
JCSI 37 (2025) 379–390

Received: 26 May 2025

Accepted: 19 August 2025

379

Analysis of the use of object detection systems in edge computing

Analiza wykorzystania systemów detekcji obiektów w przetwarzaniu typu
edge computing

Jakub Kozłowski*, Marcin Badurowicz

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

This article analyzes the potential of using artificial intelligence for object detection in edge computing environments,

which are gaining importance with the growing number of Internet of Things devices. The focus is on evaluating algo-

rithms in terms of accuracy, speed, and energy efficiency. The goal is to identify solutions that minimize latency, which

is crucial for autonomous systems and surveillance. Experiments were conducted on three devices using YOLO, SSD,

and Faster R-CNN models. The results highlight the most effective object detection methods in edge computing, support-

ing the development of industry and IoT.

Keywords: edge computing; object detection; Internet of Things

Streszczenie

W artykule przeanalizowano potencjał wykorzystania sztucznej inteligencji w detekcji obiektów w środowiskach edge
computing, które zyskują na znaczeniu wraz ze wzrostem liczby urządzeń Internetu Rzeczy. Skupiono się na ocenie
algorytmów pod kątem dokładności, szybkości oraz efektywności energetycznej. Celem było zidentyfikowanie rozwiązań
minimalizujących latencję, istotną w systemach autonomicznych i monitoringu. Testy przeprowadzono na trzech urzą-
dzeniach z wykorzystaniem modeli YOLO, SSD i Faster R-CNN. Wyniki wskazują najskuteczniejsze metody detekcji
obiektów w edge computing, wspierające rozwój przemysłu i IoT.
Słowa kluczowe: przetwarzanie brzegowe; detekcja obiektów; Internet Rzeczy

*Corresponding author

Email address: jakub.kozlowski.701@gmail.com (J. Kozłowski)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

With the rapid development of the Internet of Things

and the growing demand for real-time data processing ap-

plications, object detection systems in edge computing

environments are becoming increasingly important. In

many cases, sending data to the cloud is inefficient or

even impossible due to the need for low latency, limited

network bandwidth, or concerns related to data privacy.

A good example is urban surveillance systems, which

must quickly detect dangerous situations, or autonomous

vehicles, which cannot wait for a response from a remote

server to make an emergency braking decision.

In the era of digitalization and the fourth industrial

revolution, the role of edge computing is becoming cru-

cial, especially in areas such as autonomous transporta-

tion, smart cities, Industry 4.0, and medicine. Local data

processing, without the need to send it to the cloud, not

only increases security but most importantly enables

near-instant decision-making.

However, designing edge computing systems in-

volves many constraints. Low computing power, limited

memory, and the need to minimize energy consumption

require careful selection of both algorithms and hard-

ware. The key challenge is to find the right balance be-

tween accuracy, performance, and energy efficiency. It is

also worth emphasizing that edge environments are

highly diverse – from smartphones, through embedded

platforms such as Raspberry Pi, to advanced systems like

Nvidia Jetson Nano – which further affects the approach

to implementing algorithms.

This article focuses in particular on algorithms that

enable fast object detection, such as YOLO, SSD, or

Faster R-CNN. Their efficiency in edge environments is

crucial, for example, in real-time monitoring systems,

medical diagnostics, industrial quality control, and many

IoT solutions.

The aim of this article is to analyze the performance

of various edge devices in image processing and to eval-

uate the suitability of selected object detection models for

real-world applications. The results of this research may

contribute to the development of more efficient and en-

ergy-saving solutions that can be applied both in industry

and educational environments.

2. Literature Review

The rapid development of hardware technologies such as

NVIDIA Jetson processors, Raspberry Pi with Neural

Compute Stick, and various FPGA platforms has signifi-

cantly contributed to the evolution of object detection al-

gorithms. Algorithms like YOLO and Faster R-CNN,

which were originally designed for powerful computing

platforms, are now increasingly implemented on smaller,

resource-constrained devices. This is particularly im-

portant in the context of edge computing, where local

data processing is crucial for applications requiring low

latency and fast response times, such as video

mailto:jakub.kozlowski.701@gmail.com

Journal of Computer Sciences Institute 37 (2025) 379-390

380

surveillance, autonomous vehicles, and real-time object

detection systems.

The literature review focuses on five key studies that

comprehensively analyze the performance of object de-

tection algorithms on edge devices. The studies highlight

important aspects such as inference time, detection accu-

racy, and energy consumption, which are essential for se-

lecting the appropriate algorithm and hardware platform

for a given application.

In the article Benchmark Analysis of YOLO Perfor-

mance on Edge Intelligence Devices [1], the authors ex-

amine the efficiency of running the YOLO algorithm on

various edge platforms, including NVIDIA Jetson Nano,

Jetson Xavier NX, and Raspberry Pi 4B with Intel Neural

Compute Stick 2. The study shows that the Jetson Xavier

NX provides the highest computing performance, mak-

ing it suitable for more demanding tasks. On the other

hand, the Raspberry Pi 4B combined with the NCS2

demonstrates lower power consumption, which is advan-

tageous for mobile and energy-efficient applications. The

paper emphasizes that selecting the appropriate platform

should always depend on whether the priority is maxi-

mum performance or minimal energy consumption

The article Performance Analysis of Deep Learning-

Based Object Detection Algorithms on COCO Bench-

mark [2] presents a comparison of popular object detec-

tion algorithms, such as Faster R-CNN, Mask R-CNN,

and DyHead, based on the COCO dataset. The research

indicates that the DyHead algorithm achieved the best de-

tection results, particularly in complex detection scenar-

ios. However, algorithms like NAS-FPN and Detec-

torRS, although highly effective, require significantly

more computational resources. The authors also empha-

size that the final choice of algorithm should always con-

sider the application's specific requirements, especially in

the context of edge devices with limited computational

capabilities.

The article Edge Computing by M. Satyanarayanan

[3] provides a broader context for the importance of edge

computing, which is essential for the operation of real-

time systems, including those based on object detection.

The author highlights that edge computing enables local

data processing, significantly reducing latency and im-

proving system responsiveness, which is particularly im-

portant for applications such as autonomous systems and

video monitoring. However, the paper points out that the

main challenge remains optimizing algorithms to work

effectively on devices with limited computational re-

sources.

The article Deep Learning for Edge Computing Ap-

plications: A State-of-the-Art Survey [4] presents an ex-

tensive overview of the current trends and challenges in

applying deep learning in edge computing. The authors

discuss advanced optimization techniques, such as model

compression and distributed computing, which are key to

adapting algorithms to the limited computing and energy

capacities of edge devices. This article is particularly val-

uable in the context of object detection, as it offers prac-

tical solutions for improving the efficiency and perfor-

mance of algorithms in edge environments.

The article Object Detection using YOLO: Chal-

lenges, Architectural Successors, Datasets and Applica-

tions [5] thoroughly discusses the evolution of the YOLO

algorithm, starting from YOLOv1 to its most recent ver-

sions, which have significantly improved both detection

accuracy and processing speed. The authors analyze the

challenges of detecting small objects and objects on com-

plex backgrounds and emphasize the importance of using

datasets such as COCO for training models adapted to

real-world conditions. Particular attention is paid to the

operation of YOLO on edge devices, where optimizing

the model is necessary to maintain a balance between de-

tection quality and real-time processing speed.

The review of the literature clearly shows that object

detection algorithms in edge computing environments

must be carefully adapted to the hardware limitations of

devices such as cameras, sensors, or embedded systems.

The choice of model depends not only on accuracy but

also on processing speed and energy consumption.

YOLO remains one of the most commonly used algo-

rithms due to its speed and versatility, but its deployment

on edge devices still requires continuous improvements

and optimization.

Future research directions in this field should focus

on simplifying network architectures, using automatic

optimization techniques, and precisely adapting algo-

rithms to specific devices. This will enable the develop-

ment of edge computing systems that are fast, energy-ef-

ficient, and capable of operating in real-time conditions.

3. Purpose of the Study

The aim of this research is to evaluate the performance of

object detection algorithms in the context of edge com-

puting, with particular attention to their deployment on

various hardware platforms. The study seeks to identify

challenges related to resource optimization, including

CPU, RAM, GPU, and power consumption, and to pro-

pose recommendations for improving the efficiency of

these algorithms. The research will be divided into six

stages:

• selecting appropriate algorithms for testing,

• selecting three edge computing platforms represent-

ing different device types (smartphones, single-

board computers, and desktop computers) and eval-

uating their technical specifications,

• preparing the testing environment,

• conducting performance tests using the selected al-

gorithms on each platform,

• recording test results, including task execution time,

resource utilization, and power consumption,

• analyzing the results, with particular focus on the ef-

fectiveness of the algorithms across different hard-

ware platforms.

Journal of Computer Sciences Institute 37 (2025) 379-390

381

4. Research methodology

4.1. Research Tools

Object detection is one of the key challenges in the field

of image processing, and it has gained particular im-

portance thanks to the rapid development of neural net-

works and deep learning techniques. The ability to detect

objects quickly and accurately is critical in many modern

applications, such as autonomous driving, traffic moni-

toring, industrial automation, and security systems. In

edge computing environments, where real-time pro-

cessing and limited hardware resources are major con-

straints, choosing the right detection algorithms becomes

even more crucial.

In recent years, various object detection architectures

have been developed, significantly improving both detec-

tion speed and accuracy. Among these, three models have

become particularly popular and have been widely imple-

mented in edge and cloud-based solutions: YOLO, SSD,

and Faster R-CNN.

• YOLO (You Only Look Once) is one of the most

widely recognized architectures for object detec-

tion. The model is known for its exceptional speed,

thanks to its unique approach that treats object de-

tection as a regression problem over a single grid.

Each grid cell predicts both the class and the bound-

ing box coordinates in one step. YOLO provides a

favorable trade-off between speed and accuracy,

which makes it ideal for applications requiring low

latency, such as pedestrian detection in autonomous

vehicles or monitoring traffic signs in real time [6].

• SSD (Single Shot MultiBox Detector) is another

model that performs object detection in a single

step. Unlike YOLO, SSD uses multiple feature

maps to detect objects at different scales, which im-

proves its ability to handle objects of various sizes.

Its main advantage is fast detection with relatively

good accuracy, which is why SSD is often chosen

for edge computing applications, such as mobile-

based augmented reality systems and smart city sen-

sors, where quick responses are essential [7].

• Faster R-CNN is considered one of the most accu-

rate object detection architectures. The model oper-

ates in two stages: first, it extracts image features

using a convolutional network, and then it uses a Re-

gion Proposal Network (RPN) to generate object

proposals. Each proposal is then classified and pre-

cisely localized. Faster R-CNN achieves very high

accuracy but requires significant computational re-

sources, which makes it less suitable for low-power

edge devices. However, it remains valuable in sce-

narios where high precision is critical, such as med-

ical imaging or security systems with strict accuracy

requirements [8].

These three models were selected for this study be-

cause they represent a diverse spectrum of object detec-

tion strategies from highly optimized for speed to those

prioritizing accuracy. The choice allows for a

comprehensive comparison of their performance on edge

devices under varying computational constraints.

All selected models were trained on the COCO da-

taset, which is one of the most widely used datasets in the

field of object detection. COCO contains thousands of

images representing everyday scenes and objects, with

detailed annotations for detection, segmentation, and

keypoint recognition. The diversity and realism of this

dataset make it particularly suitable for developing and

testing algorithms intended for real-world applications

[9].

For this study, the STOP sign was selected as the de-

tection object. This choice is not accidental, it is based on

the distinctive shape, color contrast, and critical im-

portance of traffic signs in transportation and safety sys-

tems. STOP signs are present in various environments,

from urban intersections to rural roads, and detecting

them accurately is crucial for applications such as driver

assistance systems, autonomous vehicles, and traffic

monitoring. Additionally, STOP signs often appear near

other objects (trees, buildings, vehicles), making their de-

tection a realistic challenge for object detection algo-

rithms.

4.2. Research Platforms

The study was conducted on three different edge compu-

ting platforms to reflect the diversity of devices com-

monly used in real-world scenarios. The selected plat-

forms vary in terms of computational power, memory,

and intended usage, which allows for a meaningful eval-

uation of how object detection algorithms perform across

a wide range of hardware.

a) Motorola Moto G50

The Motorola Moto G50 is a smartphone that represents

a category of mobile edge devices. Smartphones are

widely used in edge computing, particularly in real-time

applications such as pedestrian tracking, environmental

monitoring, mobile health diagnostics, and smart city

management. Testing on this device simulates typical

mobile edge scenarios, where computational resources

are limited, but low latency and portability are critical.

Table 1 shows the technical specifications of the

Motorola Moto G50.

Table 1: Motorola Moto G50 – technical specifications

Technical specifications Motorola Moto G50

CPU Qualcomm Snapdragon 480

RAM 4 GB

Operating system Android 13

GPU Adreno 619

b) Router NanoPI R5c

The NanoPi R5c is a compact single-board computer

commonly used in networking and IoT edge solutions. Its

low power consumption and ability to locally process

data make it suitable for applications such as smart home

systems, industrial automation, or edge gateways for dis-

tributed sensor networks. Evaluating performance on this

device reflects use cases where local processing is needed

to reduce latency and bandwidth usage in distributed

Journal of Computer Sciences Institute 37 (2025) 379-390

382

systems. Table 2 presents the technical specifications of

the NanoPI R5c.

Table 2: NanoPI R5c – technical specifications

Technical specifications NanoPI R5c

CPU Rockchip RK3568B2

RAM 4 GB

Operation system FriendlyWrt

GPU GPU Mali-G52 MP2

c) Lenovo Thinkpad T480

The Lenovo ThinkPad T480 is a mobile workstation that

represents more powerful edge computing platforms ca-

pable of handling more complex tasks. This type of de-

vice is often used in edge applications that require on-site

data analysis, including real-time video processing in sur-

veillance systems or advanced quality control in manu-

facturing. Testing on this device helps evaluate whether

heavier algorithms can realistically run outside of cen-

tralized data centers. Table 3 presents the technical spec-

ifications of the Lenovo Thinkpad T480.

Table 3: Lenovo Thinkpad T480 – technical specifications

Technical specifications Lenovo Thinkpad T480

CPU Intel Core i5-8350U

RAM 32 GB

Operating system Linux Mint 22

GPU Intel HD Graphics 620

4.3. Experimental Setup

The work involved the implementation and evaluation of

selected object detection algorithms on three representa-

tive edge computing devices. Given the increasing de-

mand for intelligent processing directly on edge devices,

this study aims to assess how these models perform in

terms of accuracy, inference speed, and resource con-

sumption under realistic conditions. The PyTorch frame-

work was chosen for its flexibility and efficient support

for deploying deep learning models across diverse hard-

ware platforms. The implementation process was divided

into several stages to ensure systematic preparation, exe-

cution, and analysis of the experiments:

• Environment Preparation - Each tested device

was carefully prepared with all necessary software

components for running deep learning algorithms.

This included installing the Python interpreter, the

PyTorch framework, and additional packages such

as NumPy, OpenCV, torchvision, and psutil. These

tools facilitated image loading and processing, as

well as system resource monitoring during infer-

ence.

• Model Configuration - Three widely-used object

detection models: YOLO, SSD, and Faster R-CNN

were employed. Versions available in public librar-

ies that are designed to work efficiently on devices

with limited computational resources were selected.

This approach allowed the models to run without

modifications to their architectures, ensuring a fair

and practical evaluation of their out-of-the-box per-

formance on edge hardware.

• Test Routine Implementation - To compare model

performance across devices, a set of test scripts was

developed enabling:

a) Loading of models and test images.

b) Measurement of single-image processing times

to assess latency.

c) Recording of results in a structured CSV for-

mat for subsequent analysis.

The test dataset consisted of representative im-ages

with varying complexity levels, ensuring uniform

and realistic testing conditions.

• Hardware Resource Monitoring - Throughout the

tests, critical hardware resources such as CPU,

RAM, and GPU usage were monitored using the

psutil library, which tracks processor load, memory

occupancy, and active process durations. On de-

vices equipped with suitable drivers and sensors,

power consumption data was also recorded. This

was particularly important for mobile and single-

board computers where energy efficiency is a key

parameter.

• Data Analysis - The collected data was analyzed to

evaluate each model’s detection effectiveness using
metrics including processing time, accuracy, and re-

source efficiency. This analysis allowed detailed

comparison of the models’ strengths and weak-
nesses regarding their applicability to edge compu-

ting scenarios.

• Conclusions and Recommendations - Based on

the experimental results, the relative efficiency of

each algorithm on edge devices was assessed. The

models were compared in terms of detection accu-

racy, processing speed, and resource consumption,

which enabled identification of optimal solutions

for systems with constrained computing power. Key

trade-offs between detection precision, inference la-

tency, and energy usage were highlighted, providing

guidance for practical implementation.

For example, during testing, an image containing a STOP

sign under various lighting conditions was processed in-

dividually by each model on all devices. The inference

time, resource usage, and detection accuracy were rec-

orded and analyzed. This practical scenario illustrates

how the setup captures real-time performance and accu-

racy trade-offs relevant for edge applications like traffic

sign detection in autonomous vehicles or smart city mon-

itoring.

4.4. Comparative Metrics

The research was conducted based on accordance with a

predefined research methodology, involving the meas-

urement of three key parameters: processing time, accu-

racy and resource efficiency. The aim of this research

was to evaluate the performance of selected object

Journal of Computer Sciences Institute 37 (2025) 379-390

383

detection models under different edge computing device

conditions. The tests were carried out on three different

platforms, which provided a complete picture of the per-

formance of the algorithms in diverse environments. The

following aspects were taken into account in the study:

a) Processing Time

Measuring processing time was one one of the key com-

ponents of the study, as algorithm response time is criti-

cal in edge computing systems, where delays can affect

application performance.

Preprocessing time - The time taken to prepare the model

for inference was measured, which included loading the

model, preprocessing the image (e.g., changing resolu-

tion, normalizing) and setting up the environment.

• Inference time - The main measure, denoting the

time it takes the algorithm to process the image and

make a prediction.

• Final time - Included all operations related to post-

processing of results, such as detection filtering,

drawing frames around objects or calculating results

(e.g., precision, recall).

• Latency - The total delay from the time the image

enters the system to the time the results are obtained.

Measuring the times is crucial in assessing which models

are best suited for applications requiring low latency,

such as object detection in real time on edge devices.

b) Accuracy

The accuracy of object recognition was assessed using

detection quality indicators, particularly the Confidence

index, which indicates how confident the model is about

its prediction.

• Confidence - The average value of the confidence

index for all object detections in the image was

measured.

• Number of correct detections - The number of cor-

rectly identified objects was determined in relation

to all detected objects, which allowed the effective-

ness of the models to be assessed in various test sce-

narios.

• Number of incorrect recognitions - The number of

incorrectly identified objects was measured contain-

ing elements resembling the target object.

c) Resource Efficiency

Monitoring resource efficiency has made it possible to

assess how different models affect computing power,

memory and energy consumption, which is crucial in the

context of edge devices, which typically have limited re-

sources.

• Power consumption - Using power consumption

monitoring tools, it was measured how much power

the device was consuming during image processing.

• CPU and RAM consumption - By measuring CPU

consumption, it was possible to assess how in-

tensely each model was taxing the device's CPU.

• CPU temperature – It was monitored to determine

how intensely the models were loading the hard-

ware.

5. Results

The colors used in the tables are significant: green indi-

cates the NanoPI R5c device, purple represents the

Motorola Moto G50, and maroon refers to the Lenovo

Thinkpad T480. Figure 1 presents the relationship be-

tween detection rate and false positives for the analyzed

models, with colors indicating the average confidence

score. These visualizations provide insight into the per-

formance of each model variant, revealing the balance

between correct detections and false alarms. The size and

positioning of each point allow for evaluation of both ef-

fectiveness and computational efficiency across different

hardware platforms.

Figure 1: Detection results on the NanoPi R5c device.

Figure 2 presents the same type of analysis as Figure 1,

focusing this time on the Motorola Moto G50 device.

While the structure of the plot remains consistent, illus-

trating the relationship between detection rate and false

positives, with color encoding the average confidence,

the data were collected entirely on a mobile platform.

This comparison highlights how the models behave un-

der more constrained computational resources, character-

istic of smartphones. Observing shifts in confidence lev-

els, detection accuracy, and the distribution of false pos-

itives offers valuable insight into the limitations and ca-

pabilities of edge devices like the Moto G50 when run-

ning object detection algorithms.

Journal of Computer Sciences Institute 37 (2025) 379-390

384

Figure 2: Detection results on the Motorola Moto G50 device.

Figure 3 shows the same set of results as the previous

figures, this time obtained on the Lenovo ThinkPad

T480. As a laptop-class device with significantly more

computing power, the T480 allows for smoother execu-

tion of detection models. The visualization highlights

how increased hardware capabilities affect detection ac-

curacy, confidence scores, and the rate of false positives,

offering a useful point of reference when comparing mo-

bile and embedded platforms to standard computing en-

vironments.

Figure 3: Detection results on the Lenovo Thinkpad T480 device.

Figure 4 presents latency measurements for selected ob-

ject detection models tested on three different hardware

platforms. This analysis provides a comprehensive un-

derstanding of the trade-offs between model complexity,

inference speed, and hardware limitations. Consequently,

it offers valuable insights into which models are most

suitable for deployment in specific contexts, whether on

resource-constrained edge devices, moderately powered

mobile platforms, or more advanced laptop systems,

thereby supporting informed decision-making for practi-

cal applications of object detection technology.

Figure 4: Latency of Models on Different Devices.

Figures 5–10 compare the models in terms of resource

efficiency, including energy consumption, memory us-

age, and hardware optimization. This analysis highlights

how effectively the models use resources during infer-

ence, which is crucial for devices with limited capabili-

ties. It helps identify the most suitable models for differ-

ent environments, from edge devices to mobile platforms

and laptops.

Figure 5: CPU Temperature by Model on the NanoPi R5c device.

Journal of Computer Sciences Institute 37 (2025) 379-390

385

Figure 6: CPU and RAM Usage by Model on the NanoPi R5c device.

Figures 5 and 6 present the CPU temperature as well as

CPU and RAM usage for various object detection models

running on the NanoPi R5c device. Analyzing these pa-

rameters allows assessment of how each model impacts

the computational load and thermal behavior of this edge

device, which is characterized by limited processing

power and cooling capabilities. These results are im-

portant for understanding which models can operate effi-

ciently without risking overheating or excessive energy

consumption in a resource-constrained environment.

Monitoring these metrics also helps identify potential

bottlenecks that could affect real-time performance.

Figure 7: Energy Usage and CPU Temperature by Model on the Moto

G50 device.

Figure 8: CPU and RAM Usage by Model on the Moto G50 device.

Figures 7 and 8 show energy consumption, CPU temper-

ature, and memory usage for models tested on the

Motorola Moto G50 smartphone. These figures provide

a detailed view of how each model balances performance

with power efficiency on a mobile platform, where bat-

tery life is a critical factor. The analysis highlights varia-

tions in energy demands and thermal output among mod-

els, which directly influence user experience through de-

vice responsiveness and battery longevity. Additionally,

the memory usage data offer insight into the models’
footprint on limited mobile resources, helping to identify

those that maintain optimal operation without causing

slowdowns or excessive power drain. This comprehen-

sive assessment is essential for selecting models suitable

for real-world mobile applications.

Figure 9: Energy Usage and CPU Temperature by Model

on the Thinkpad T480 device.

Journal of Computer Sciences Institute 37 (2025) 379-390

386

Figure 10: CPU and RAM Usage by Model on the Thinkpad T480

device.
Figures 9 and 10 illustrate energy consumption, CPU

temperature, and RAM usage for models running on the

ThinkPad T480 laptop. The data reflect the resource de-

mands on a more powerful system, providing insight into

model efficiency in less constrained environments.

The performance metrics in Tables 4–6 relate to dif-

ferent ratios, such as CPU/Energy, RAM/Energy or Con-

fidence/Latency. This makes it possible to analyse in de-

tail the impact of individual parameters on the perfor-

mance of the models, allowing them to be optimised in

the context of different resources.

Table 4: Performance metrics on the NanoPi R5c device

Model
Confi-

dence /

Latency

Latency /

Model Size

ssd300_vgg16 0.000138 50.0

ssdlite320_mobilenet_v3_large 0.001342 55.5

FasterRCNN_MobileNet_V3_Large 0.000167 78.6

yolov8s 0.000161 262.2

yolov5su 0.000191 270.8

yolo11s 0.000181 274.0

yolov8n 0.000495 290.3

yolo11n 0.000557 299.9

FasterRCNN_ResNet50 0.000020 302.6

yolov5nu 0.000546 316.2

yolov9s 0.000177 352.1

yolov10s 0.000161 353.2

yolov10n 0.000436 369.4

yolov9t 0.000460 416.1

Table 5a: Performance metrics on the Motorola Moto G50 device

Model (1) (2) (3) (4)

yolo11n 3.1 2.1 30.3 29.7

yolov5nu 2.8 2.4 32.3 28.9

yolov8n 2.9 2.7 31.5 27.6

yolov9t 2.8 3.1 32.2 29.3

mobilenet_v3_large 2.7 3.2 33.5 27.1

yolov10n 2.9 3.5 31.2 28.3

yolov5su 2.9 3.7 31.2 27.8

yolo11s 2.7 4.0 34.0 33.8

yolov8s 2.9 5.7 31.5 28.7

yolov9s 2.9 6.5 31.0 28.4

yolov10s 2.9 8.3 30.5 28.4

ssd300_vgg16 2.8 13.9 27.7 29.7

MobileNet_V3_Large 2.5 14.0 31.1 25.4

ResNet50 2.6 64.1 23.9 24.6

Legend:

1. Energy / Confidence

2. Energy Consumption (J)

3. CPU / Energy

4. RAM / Energy

Table 5b: Performance metrics on the Motorola Moto G50 device

Model (5) (6) (7)

yolo11n 0.51 0.001170 142.8

yolov5nu 0.48 0.000973 177.6

yolov8n 0.42 0.000876 164.1

yolov9t 0.54 0.000753 254.3

mobilenet_v3_large 0.20 0.000790 94.3

yolov10n 0.47 0.000670 240.7

yolov5su 0.15 0.000661 78.1

yolo11s 0.13 0.000555 89.1

yolov8s 0.12 0.000414 101.7

yolov9s 0.18 0.000369 169.4

yolov10s 0.17 0.000289 197.0

ssd300_vgg16 0.02 0.000175 39.4

MobileNet_V3_Large 0.03 0.000169 77.9

ResNet50 0.02 0.000038 160.4

Legend:

5. Model Size / Energy

6. Confidence / Latency

7. Latency / Model Size

Table 6a: Performance metrics on the Lenovo Thinkpad T480 device

Model (1) (2) (3) (4)

mobilenet_v3_large 24.7 4.5 3.1 0.6

yolov5nu 26.9 4.6 2.9 0.4

yolov8n 26.8 4.6 2.9 0.4

yolov8s 27.3 6.6 2.7 0.4

yolov5su 25.1 6.6 3.1 0.5

yolov10n 27.2 7.0 3.4 0.4

yolo11n 27.3 7.0 3.5 0.4

yolo11s 26.5 8.2 3.0 0.5

Journal of Computer Sciences Institute 37 (2025) 379-390

387

yolov10s 27.2 10.0 3.1 0.4

ssd300_vgg16 26.0 13.6 2.9 0.6

MobileNet_V3_Large 25.5 15.3 1.7 0.7

yolov9t 26.4 18.0 3.8 0.4

yolov9s 26.4 20.6 3.5 0.5

ResNet50 25.5 75.0 1.7 0.7

The legend for Tables 6a and 6b is identical to that of

Tables 5a and 5b and therefore has not been repeated.

Table 6b: Performance metrics on the Lenovo Thinkpad T480 device

Model (5) (6) (7)

mobilenet_v3_large 1.84 0.005273 14.1

yolov5nu 4.64 0.004947 34.9

yolov8n 3.86 0.004734 30.4

yolov8s 1.15 0.003410 12.4

yolov5su 1.30 0.003189 16.2

yolov10n 4.38 0.003156 51.1

yolo11n 4.56 0.003113 53.7

yolo11s 1.31 0.002678 18.5

yolov10s 1.55 0.002210 25.8

ssd300_vgg16 0.18 0.001675 4.1

MobileNet_V3_Large 0.33 0.001567 8.4

yolov9t 5.05 0.001204 159.0

yolov9s 1.65 0.001080 57.8

ResNet50 0.16 0.000320 19.0

6. Discussion

6.1. Detection Result

The article analyzes object detection results obtained on

three different devices: NanoPI R5c, Motorola Moto G50

and Thinkpad T480. They were compared in terms of

four key parameters: Confidence, number of correct de-

tections, number of incorrect detections and model size.

Most of the models show a high level of detection

confidence between 0.89 and 0.98, indicating their ability

to accurately recognise objects. The yolo11n model rec-

orded the lowest Confidence value (0.8935), while

ssdlite320_mobilenet_v3_large achieved the highest

value (0.9776). Models with higher Confidence, such as

FasterRCNN_ResNet50 (0.9705) and FasterRCNN_Mo-

bileNet_V3_Large (0.9711), theoretically provide higher

prediction quality.

An interesting observation is that some models, such

as FasterRCNN_ResNet50, yolov8s and yolov9s,

achieve correct detections above 100% (106.54%,

103.74% and 103.74%, respectively). This indicates the

presence of false positives, i.e. cases, in which models

incorrectly classify objects outside the analysed set as

correct. For this reason, despite their high Confidence,

their practical usefulness may be limited in environments

requiring higher precision.

In contrast, models such as yolov5su (Confidence:

0.9142, correct detections: 101.87%) or yolov9t (Confi-

dence: 0.9079, correct detections: 101.87%) show more

balanced results, with a relatively low number of False

positives. These are examples of models that combine

well high precision with a low number of misclassifica-

tions, making them more effective in applications requir-

ing reliability.

Models with correct detections well below 100%,

such as ssd300_vgg16 (59.81%) and ssdlite320_mo-

bilenet_v3_large (41.12%), do not meet high detection

standards and have limited effectiveness in practice, alt-

hough their Confidence remains high.

The models differ significantly in terms of the num-

ber of erroneous detections. The best results in this cate-

gory were achieved by the models yolov9t (3 wrong de-

tections) and yolov5nu (5 wrong detections), which at the

same time maintain a high ratio of correct detections. In

contrast, models such as FasterRCNN_ResNet50 (46 er-

roneous detections) and FasterRCNN_Mo-

bileNet_V3_Large (43 erroneous detections), despite

high detection confidence, are less effective in environ-

ments where detection errors are crucial.

In terms of model size, yolov9t (4.74 MB) and

yolov5nu (5.31 MB) are the most compact, making them

ideal for use on edge computing devices with limited re-

sources. In contrast, the FasterRCNN_ResNet50 (159.28

MB) and ssd300_vgg16 (135.96 MB) models require sig-

nificantly more memory, limiting their use on devices

with lower computing power.

6.2. Processing Time Results

Analysing the average image processing times, including

preparation, inference and postprocessing times, there are

several significant differences between the models that

affect the object detection performance on the different

devices.

Latency time for different models shows marked dif-

ferences, depending on the type of model and the device

on which it is run. YOLO models generally achieve lower

latency times, making them more efficient in real-time

detection.

In contrast, more advanced models, such as the

FasterRCNN_ResNet50 and ssd300_vgg16, have higher

latency, which may affect their suitability in resource-

constrained systems.

YOLO models, such as yolov5su, yolov5nu, and

yolo11n, offer the best latency times. For yolov5su, the

latency on the NanoPi R5c device is 4,798.67 ms and on

the Motorola device is 1,383.40 ms. yolov5nu and

yolov8n also show short latency times of 1,679.09 ms

and 1,814.28 ms on the NanoPi R5c, and 943.05 ms and

1,025.74 ms on the Motorola, respectively. In the case of

yolov9s, the latency on the Motorola device is 2,487.11

ms, while on the T480 it reaches 849.09 ms, making it

one of the less efficient in this group.

Compared to YOLO models, the more advanced

Faster R-CNN models show noticeably higher latency

times. FasterRCNN_ResNet50 on a NanoPi R5c device

achieves a latency time of 48,204.22 ms, a significant dif-

ference from YOLO models such as yolov5su (4,798.67

ms) or yolov9s (5,168.67 ms). Even on a Motorola de-

vice, the FasterRCNN_ResNet50 still requires 25,555.80

ms to process an image, making it one of the slowest

Journal of Computer Sciences Institute 37 (2025) 379-390

388

models. The ssd300_vgg16 also shows higher latency, at

6,804.04 ms on the NanoPi R5c and 5,355.55 ms on the

Motorola, making it slower than most YOLO models, but

faster to process than the Faster R-CNN.

 SSD architectures perform significantly better in

terms of latency compared to Faster R-CNN models, alt-

hough they are still slower than most YOLO models. On

the NanoPi R5c device, the ssd300_vgg16 model

achieves a processing time of 6,804.04 ms, making it

slower than YOLOv5su and YOLOv9s, but still faster

than FasterRCNN_ResNet50. The lighter version –

ssdlite320_mobilenet_v3_large – significantly improves

performance, reaching 728.61 ms, bringing it closer to

YOLO models in terms of speed. All models on Motorola

and T480 have differences in latency, but a noticeable

trend is that the YOLO models offer better speed in de-

tection, especially on devices with limited resources.

However, the FasterRCNN_ResNet50 may offer better

detection performance, despite the higher latency. Tables

7–9 show the top five models in terms of latency, evalu-

ated for three different devices.

Table 7: Top 5 models in terms of latency for a NanoPi R5c

Model Latency (ms)

ssdlite320_mobilenet_v3_large 728.61

yolo11n 1604.55

yolov5nu 1679.09

yolov8n 1814.28

yolov9t 1972.43

Table 8: Top 5 models in terms of latency for a Moto G50

Model Latency (ms)

yolo11n 763.89

yolov5nu 943.05

yolov8n 1025.74

yolov9t 1205.59

ssdlite320_mobilenet_v3_large 1237.42

Table 9: Top 5 models in terms of latency for a Thinkpad T480

Model Latency (ms)

ssdlite320_mobilenet_v3_large 185.41

yolov5nu 185.47

yolov8n 189.87

yolov8s 266.02

yolov10n 285.43

6.3. Resource Efficiency Results

This chapter presents an analysis of the resource effi-

ciency of individual models in edge computing environ-

ments. The focus is on parameters such as CPU consump-

tion and RAM consumption, power consumption and

CPU temperature to assess how each model performs

with hardware limitations in the context of object detec-

tion in edge computing systems.

 The YOLO family models show relatively moderate

CPU (in the 37-48% range) and RAM (in the 54-61%

range) consumption on the NanoPi R5C device. These

models also achieve relatively low CPU temperatures (in

the 51-56°C range). Models based on the Faster R-CNN

architecture, such as the FasterRCNN_ResNet50, have

significantly higher CPU (89.35%) and RAM (72.32%)

consumption, as well as higher CPU temperatures

(61.34°C), which may indicate a higher system load dur-

ing processing. The ssd300_vgg16 has very high CPU

(94.39%) and RAM (67.85%) consumption and rela-

tively high CPU temperatures (57.67°C), which may af-
fect system performance when processing for long peri-

ods of time.

Table 10 shows the top five models in terms of re-

source efficiency for the NanoPi R5c device.

Table 10: Top 5 models in terms of resource efficiency – NanoPi R5c

Model CPU (%) RAM (%) CPU Temp (℃)
yolov8s 37.72 57.96 53.72

yolov5su 38.07 54.81 51.80

yolo11s 40.58 61.42 55.59

yolov10s 42.12 59.92 55.42

yolov9s 42.22 59.42 55.22

 Similar to the NanoPi R5c, YOLO models on

Motorola show fairly high CPU (in the 81-83% range)

and RAM (in the 72-74% range) consumption, with CPU

temperatures ranging from 35.82°C to 43.69°C. yolo11n
and yolo11s show the highest RAM consumption

(81.64% and 82.13%) and the highest CPU temperatures

(46.56°C and 45.86°C). Faster R-CNN models, such as

the FasterRCNN_ResNet50, have relatively lower CPU

consumption (60.02%) and RAM consumption

(61.74%), with a CPU temperature of 43.46°C, suggest-
ing that they are less taxing compared to other models,

especially for devices such as Motorola.

The ssd300_vgg16 and ssdlite320_mo-

bilenet_v3_large models show high CPU (71.81% and

87.37%) and RAM usage (76.82% and 70.63%), reflect-

ing their computing demands. However, ssdlite320_mo-

bilenet_v3_large has a relatively low CPU temperature

(45 °C). Table 11 lists the top five most resource-efficient

models for the Motorola Moto G50.

Table 11: Top 5 models in terms of resource efficiency - Moto G50

Model
Energy

(W)

CPU

(%)

RAM

(%)

CPU

Temp (℃)

FasterRCNN_

MobileNet_V3_Large
2.43 75.64 61.84 46.27

yolo11s 2.43 82.66 82.13 45.86

ResNet50 2.51 60.02 61.74 43.46

yolov9t 2.55 82.21 74.76 43.69

yolov5nu 2.55 82.36 73.82 39.42

YOLO models achieve moderate CPU usage

(66.85%–85.51%) and RAM usage (10.53%–11.3%),

with CPU temperatures ranging from 59.09°C to 65.04°C
on the ThinkPad T480 device. This suggests that these

models are suitable for high-performance hardware, as

they do not generate high loads on the CPU or memory.

Faster R-CNN models achieve lower levels of CPU

(42%) but higher levels of RAM (18%) consumption.

Journal of Computer Sciences Institute 37 (2025) 379-390

389

The SSD architecture occupies a middle ground. It

uses a similar or lower amount of CPU compared to

YOLO models but requires more RAM. Compared to

Faster R-CNN, SSD models consume more CPU re-

sources but are more memory-efficient, using less RAM.

There is a large discrepancy in CPU and RAM con-

sumption depending on the model. For example, for

yolov5su the CPU consumption on the ThinkPad is only

71.23%, but the CPU temperature rises to 59.41°C. The
FasterRCNN_ResNet50 has higher CPU consumption,

indicating the higher computing requirements of this

model compared to the others. Table 12 shows the top

five models in terms of resource efficiency for the Think-

pad T480.

Table 12: Top 5 models in terms of resource efficiency - T480

Model Energy (W)
CPU

(%)

RAM

(%)

CPU

Temp

(℃)
yolov5su 22.95 71.23 10.53 59.41

yolov9t 23.94 89.99 10.63 62.08

yolov8n 24.10 70.22 10.61 59.36

ssdlite320_ mo-

bilenet_v3_large
24.12 75.68 13.81 65.61

yolo11s 24.15 72.36 11.30 65.04

6.4. Performance Metrics

Choosing the right model for object detection on edge

computing devices requires consideration of both perfor-

mance and resource consumption. Key factors include la-

tency, CPU consumption, RAM consumption and model

size, all of which have a direct impact on real-time appli-

cation performance. Models that are more optimised for

performance can offer a better balance between accuracy

and response time. The following analysis shows the best

and worst models that differ in these criteria, as well as

their suitability in the context of edge computing devices.

Best Models:

• yolo11n:

This model achieved very good detection results of

97.30%, while having a high confidence rating of 0.8935.

Its unique advantage is its small size of only 5.35 MB,

which significantly distinguishes it from other models

weighing 159 MB, 135 MB or 73 MB, respectively. In

terms of latency, it ranked second on the NanoPI R5c de-

vice, while on the Motorola Moto G50 it was the best,

coming in first place.

• yolov5nu:

This model also achieved high detection scores of

93.46%, with the highest confidence rating of 0.9142. Its

size (5.31 MB) is similar to yolo11n, making it equally

efficient in terms of memory resources. In terms of la-

tency, yolo5nu came in third place to the NanoPI R5c de-

vice, second place to the Motorola Moto G50 and second

place to the ThinkPad T480 laptop.

7. Conclusion

The conducted analysis confirms that YOLO-based mod-

els, particularly are well-suited for edge computing sce-

narios due to their favorable trade-off between detection

accuracy, latency, and resource consumption.

Yolo11n stands out as one of the most efficient mod-

els in terms of low latency and modest hardware de-

mands. Despite slightly higher memory usage compared

to some other lightweight models, it consistently delivers

fast and reliable performance across various devices.

This makes it a strong candidate for real-time applica-

tions deployed on resource-constrained edge devices.

Yolov5nu offers a balanced approach, achieving

good accuracy while maintaining acceptable CPU and

RAM usage. Although its latency is relatively higher, its

overall stability and detection performance justify its use

in applications where consistent object recognition is

more important than minimal delay.

Both models stand out for their excellent balance of

high detection accuracy, computational efficiency and

minimal hardware requirements. Their small size and low

latency make them an ideal choice for real-time detection

systems in environments with limited hardware re-

sources, such as IoT devices, single board computers or

smartphones.

When comparing the YOLO architecture to other ap-

proaches such as SSD and Faster R-CNN, YOLO con-

sistently delivered the best overall performance on the

tested dataset. For this reason, the recommended YOLO-

based models are the most advisable choices. However,

it is important to note that model behavior may vary de-

pending on the specific characteristics of the target de-

vice.

References

[1] H. Feng, G. Mu, S. Zhong, P. Zhang, T. Yuan, Benchmark

Analysis of YOLO Performance on Edge Intelligence De-

vices, Cryptography 6(2) (2022) 1-16,

https://doi.org/10.3390/cryptography6020016.

[2] J. Tian, Q. Jin, Y. Wang, J. Yang, S. Zhang, D. Sun, Per-

formance analysis of deep learning-based object detection

algorithms on COCO benchmark: a comparative study,

Journal of Engineering Applications of Science 71(76)

(2024) 1-18, https://doi.org/10.1186/s44147-024-00411-z.

[3] M. Satyanarayanan, Edge Computing, Computer 50(10)

(2017) 36-38, https://doi.org/10.1109/MC.2017.3641639.

[4] F. Wang, M. Zhang, X. Wang, X. Ma, J. Liu, Deep Learn-

ing for Edge Computing Applications: A State-of-the-Art

Survey, IEEE Access 8 (2020) 58322–58336,

https://dx.doi.org/10.1109/ACCESS.2020.2982411.

[5] T. Diwan, G. Anirudh, J. V. Tembhurne, Object detection

using YOLO: challenges, architectural successors, da-

tasets and applications, Multimedia Tools and Applica-

tions 82 (2023) 9243–9275,

https://doi.org/10.1007/s11042-022-13644-y.

[6] A. Nazir, M. A. Wani, You Only Look Once – Object De-

tection Models: A Review, Proceedings of the 2023 10th

International Conference on Computing for Sustainable

Global Development (INDIACom) (2023) 1088–1095.

https://doi.org/10.3390/cryptography6020016
https://doi.org/10.1186/s44147-024-00411-z
https://doi.org/10.1109/MC.2017.3641639
https://dx.doi.org/10.1109/ACCESS.2020.2982411
https://doi.org/10.1007/s11042-022-13644-y

Journal of Computer Sciences Institute 37 (2025) 379-390

390

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.

Y. Fu, A. C. Berg, SSD: Single Shot MultiBox Detector,

Proc. European Conf. Computer Vision (ECCV) (2016)

21-37, https://doi.org/10.1007/978-3-319-46448-0_2.

[8] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: To-

wards Real-Time Object Detection with Region Proposal

Networks, IEEE Transactions on Pattern Analysis and

Machine Intelligence 39(6) (2017) 1137–1149,

https://doi.org/10.1109/TPAMI.2016.2577031.

[9] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.

Ramanan, P. Dollár, C. L. Zitnick, Microsoft COCO:
Common Objects in Context, Proceedings of the 13th Eu-

ropean Conference on Computer Vision (ECCV) (2014)

740-755, https://doi.org/10.1007/978-3-319-10602-1.

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/978-3-319-10602-1

