

than FasterRCNN_ResNet50. The lighter version – 

ssdlite320_mobilenet_v3_large – significantly improves 

performance, reaching 728.61 ms, bringing it closer to 

YOLO models in terms of speed. All models on Motorola 

and T480 have differences in latency, but a noticeable 

trend is that the YOLO models offer better speed in de-

tection, especially on devices with limited resources. 

However, the FasterRCNN_ResNet50 may offer better 

detection performance, despite the higher latency. Tables 

7–9 show the top five models in terms of latency, evalu-

ated for three different devices. 

Table 7: Top 5 models in terms of latency for a NanoPi R5c 

Model  Latency (ms) 

ssdlite320_mobilenet_v3_large 728.61 

yolo11n 1604.55 

yolov5nu 1679.09 

yolov8n 1814.28 

yolov9t 1972.43 

Table 8: Top 5 models in terms of latency for a Moto G50 

Model Latency (ms) 

yolo11n 763.89 

yolov5nu 943.05 

yolov8n 1025.74 

yolov9t 1205.59 

ssdlite320_mobilenet_v3_large 1237.42 

Table 9: Top 5 models in terms of latency for a Thinkpad T480 

Model Latency (ms) 

ssdlite320_mobilenet_v3_large 185.41 

yolov5nu 185.47 

yolov8n 189.87 

yolov8s 266.02 

yolov10n 285.43 

6.3. Resource Efficiency Results 

This chapter presents an analysis of the resource effi-

ciency of individual models in edge computing environ-

ments. The focus is on parameters such as CPU consump-

tion and RAM consumption, power consumption and 

CPU temperature to assess how each model performs 

with hardware limitations in the context of object detec-

tion in edge computing systems. 

      The YOLO family models show relatively moderate 

CPU (in the 37-48% range) and RAM (in the 54-61% 

range) consumption on the NanoPi R5C device. These 

models also achieve relatively low CPU temperatures (in 

the 51-56°C range). Models based on the Faster R-CNN 

architecture, such as the FasterRCNN_ResNet50, have 

significantly higher CPU (89.35%) and RAM (72.32%) 

consumption, as well as higher CPU temperatures 

(61.34°C), which may indicate a higher system load dur-

ing processing. The ssd300_vgg16 has very high CPU 

(94.39%) and RAM (67.85%) consumption and rela-

tively high CPU temperatures (57.67°C), which may af-
fect system performance when processing for long peri-

ods of time. 

Table 10 shows the top five models in terms of re-

source efficiency for the NanoPi R5c device. 

Table 10: Top 5 models in terms of resource efficiency – NanoPi R5c 

Model CPU (%) RAM (%) CPU Temp (℃) 
yolov8s 37.72 57.96 53.72 

yolov5su 38.07 54.81 51.80 

yolo11s 40.58 61.42 55.59 

yolov10s 42.12 59.92 55.42 

yolov9s 42.22 59.42 55.22 

      Similar to the NanoPi R5c, YOLO models on 

Motorola show fairly high CPU (in the 81-83% range) 

and RAM (in the 72-74% range) consumption, with CPU 

temperatures ranging from 35.82°C to 43.69°C. yolo11n 
and yolo11s show the highest RAM consumption 

(81.64% and 82.13%) and the highest CPU temperatures 

(46.56°C and 45.86°C). Faster R-CNN models, such as 

the FasterRCNN_ResNet50, have relatively lower CPU 

consumption (60.02%) and RAM consumption 

(61.74%), with a CPU temperature of 43.46°C, suggest-
ing that they are less taxing compared to other models, 

especially for devices such as Motorola. 

The ssd300_vgg16 and ssdlite320_mo-

bilenet_v3_large models show high CPU (71.81% and 

87.37%) and RAM usage (76.82% and 70.63%), reflect-

ing their computing demands. However, ssdlite320_mo-

bilenet_v3_large has a relatively low CPU temperature 

(45 °C). Table 11 lists the top five most resource-efficient 

models for the Motorola Moto G50. 

Table 11: Top 5 models in terms of resource efficiency - Moto G50 

Model 
Energy 

(W) 

CPU 

(%) 

RAM 

(%) 

CPU 

Temp (℃) 

FasterRCNN_ 

MobileNet_V3_Large 
2.43 75.64 61.84 46.27 

yolo11s 2.43 82.66 82.13 45.86 

ResNet50 2.51 60.02 61.74 43.46 

yolov9t 2.55 82.21 74.76 43.69 

yolov5nu 2.55 82.36 73.82 39.42 

YOLO models achieve moderate CPU usage 

(66.85%–85.51%) and RAM usage (10.53%–11.3%), 

with CPU temperatures ranging from 59.09°C to 65.04°C 
on the ThinkPad T480 device. This suggests that these 

models are suitable for high-performance hardware, as 

they do not generate high loads on the CPU or memory. 

Faster R-CNN models achieve lower levels of CPU 

(42%) but higher levels of RAM (18%) consumption. 
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The SSD architecture occupies a middle ground. It 

uses a similar or lower amount of CPU compared to 

YOLO models but requires more RAM. Compared to 

Faster R-CNN, SSD models consume more CPU re-

sources but are more memory-efficient, using less RAM.  

There is a large discrepancy in CPU and RAM con-

sumption depending on the model. For example, for 

yolov5su the CPU consumption on the ThinkPad is only 

71.23%, but the CPU temperature rises to 59.41°C. The 
FasterRCNN_ResNet50 has higher CPU consumption, 

indicating the higher computing requirements of this 

model compared to the others. Table 12 shows the top 

five models in terms of resource efficiency for the Think-

pad T480. 

Table 12: Top 5 models in terms of resource efficiency - T480 

Model Energy (W) 
CPU 

(%) 

RAM 

(%) 

CPU 

Temp 

(℃) 
yolov5su 22.95 71.23 10.53 59.41 

yolov9t 23.94 89.99 10.63 62.08 

yolov8n 24.10 70.22 10.61 59.36 

ssdlite320_ mo-

bilenet_v3_large 
24.12 75.68 13.81 65.61 

yolo11s 24.15 72.36 11.30 65.04 

6.4. Performance Metrics 

Choosing the right model for object detection on edge 

computing devices requires consideration of both perfor-

mance and resource consumption. Key factors include la-

tency, CPU consumption, RAM consumption and model 

size, all of which have a direct impact on real-time appli-

cation performance. Models that are more optimised for 

performance can offer a better balance between accuracy 

and response time. The following analysis shows the best 

and worst models that differ in these criteria, as well as 

their suitability in the context of edge computing devices. 

 

Best Models: 

• yolo11n: 

This model achieved very good detection results of 

97.30%, while having a high confidence rating of 0.8935. 

Its unique advantage is its small size of only 5.35 MB, 

which significantly distinguishes it from other models 

weighing 159 MB, 135 MB or 73 MB, respectively. In 

terms of latency, it ranked second on the NanoPI R5c de-

vice, while on the Motorola Moto G50 it was the best, 

coming in first place. 

 

 

• yolov5nu: 

This model also achieved high detection scores of 

93.46%, with the highest confidence rating of 0.9142. Its 

size (5.31 MB) is similar to yolo11n, making it equally 

efficient in terms of memory resources. In terms of la-

tency, yolo5nu came in third place to the NanoPI R5c de-

vice, second place to the Motorola Moto G50 and second 

place to the ThinkPad T480 laptop. 

7. Conclusion 

The conducted analysis confirms that YOLO-based mod-

els, particularly are well-suited for edge computing sce-

narios due to their favorable trade-off between detection 

accuracy, latency, and resource consumption. 

Yolo11n stands out as one of the most efficient mod-

els in terms of low latency and modest hardware de-

mands. Despite slightly higher memory usage compared 

to some other lightweight models, it consistently delivers 

fast and reliable performance across various devices. 

This makes it a strong candidate for real-time applica-

tions deployed on resource-constrained edge devices. 

Yolov5nu offers a balanced approach, achieving 

good accuracy while maintaining acceptable CPU and 

RAM usage. Although its latency is relatively higher, its 

overall stability and detection performance justify its use 

in applications where consistent object recognition is 

more important than minimal delay.  

Both models stand out for their excellent balance of 

high detection accuracy, computational efficiency and 

minimal hardware requirements. Their small size and low 

latency make them an ideal choice for real-time detection 

systems in environments with limited hardware re-

sources, such as IoT devices, single board computers or 

smartphones.  

When comparing the YOLO architecture to other ap-

proaches such as SSD and Faster R-CNN, YOLO con-

sistently delivered the best overall performance on the 

tested dataset. For this reason, the recommended YOLO-

based models are the most advisable choices. However, 

it is important to note that model behavior may vary de-

pending on the specific characteristics of the target de-

vice. 
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