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Abstract

This article analyzes the potential of using artificial intelligence for object detection in edge computing environments,
which are gaining importance with the growing number of Internet of Things devices. The focus is on evaluating algo-
rithms in terms of accuracy, speed, and energy efficiency. The goal is to identify solutions that minimize latency, which
is crucial for autonomous systems and surveillance. Experiments were conducted on three devices using YOLO, SSD,
and Faster R-CNN models. The results highlight the most effective object detection methods in edge computing, support-
ing the development of industry and IoT.
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Streszczenie

W artykule przeanalizowano potencjat wykorzystania sztucznej inteligencji w detekcji obiektow w srodowiskach edge
computing, ktére zyskuja na znaczeniu wraz ze wzrostem liczby urzadzen Internetu Rzeczy. Skupiono si¢ na ocenie
algorytmow pod katem doktadnosci, szybkosci oraz efektywnosci energetycznej. Celem byto zidentyfikowanie rozwigzan
minimalizujacych latencje, istotng w systemach autonomicznych i monitoringu. Testy przeprowadzono na trzech urza-
dzeniach z wykorzystaniem modeli YOLO, SSD i Faster R-CNN. Wyniki wskazuja najskuteczniejsze metody detekcji
obiektow w edge computing, wspierajace rozwdj przemystu i loT.

Stowa kluczowe: przetwarzanie brzegowe; detekcja obiektow; Internet Rzeczy

*Corresponding author

Email address: jakub.kozlowski.701@gmail.com (J. Koztowski)
Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction Nvidia Jetson Nano — which further affects the approach
to implementing algorithms.

This article focuses in particular on algorithms that
enable fast object detection, such as YOLO, SSD, or
Faster R-CNN. Their efficiency in edge environments is
crucial, for example, in real-time monitoring systems,
medical diagnostics, industrial quality control, and many
IoT solutions.

The aim of this article is to analyze the performance
of various edge devices in image processing and to eval-
uate the suitability of selected object detection models for
real-world applications. The results of this research may
contribute to the development of more efficient and en-
ergy-saving solutions that can be applied both in industry
and educational environments.

With the rapid development of the Internet of Things
and the growing demand for real-time data processing ap-
plications, object detection systems in edge computing
environments are becoming increasingly important. In
many cases, sending data to the cloud is inefficient or
even impossible due to the need for low latency, limited
network bandwidth, or concerns related to data privacy.
A good example is urban surveillance systems, which
must quickly detect dangerous situations, or autonomous
vehicles, which cannot wait for a response from a remote
server to make an emergency braking decision.

In the era of digitalization and the fourth industrial
revolution, the role of edge computing is becoming cru-
cial, especially in areas such as autonomous transporta-
tion, smart cities, Industry 4.0, and medicine. Local data 2. Literature Review
processing, without the need to send it to the cloud, not
only increases security but most importantly enables
near-instant decision-making.

However, designing edge computing systems in-
volves many constraints. Low computing power, limited
memory, and the need to minimize energy consumption
require careful selection of both algorithms and hard-
ware. The key challenge is to find the right balance be-
tween accuracy, performance, and energy efficiency. It is
also worth emphasizing that edge environments are
highly diverse — from smartphones, through embedded
platforms such as Raspberry Pi, to advanced systems like

The rapid development of hardware technologies such as
NVIDIA Jetson processors, Raspberry Pi with Neural
Compute Stick, and various FPGA platforms has signifi-
cantly contributed to the evolution of object detection al-
gorithms. Algorithms like YOLO and Faster R-CNN,
which were originally designed for powerful computing
platforms, are now increasingly implemented on smaller,
resource-constrained devices. This is particularly im-
portant in the context of edge computing, where local
data processing is crucial for applications requiring low
latency and fast response times, such as video
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surveillance, autonomous vehicles, and real-time object
detection systems.

The literature review focuses on five key studies that
comprehensively analyze the performance of object de-
tection algorithms on edge devices. The studies highlight
important aspects such as inference time, detection accu-
racy, and energy consumption, which are essential for se-
lecting the appropriate algorithm and hardware platform
for a given application.

In the article Benchmark Analysis of YOLO Perfor-
mance on Edge Intelligence Devices [1], the authors ex-
amine the efficiency of running the YOLO algorithm on
various edge platforms, including NVIDIA Jetson Nano,
Jetson Xavier NX, and Raspberry Pi 4B with Intel Neural
Compute Stick 2. The study shows that the Jetson Xavier
NX provides the highest computing performance, mak-
ing it suitable for more demanding tasks. On the other
hand, the Raspberry Pi 4B combined with the NCS2
demonstrates lower power consumption, which is advan-
tageous for mobile and energy-efficient applications. The
paper emphasizes that selecting the appropriate platform
should always depend on whether the priority is maxi-
mum performance or minimal energy consumption

The article Performance Analysis of Deep Learning-
Based Object Detection Algorithms on COCO Bench-
mark [2] presents a comparison of popular object detec-
tion algorithms, such as Faster R-CNN, Mask R-CNN,
and DyHead, based on the COCO dataset. The research
indicates that the DyHead algorithm achieved the best de-
tection results, particularly in complex detection scenar-
ios. However, algorithms like NAS-FPN and Detec-
torRS, although highly effective, require significantly
more computational resources. The authors also empha-
size that the final choice of algorithm should always con-
sider the application's specific requirements, especially in
the context of edge devices with limited computational
capabilities.

The article Edge Computing by M. Satyanarayanan
[3] provides a broader context for the importance of edge
computing, which is essential for the operation of real-
time systems, including those based on object detection.
The author highlights that edge computing enables local
data processing, significantly reducing latency and im-
proving system responsiveness, which is particularly im-
portant for applications such as autonomous systems and
video monitoring. However, the paper points out that the
main challenge remains optimizing algorithms to work
effectively on devices with limited computational re-
sources.

The article Deep Learning for Edge Computing Ap-
plications: A State-of-the-Art Survey [4] presents an ex-
tensive overview of the current trends and challenges in
applying deep learning in edge computing. The authors
discuss advanced optimization techniques, such as model
compression and distributed computing, which are key to
adapting algorithms to the limited computing and energy
capacities of edge devices. This article is particularly val-
uable in the context of object detection, as it offers prac-
tical solutions for improving the efficiency and perfor-
mance of algorithms in edge environments.

The article Object Detection using YOLO: Chal-
lenges, Architectural Successors, Datasets and Applica-
tions [5] thoroughly discusses the evolution of the YOLO
algorithm, starting from YOLOV1 to its most recent ver-
sions, which have significantly improved both detection
accuracy and processing speed. The authors analyze the
challenges of detecting small objects and objects on com-
plex backgrounds and emphasize the importance of using
datasets such as COCO for training models adapted to
real-world conditions. Particular attention is paid to the
operation of YOLO on edge devices, where optimizing
the model is necessary to maintain a balance between de-
tection quality and real-time processing speed.

The review of the literature clearly shows that object
detection algorithms in edge computing environments
must be carefully adapted to the hardware limitations of
devices such as cameras, sensors, or embedded systems.
The choice of model depends not only on accuracy but
also on processing speed and energy consumption.
YOLO remains one of the most commonly used algo-
rithms due to its speed and versatility, but its deployment
on edge devices still requires continuous improvements
and optimization.

Future research directions in this field should focus
on simplifying network architectures, using automatic
optimization techniques, and precisely adapting algo-
rithms to specific devices. This will enable the develop-
ment of edge computing systems that are fast, energy-ef-
ficient, and capable of operating in real-time conditions.

3. Purpose of the Study

The aim of this research is to evaluate the performance of
object detection algorithms in the context of edge com-
puting, with particular attention to their deployment on
various hardware platforms. The study seeks to identify
challenges related to resource optimization, including
CPU, RAM, GPU, and power consumption, and to pro-
pose recommendations for improving the efficiency of
these algorithms. The research will be divided into six
stages:

e sclecting appropriate algorithms for testing,

e selecting three edge computing platforms represent-
ing different device types (smartphones, single-
board computers, and desktop computers) and eval-
uating their technical specifications,

e  preparing the testing environment,

e conducting performance tests using the selected al-
gorithms on each platform,

e recording test results, including task execution time,
resource utilization, and power consumption,

e analyzing the results, with particular focus on the ef-
fectiveness of the algorithms across different hard-
ware platforms.
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4. Research methodology
4.1. Research Tools

Object detection is one of the key challenges in the field
of image processing, and it has gained particular im-
portance thanks to the rapid development of neural net-
works and deep learning techniques. The ability to detect
objects quickly and accurately is critical in many modern
applications, such as autonomous driving, traffic moni-
toring, industrial automation, and security systems. In
edge computing environments, where real-time pro-
cessing and limited hardware resources are major con-
straints, choosing the right detection algorithms becomes
even more crucial.

In recent years, various object detection architectures
have been developed, significantly improving both detec-
tion speed and accuracy. Among these, three models have
become particularly popular and have been widely imple-
mented in edge and cloud-based solutions: YOLO, SSD,
and Faster R-CNN.

e  YOLO (You Only Look Once) is one of the most
widely recognized architectures for object detec-
tion. The model is known for its exceptional speed,
thanks to its unique approach that treats object de-
tection as a regression problem over a single grid.
Each grid cell predicts both the class and the bound-
ing box coordinates in one step. YOLO provides a
favorable trade-off between speed and accuracy,
which makes it ideal for applications requiring low
latency, such as pedestrian detection in autonomous
vehicles or monitoring traffic signs in real time [6].

e SSD (Single Shot MultiBox Detector) is another
model that performs object detection in a single
step. Unlike YOLO, SSD uses multiple feature
maps to detect objects at different scales, which im-
proves its ability to handle objects of various sizes.
Its main advantage is fast detection with relatively
good accuracy, which is why SSD is often chosen
for edge computing applications, such as mobile-
based augmented reality systems and smart city sen-
sors, where quick responses are essential [7].

e Faster R-CNN is considered one of the most accu-
rate object detection architectures. The model oper-
ates in two stages: first, it extracts image features
using a convolutional network, and then it uses a Re-
gion Proposal Network (RPN) to generate object
proposals. Each proposal is then classified and pre-
cisely localized. Faster R-CNN achieves very high
accuracy but requires significant computational re-
sources, which makes it less suitable for low-power
edge devices. However, it remains valuable in sce-
narios where high precision is critical, such as med-
ical imaging or security systems with strict accuracy
requirements [8].

These three models were selected for this study be-
cause they represent a diverse spectrum of object detec-
tion strategies from highly optimized for speed to those
prioritizing accuracy. The choice allows for a

comprehensive comparison of their performance on edge
devices under varying computational constraints.

All selected models were trained on the COCO da-
taset, which is one of the most widely used datasets in the
field of object detection. COCO contains thousands of
images representing everyday scenes and objects, with
detailed annotations for detection, segmentation, and
keypoint recognition. The diversity and realism of this
dataset make it particularly suitable for developing and
testing algorithms intended for real-world applications
[9].

For this study, the STOP sign was selected as the de-
tection object. This choice is not accidental, it is based on
the distinctive shape, color contrast, and critical im-
portance of traffic signs in transportation and safety sys-
tems. STOP signs are present in various environments,
from urban intersections to rural roads, and detecting
them accurately is crucial for applications such as driver
assistance systems, autonomous vehicles, and traffic
monitoring. Additionally, STOP signs often appear near
other objects (trees, buildings, vehicles), making their de-
tection a realistic challenge for object detection algo-
rithms.

4.2. Research Platforms

The study was conducted on three different edge compu-
ting platforms to reflect the diversity of devices com-
monly used in real-world scenarios. The selected plat-
forms vary in terms of computational power, memory,
and intended usage, which allows for a meaningful eval-
uation of how object detection algorithms perform across
a wide range of hardware.

a) Motorola Moto G50

The Motorola Moto G50 is a smartphone that represents
a category of mobile edge devices. Smartphones are
widely used in edge computing, particularly in real-time
applications such as pedestrian tracking, environmental
monitoring, mobile health diagnostics, and smart city
management. Testing on this device simulates typical
mobile edge scenarios, where computational resources
are limited, but low latency and portability are critical.
Table 1 shows the technical specifications of the
Motorola Moto G50.

Table 1: Motorola Moto G50 — technical specifications

Technical specifications Motorola Moto G50
CPU Qualcomm Snapdragon 480
RAM 4GB
Operating system Android 13
GPU Adreno 619
b) Router NanoPI R5¢

The NanoPi RS5c is a compact single-board computer
commonly used in networking and IoT edge solutions. Its
low power consumption and ability to locally process
data make it suitable for applications such as smart home
systems, industrial automation, or edge gateways for dis-
tributed sensor networks. Evaluating performance on this
device reflects use cases where local processing is needed
to reduce latency and bandwidth usage in distributed
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systems. Table 2 presents the technical specifications of
the NanoPI R5c.

Table 2: NanoPI R5c — technical specifications

Technical specifications NanoPI R5c¢

CPU Rockchip RK3568B2
RAM 4GB

Operation system FriendlyWrt

GPU GPU Mali-G52 MP2

¢) Lenovo Thinkpad T480

The Lenovo ThinkPad T480 is a mobile workstation that
represents more powerful edge computing platforms ca-
pable of handling more complex tasks. This type of de-
vice is often used in edge applications that require on-site
data analysis, including real-time video processing in sur-
veillance systems or advanced quality control in manu-
facturing. Testing on this device helps evaluate whether
heavier algorithms can realistically run outside of cen-
tralized data centers. Table 3 presents the technical spec-
ifications of the Lenovo Thinkpad T480.

Table 3: Lenovo Thinkpad T480 — technical specifications

Technical specifications Lenovo Thinkpad T480

CPU Intel Core i5-8350U
RAM 32 GB
Operating system Linux Mint 22

GPU Intel HD Graphics 620

4.3. Experimental Setup

The work involved the implementation and evaluation of
selected object detection algorithms on three representa-
tive edge computing devices. Given the increasing de-
mand for intelligent processing directly on edge devices,
this study aims to assess how these models perform in
terms of accuracy, inference speed, and resource con-
sumption under realistic conditions. The PyTorch frame-
work was chosen for its flexibility and efficient support
for deploying deep learning models across diverse hard-
ware platforms. The implementation process was divided
into several stages to ensure systematic preparation, exe-
cution, and analysis of the experiments:

e Environment Preparation - Each tested device
was carefully prepared with all necessary software
components for running deep learning algorithms.
This included installing the Python interpreter, the
PyTorch framework, and additional packages such
as NumPy, OpenCV, torchvision, and psutil. These
tools facilitated image loading and processing, as
well as system resource monitoring during infer-
ence.

e Model Configuration - Three widely-used object
detection models: YOLO, SSD, and Faster R-CNN
were employed. Versions available in public librar-
ies that are designed to work efficiently on devices
with limited computational resources were selected.
This approach allowed the models to run without
modifications to their architectures, ensuring a fair

and practical evaluation of their out-of-the-box per-
formance on edge hardware.

e Test Routine Implementation - To compare model
performance across devices, a set of test scripts was
developed enabling:

a)
b)

Loading of models and test images.
Measurement of single-image processing times
to assess latency.

Recording of results in a structured CSV for-
mat for subsequent analysis.

<)

The test dataset consisted of representative im-ages
with varying complexity levels, ensuring uniform
and realistic testing conditions.

o Hardware Resource Monitoring - Throughout the
tests, critical hardware resources such as CPU,
RAM, and GPU usage were monitored using the
psutil library, which tracks processor load, memory
occupancy, and active process durations. On de-
vices equipped with suitable drivers and sensors,
power consumption data was also recorded. This
was particularly important for mobile and single-
board computers where energy efficiency is a key
parameter.

e Data Analysis - The collected data was analyzed to
evaluate each model’s detection effectiveness using
metrics including processing time, accuracy, and re-
source efficiency. This analysis allowed detailed
comparison of the models’ strengths and weak-
nesses regarding their applicability to edge compu-
ting scenarios.

e Conclusions and Recommendations - Based on
the experimental results, the relative efficiency of
each algorithm on edge devices was assessed. The
models were compared in terms of detection accu-
racy, processing speed, and resource consumption,
which enabled identification of optimal solutions
for systems with constrained computing power. Key
trade-offs between detection precision, inference la-
tency, and energy usage were highlighted, providing
guidance for practical implementation.

For example, during testing, an image containing a STOP
sign under various lighting conditions was processed in-
dividually by each model on all devices. The inference
time, resource usage, and detection accuracy were rec-
orded and analyzed. This practical scenario illustrates
how the setup captures real-time performance and accu-
racy trade-offs relevant for edge applications like traffic
sign detection in autonomous vehicles or smart city mon-
itoring.

4.4. Comparative Metrics

The research was conducted based on accordance with a
predefined research methodology, involving the meas-
urement of three key parameters: processing time, accu-
racy and resource efficiency. The aim of this research
was to evaluate the performance of selected object
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detection models under different edge computing device
conditions. The tests were carried out on three different
platforms, which provided a complete picture of the per-
formance of the algorithms in diverse environments. The
following aspects were taken into account in the study:

a) Processing Time

Measuring processing time was one one of the key com-
ponents of the study, as algorithm response time is criti-
cal in edge computing systems, where delays can affect
application performance.

Preprocessing time - The time taken to prepare the model
for inference was measured, which included loading the
model, preprocessing the image (e.g., changing resolu-
tion, normalizing) and setting up the environment.

o Inference time - The main measure, denoting the
time it takes the algorithm to process the image and
make a prediction.

e Final time - Included all operations related to post-
processing of results, such as detection filtering,
drawing frames around objects or calculating results
(e.g., precision, recall).

e Latency - The total delay from the time the image
enters the system to the time the results are obtained.

Measuring the times is crucial in assessing which models
are best suited for applications requiring low latency,
such as object detection in real time on edge devices.

b) Accuracy
The accuracy of object recognition was assessed using
detection quality indicators, particularly the Confidence
index, which indicates how confident the model is about
its prediction.

o Confidence - The average value of the confidence
index for all object detections in the image was
measured.

e  Number of correct detections - The number of cor-
rectly identified objects was determined in relation
to all detected objects, which allowed the effective-
ness of the models to be assessed in various test sce-
narios.

e Number of incorrect recognitions - The number of
incorrectly identified objects was measured contain-
ing elements resembling the target object.

¢) Resource Efficiency

Monitoring resource efficiency has made it possible to
assess how different models affect computing power,
memory and energy consumption, which is crucial in the
context of edge devices, which typically have limited re-
sources.

e Power consumption - Using power consumption
monitoring tools, it was measured how much power
the device was consuming during image processing.

e CPU and RAM consumption - By measuring CPU
consumption, it was possible to assess how in-
tensely each model was taxing the device's CPU.

e CPU temperature — It was monitored to determine
how intensely the models were loading the hard-
ware.

5. Results

The colors used in the tables are significant: green indi-
cates the NanoPI R5c device, purple represents the
Motorola Moto G50, and maroon refers to the Lenovo
Thinkpad T480. Figure 1 presents the relationship be-
tween detection rate and false positives for the analyzed
models, with colors indicating the average confidence
score. These visualizations provide insight into the per-
formance of each model variant, revealing the balance
between correct detections and false alarms. The size and
positioning of each point allow for evaluation of both ef-
fectiveness and computational efficiency across different
hardware platforms.

Detection Rate vs False Positives for Various Models
Colored by Confidence
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Figure 1: Detection results on the NanoPi R5c¢ device.

Figure 2 presents the same type of analysis as Figure 1,
focusing this time on the Motorola Moto G50 device.
While the structure of the plot remains consistent, illus-
trating the relationship between detection rate and false
positives, with color encoding the average confidence,
the data were collected entirely on a mobile platform.
This comparison highlights how the models behave un-
der more constrained computational resources, character-
istic of smartphones. Observing shifts in confidence lev-
els, detection accuracy, and the distribution of false pos-
itives offers valuable insight into the limitations and ca-
pabilities of edge devices like the Moto G50 when run-
ning object detection algorithms.
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Detection Rate vs False Positives for Various Models
Colored by Confidence
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Figure 2: Detection results on the Motorola Moto G50 device.

Figure 3 shows the same set of results as the previous
figures, this time obtained on the Lenovo ThinkPad
T480. As a laptop-class device with significantly more
computing power, the T480 allows for smoother execu-
tion of detection models. The visualization highlights
how increased hardware capabilities affect detection ac-
curacy, confidence scores, and the rate of false positives,
offering a useful point of reference when comparing mo-
bile and embedded platforms to standard computing en-
vironments.
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Figure 3: Detection results on the Lenovo Thinkpad T480 device.

Figure 4 presents latency measurements for selected ob-
ject detection models tested on three different hardware
platforms. This analysis provides a comprehensive un-
derstanding of the trade-offs between model complexity,
inference speed, and hardware limitations. Consequently,
it offers valuable insights into which models are most

suitable for deployment in specific contexts, whether on
resource-constrained edge devices, moderately powered
mobile platforms, or more advanced laptop systems,
thereby supporting informed decision-making for practi-

cal applications of object detection technology.
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Figure 4: Latency of Models on Different Devices.

Figures 5-10 compare the models in terms of resource
efficiency, including energy consumption, memory us-
age, and hardware optimization. This analysis highlights
how effectively the models use resources during infer-
ence, which is crucial for devices with limited capabili-
ties. It helps identify the most suitable models for differ-
ent environments, from edge devices to mobile platforms
and laptops.
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Figure 5: CPU Temperature by Model on the NanoPi R5¢ device.
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CPU and RAM Usage by Model (NanoPi R5c)
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Figure 6: CPU and RAM Usage by Model on the NanoPi R5c¢ device.

Figures 5 and 6 present the CPU temperature as well as
CPU and RAM usage for various object detection models
running on the NanoPi R5c device. Analyzing these pa-
rameters allows assessment of how each model impacts
the computational load and thermal behavior of this edge
device, which is characterized by limited processing
power and cooling capabilities. These results are im-
portant for understanding which models can operate effi-
ciently without risking overheating or excessive energy
consumption in a resource-constrained environment.
Monitoring these metrics also helps identify potential
bottlenecks that could affect real-time performance.
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Figure 7: Energy Usage and CPU Temperature by Model on the Moto
G50 device.
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Figure 8: CPU and RAM Usage by Model on the Moto G50 device.

Figures 7 and 8 show energy consumption, CPU temper-
ature, and memory usage for models tested on the
Motorola Moto G50 smartphone. These figures provide
a detailed view of how each model balances performance
with power efficiency on a mobile platform, where bat-
tery life is a critical factor. The analysis highlights varia-
tions in energy demands and thermal output among mod-
els, which directly influence user experience through de-
vice responsiveness and battery longevity. Additionally,
the memory usage data offer insight into the models’
footprint on limited mobile resources, helping to identify
those that maintain optimal operation without causing
slowdowns or excessive power drain. This comprehen-
sive assessment is essential for selecting models suitable
for real-world mobile applications.
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CPU and RAM Usage by Model (Lenovo Thinkpad T480)
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Figure 10: CPU and RAM Usage by Model on the Thinkpad T480
device.

Figures 9 and 10 illustrate energy consumption, CPU
temperature, and RAM usage for models running on the
ThinkPad T480 laptop. The data reflect the resource de-
mands on a more powerful system, providing insight into
model efficiency in less constrained environments.

The performance metrics in Tables 46 relate to dif-
ferent ratios, such as CPU/Energy, RAM/Energy or Con-
fidence/Latency. This makes it possible to analyse in de-
tail the impact of individual parameters on the perfor-
mance of the models, allowing them to be optimised in
the context of different resources.

Table 4: Performance metrics on the NanoPi R5¢ device

Confi-

dencel | e Sie
ssd300_vggl6 0.000138 50.0
ssdlite320_mobilenet_v3_large 0.001342 55.5
FasterRCNN_MobileNet_V3_Large 0.000167 78.6
yolov8s 0.000161 262.2
yolov5su 0.000191 270.8
yolol1s 0.000181 274.0
yolov&n 0.000495 290.3
yolol1n 0.000557 299.9
FasterRCNN_ResNet50 0.000020 302.6
yolov5nu 0.000546 316.2
yolov9s 0.000177 352.1
yolov10s 0.000161 353.2
yolov10n 0.000436 369.4
yolovOt 0.000460 416.1

Table 5a: Performance metrics on the Motorola Moto G50 device

yolol1n 3.1 2.1 30.3 29.7
yolov5nu 2.8 24 323 28.9
yolov8n 29 2.7 315 27.6

yolov9t 2.8 3.1 322 29.3
mobilenet_v3_large 2.7 32 335 27.1
yolov10n 29 35 312 28.3
yolov5su 29 3.7 31.2 27.8
yolol1s 2.7 4.0 34.0 33.8
yolov8s 29 5.7 31.5 28.7
yolov9s 2.9 6.5 31.0 28.4
yolov10s 2.9 8.3 30.5 28.4
ssd300_vggl6 2.8 13.9 277 297
MobileNet_V3_Large 2.5 14.0 311 254
ResNet50 2.6 64.1 23.9 24.6
Legend:
1. Energy / Confidence
2. Energy Consumption (J)
3. CPU/Energy
4. RAM /Energy

Table 5b: Performance metrics on the Motorola Moto G50 device

Model ® © )

yolol1n 0.51 0.001170 142.8
yolov5nu 0.48 0.000973 177.6
yolov8n 0.42 0.000876 164.1
yolovot 0.54 0.000753 2543
mobilenet_v3_large 0.20 0.000790 94.3
yolov10n 0.47 0.000670 240.7
yolov5su 0.15 0.000661 78.1
yolol1s 0.13 0.000555 89.1
yolov8s 0.12 0.000414 101.7
yolov9s 0.18 0.000369 169.4
yolov10s 0.17 0.000289 197.0
ssd300_vggl6 0.02 0.000175 394
MobileNet_V3_Large 0.03 0.000169 77.9
ResNet50 0.02 0.000038 160.4
Legend:

5. Model Size / Energy
6. Confidence / Latency
7. Latency / Model Size

Table 6a: Performance metrics on the Lenovo Thinkpad T480 device

Model ) @ & @
mobilenet_v3_large 24.7 4.5 3.1 0.6
yolov5nu 26.9 4.6 29 0.4
yolov8n 26.8 4.6 29 0.4
yolov8s 273 6.6 2.7 0.4
yolov5su 25.1 6.6 3.1 0.5
yolov10n 272 7.0 3.4 0.4
yolol1n 273 7.0 3.5 0.4
yolol1s 26.5 8.2 3.0 0.5
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yolov10s 27.2 10.0 3.1 0.4
ssd300_vggl6 26.0 13.6 2.9 0.6
MobileNet V3 Large 255 153 1.7 0.7
yolov9t 26.4 18.0 3.8 0.4
yolov9s 26.4 20.6 3.5 0.5
ResNet50 25.5 75.0 1.7 0.7

The legend for Tables 6a and 6b is identical to that of
Tables 5a and 5b and therefore has not been repeated.

Table 6b: Performance metrics on the Lenovo Thinkpad T480 device

Model ®) 6) )
mobilenet_v3_large 1.84 0.005273 14.1
yolov5nu 4.64 0.004947 34.9
yolov8n 3.86 0.004734 304
yolov8s 1.15 0.003410 12.4
yolov5su 1.30 0.003189 16.2
yolov10n 438 0.003156 51.1
yolol1n 4.56 0.003113 53.7
yolol1s 1.31 0.002678 18.5
yolov10s 1.55 0.002210 25.8
ssd300_vggl6 0.18 0.001675 4.1
MobileNet V3 Large 0.33 0.001567 8.4
yolovot 5.05 0.001204 159.0
yolov9s 1.65 0.001080 57.8
ResNet50 0.16 0.000320 19.0

6. Discussion
6.1. Detection Result

The article analyzes object detection results obtained on
three different devices: NanoPI R5¢, Motorola Moto G50
and Thinkpad T480. They were compared in terms of
four key parameters: Confidence, number of correct de-
tections, number of incorrect detections and model size.

Most of the models show a high level of detection
confidence between 0.89 and 0.98, indicating their ability
to accurately recognise objects. The yolol 1n model rec-
orded the lowest Confidence value (0.8935), while
ssdlite320 mobilenet v3 large achieved the highest
value (0.9776). Models with higher Confidence, such as
FasterRCNN_ResNet50 (0.9705) and FasterRCNN_Mo-
bileNet V3 Large (0.9711), theoretically provide higher
prediction quality.

An interesting observation is that some models, such
as FasterRCNN_ResNet50, yolov8s and yolov9s,
achieve correct detections above 100% (106.54%,
103.74% and 103.74%, respectively). This indicates the
presence of false positives, i.e. cases, in which models
incorrectly classify objects outside the analysed set as
correct. For this reason, despite their high Confidence,
their practical usefulness may be limited in environments
requiring higher precision.

In contrast, models such as yolov5su (Confidence:
0.9142, correct detections: 101.87%) or yolov9t (Confi-
dence: 0.9079, correct detections: 101.87%) show more
balanced results, with a relatively low number of False

positives. These are examples of models that combine
well high precision with a low number of misclassifica-
tions, making them more effective in applications requir-
ing reliability.

Models with correct detections well below 100%,
such as ssd300 vggl6 (59.81%) and ssdlite320 mo-
bilenet v3 large (41.12%), do not meet high detection
standards and have limited effectiveness in practice, alt-
hough their Confidence remains high.

The models differ significantly in terms of the num-
ber of erroneous detections. The best results in this cate-
gory were achieved by the models yolov9t (3 wrong de-
tections) and yolov5nu (5 wrong detections), which at the
same time maintain a high ratio of correct detections. In
contrast, models such as FasterRCNN_ ResNet50 (46 er-
roneous detections) and FasterRCNN_Mo-
bileNet V3 Large (43 erroncous detections), despite
high detection confidence, are less effective in environ-
ments where detection errors are crucial.

In terms of model size, yolovot (4.74 MB) and
yolov5nu (5.31 MB) are the most compact, making them
ideal for use on edge computing devices with limited re-
sources. In contrast, the FasterRCNN_ResNet50 (159.28
MB) and ssd300 vggl6 (135.96 MB) models require sig-
nificantly more memory, limiting their use on devices
with lower computing power.

6.2. Processing Time Results

Analysing the average image processing times, including
preparation, inference and postprocessing times, there are
several significant differences between the models that
affect the object detection performance on the different
devices.

Latency time for different models shows marked dif-
ferences, depending on the type of model and the device
on which it is run. YOLO models generally achieve lower
latency times, making them more efficient in real-time
detection.

In contrast, more advanced models, such as the
FasterRCNN_ResNet50 and ssd300 vggl6, have higher
latency, which may affect their suitability in resource-
constrained systems.

YOLO models, such as yolov5su, yolov5nu, and
yolol In, offer the best latency times. For yolov5su, the
latency on the NanoPi R5c device is 4,798.67 ms and on
the Motorola device is 1,383.40 ms. yolovSnu and
yolov8n also show short latency times of 1,679.09 ms
and 1,814.28 ms on the NanoPi R5c¢, and 943.05 ms and
1,025.74 ms on the Motorola, respectively. In the case of
yolov9s, the latency on the Motorola device is 2,487.11
ms, while on the T480 it reaches 849.09 ms, making it
one of the less efficient in this group.

Compared to YOLO models, the more advanced
Faster R-CNN models show noticeably higher latency
times. FasterRCNN_ResNet50 on a NanoPi R5¢ device
achieves a latency time of 48,204.22 ms, a significant dif-
ference from YOLO models such as yolov5su (4,798.67
ms) or yolov9s (5,168.67 ms). Even on a Motorola de-
vice, the FasterRCNN_ResNet50 still requires 25,555.80
ms to process an image, making it one of the slowest
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models. The ssd300 vggl6 also shows higher latency, at
6,804.04 ms on the NanoPi R5¢ and 5,355.55 ms on the
Motorola, making it slower than most YOLO models, but
faster to process than the Faster R-CNN.

SSD architectures perform significantly better in
terms of latency compared to Faster R-CNN models, alt-
hough they are still slower than most YOLO models. On
the NanoPi R5c device, the ssd300 vggl6é model
achieves a processing time of 6,804.04 ms, making it
slower than YOLOvS5su and YOLOVYs, but still faster
than FasterRCNN_ResNet50. The lighter version —
ssdlite320_mobilenet v3 large — significantly improves
performance, reaching 728.61 ms, bringing it closer to
YOLO models in terms of speed. All models on Motorola
and T480 have differences in latency, but a noticeable
trend is that the YOLO models offer better speed in de-
tection, especially on devices with limited resources.
However, the FasterRCNN_ResNet50 may offer better
detection performance, despite the higher latency. Tables
7-9 show the top five models in terms of latency, evalu-
ated for three different devices.

Table 7: Top 5 models in terms of latency for a NanoPi R5¢c

Model Latency (ms)
ssdlite320_mobilenet v3 large 728.61
yolol1n | 1604.55
yolov5nu | 1679.09
yolov8n | 1814.28
yolovt | 1972.43

Table 8: Top 5 models in terms of latency for a Moto G50

Model Latency (ms)
yolol1n 763.89
yolov5nu | 943.05
yolov8n | 1025.74
yolovot | 1205.59
ssdlite320_mobilenet v3_large | 1237.42

Table 9: Top 5 models in terms of latency for a Thinkpad T480

Latency (ms)

ssdlite320_mobilenet v3_large 185.41
yolov5nu ’ 185.47
yolov8n | 189.87
yolov8s | 266.02
yolov10n | 285.43

6.3. Resource Efficiency Results

This chapter presents an analysis of the resource effi-
ciency of individual models in edge computing environ-
ments. The focus is on parameters such as CPU consump-
tion and RAM consumption, power consumption and
CPU temperature to assess how each model performs
with hardware limitations in the context of object detec-
tion in edge computing systems.

The YOLO family models show relatively moderate
CPU (in the 37-48% range) and RAM (in the 54-61%
range) consumption on the NanoPi R5C device. These
models also achieve relatively low CPU temperatures (in

the 51-56°C range). Models based on the Faster R-CNN
architecture, such as the FasterRCNN_ResNet50, have
significantly higher CPU (89.35%) and RAM (72.32%)
consumption, as well as higher CPU temperatures
(61.34°C), which may indicate a higher system load dur-
ing processing. The ssd300 vggl6 has very high CPU
(94.39%) and RAM (67.85%) consumption and rela-
tively high CPU temperatures (57.67°C), which may af-
fect system performance when processing for long peri-
ods of time.

Table 10 shows the top five models in terms of re-
source efficiency for the NanoPi R5¢ device.

Table 10: Top 5 models in terms of resource efficiency — NanoPi R5c

CPU (%) RAM (%) | CPU Temp (°C)
yolov8s 37.72 57.96 53.72
yolov3su 38.07 54.81 51.80
yolol1s 40.58 61.42 55.59
yolov10s 42.12 59.92 55.42
yolov9s 4222 59.42 55.22

Similar to the NanoPi R5c, YOLO models on
Motorola show fairly high CPU (in the 81-83% range)
and RAM (in the 72-74% range) consumption, with CPU
temperatures ranging from 35.82°C to 43.69°C. yolol1n
and yololls show the highest RAM consumption
(81.64% and 82.13%) and the highest CPU temperatures
(46.56°C and 45.86°C). Faster R-CNN models, such as
the FasterRCNN_ResNet50, have relatively lower CPU
consumption (60.02%) and RAM consumption
(61.74%), with a CPU temperature of 43.46°C, suggest-
ing that they are less taxing compared to other models,
especially for devices such as Motorola.

The ssd300 vggl6 and ssdlite320_mo-
bilenet v3 large models show high CPU (71.81% and
87.37%) and RAM usage (76.82% and 70.63%), reflect-
ing their computing demands. However, ssdlite320_mo-
bilenet v3 large has a relatively low CPU temperature
(45 °C). Table 11 lists the top five most resource-efficient
models for the Motorola Moto G50.

Table 11: Top 5 models in terms of resource efficiency - Moto G50

Energy CPU RAM | CPU

W) (%) (%) | Temp (°C)
FasterRCNN _
MobileNet V3 Large 243 75.64 | 61.84 4627
yololls 243 82.66 82.13 45.86
ResNet50 2.51 60.02 61.74 43.46
yolovot 2.55 8221 7476 43.69
yolov5nu 2.55 8236 73.82 39.42

YOLO models achieve moderate CPU usage
(66.85%—-85.51%) and RAM usage (10.53%—-11.3%),
with CPU temperatures ranging from 59.09°C to 65.04°C
on the ThinkPad T480 device. This suggests that these
models are suitable for high-performance hardware, as
they do not generate high loads on the CPU or memory.

Faster R-CNN models achieve lower levels of CPU
(42%) but higher levels of RAM (18%) consumption.
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The SSD architecture occupies a middle ground. It
uses a similar or lower amount of CPU compared to
YOLO models but requires more RAM. Compared to
Faster R-CNN, SSD models consume more CPU re-
sources but are more memory-efficient, using less RAM.

There is a large discrepancy in CPU and RAM con-
sumption depending on the model. For example, for
yolov5su the CPU consumption on the ThinkPad is only
71.23%, but the CPU temperature rises to 59.41°C. The
FasterRCNN_ResNet50 has higher CPU consumption,
indicating the higher computing requirements of this
model compared to the others. Table 12 shows the top
five models in terms of resource efficiency for the Think-
pad T480.

Table 12: Top 5 models in terms of resource efficiency - T480

CPU
Energy W) | U RAM | remp
(%) (%) &

(°C)
yolovssu 22.95 7123 1053 59.41
yolovot 23.94 89.99 10.63  62.08
yolov8n 24.10 7022 1061 5936
ez s 24.12 7568 1381 6561
bilenet v3 large
yolol Is 24.15 7236 1130 65.04

6.4. Performance Metrics

Choosing the right model for object detection on edge
computing devices requires consideration of both perfor-
mance and resource consumption. Key factors include la-
tency, CPU consumption, RAM consumption and model
size, all of which have a direct impact on real-time appli-
cation performance. Models that are more optimised for
performance can offer a better balance between accuracy
and response time. The following analysis shows the best
and worst models that differ in these criteria, as well as
their suitability in the context of edge computing devices.

Best Models:

e vyololln:

This model achieved very good detection results of
97.30%, while having a high confidence rating of 0.8935.
Its unique advantage is its small size of only 5.35 MB,
which significantly distinguishes it from other models
weighing 159 MB, 135 MB or 73 MB, respectively. In
terms of latency, it ranked second on the NanoPI R5c de-
vice, while on the Motorola Moto G50 it was the best,
coming in first place.

e yolov5nu:

This model also achieved high detection scores of
93.46%, with the highest confidence rating of 0.9142. Its
size (5.31 MB) is similar to yolol1n, making it equally
efficient in terms of memory resources. In terms of la-
tency, yoloSnu came in third place to the NanoPI R5c de-
vice, second place to the Motorola Moto G50 and second
place to the ThinkPad T480 laptop.

7. Conclusion

The conducted analysis confirms that YOLO-based mod-
els, particularly are well-suited for edge computing sce-
narios due to their favorable trade-off between detection
accuracy, latency, and resource consumption.

Yolol 1n stands out as one of the most efficient mod-
els in terms of low latency and modest hardware de-
mands. Despite slightly higher memory usage compared
to some other lightweight models, it consistently delivers
fast and reliable performance across various devices.
This makes it a strong candidate for real-time applica-
tions deployed on resource-constrained edge devices.

YolovSnu offers a balanced approach, achieving
good accuracy while maintaining acceptable CPU and
RAM usage. Although its latency is relatively higher, its
overall stability and detection performance justify its use
in applications where consistent object recognition is
more important than minimal delay.

Both models stand out for their excellent balance of
high detection accuracy, computational efficiency and
minimal hardware requirements. Their small size and low
latency make them an ideal choice for real-time detection
systems in environments with limited hardware re-
sources, such as IoT devices, single board computers or
smartphones.

When comparing the YOLO architecture to other ap-
proaches such as SSD and Faster R-CNN, YOLO con-
sistently delivered the best overall performance on the
tested dataset. For this reason, the recommended YOLO-
based models are the most advisable choices. However,
it is important to note that model behavior may vary de-
pending on the specific characteristics of the target de-
vice.
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