
JCSI 37 (2025) 391–398

Received: 14 June 2025

Accepted: 1 July 2025

391

Performance analysis of Jetpack Compose components in mobile

applications

Analiza wydajności komponentów Jetpack Compose w aplikacjach

mobilnych

Adrian Kwiatkowski*, Jakub Smołka

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

This article presents a performance analysis of the Jetpack Compose toolkit components in mobile applications executing

typical user tasks. A performance comparison was conducted between specialized and less specialized components. The

Macrobenchmark, JUnit, and UIAutomator libraries were used to evaluate the performance of scrollable lists, animations,

and dispatchers on three different mobile devices, with each implementation in a given scenario appearing identical. The

results from the conducted tests indicate that specialized components do not always have the same or better performance

than less specialized components.

Keywords: Android; Jetpack Compose; performance

Streszczenie

Artykuł przedstawia analizę wydajności komponentów zestawu narzędzi Jetpack Compose w aplikacjach mobilnych re-

alizujących typowe zadania użytkownika. Przeprowadzone zostało porównanie wydajności pomiędzy komponentami wy-
specjalizowanymi i mniej wyspecjalizowanymi. Wykorzystane zostały biblioteki Macrobenchmark, JUnit i UIAutomator

za pomocą, których zbadana została wydajność listy przewijanej, animacji oraz dyspozytorów na trzech różnych urzą-
dzeniach mobilnych, przy czym każda implementacja w danym scenariuszu wyglądała tak samo. Wyniki przeprowadzo-

nych badań pozwalają stwierdzić, że komponenty wyspecjalizowane nie zawsze cechują się taką samą, bądź lepszą wy-
dajnością od komponentów mniej wyspecjalizowanych.

Słowa kluczowe: Android; Jetpack Compose; wydajność

*Corresponding author

Email address: s95471@pollub.edu.pl (A. Kwiatkowski)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

The technological advancement of mobile devices has

led to a significant increase in the number of users, a

trend that continues to grow each year [1]. Currently, the

most widely used operating system on mobile devices is

Android, which is broadly accessible to users [2]. As a

result, a large number of applications are being devel-

oped for this platform, often offering similar functionali-

ties but differing in non-functional requirements such as

performance, which play a crucial role in determining an

application's success and in attracting and retaining the

largest possible user base [3-6]. Ensuring high perfor-

mance is particularly important, as Android users operate

a wide variety of mobile devices with differing hardware

capabilities, including less powerful ones. Given that

user ratings in app stores significantly influence applica-

tion choice [6] optimizing performance is essential to

prevent negative reviews arising from inadequate appli-

cation responsiveness.

Many popular Android applications available on the

Google Play Store use the Jetpack Compose toolkit for

user interface development [7]. Jetpack Compose allows

developers to build native, declarative user interfaces that

update automatically upon detecting changes in the ob-

served state.

The objective of this study is to evaluate the perfor-

mance of different implementation variants of compo-

nents in Jetpack Compose by conducting a series of ex-

periments that measure and compare their efficiency on

representative mobile devices. The findings aim to sup-

port mobile application developers in selecting high-per-

formance components for building user interfaces that fa-

cilitate the execution of typical user tasks. The perfor-

mance analysis will focus on components used for ren-

dering lists, animations, and dispatchers in input and out-

put operations.

2. Literature review

This literature review discusses previous research on the

performance and quality-related factors of mobile appli-

cations. As there is still a limited number of studies spe-

cifically addressing Jetpack Compose, the review also in-

cludes research investigating the performance of other

technologies. The literature review has been organized

into the following areas:

1. Comparison of user interface performance.

2. Comparison of programming language performance.

3. Factors influencing application performance.

4. Factors influencing application quality.

5. Summary of the literature review.

mailto:s95471@pollub.edu.pl

Journal of Computer Sciences Institute 37 (2025) 391-398

392

2.1. Comparison of user interface performance

Study [8] compared the performance of applications built

with traditional views, Jetpack Compose, and a combina-

tion of both, using Macrobenchmark, JUnit, and UIAu-

tomator. In startup tests across cold, warm, and hot

modes, the view-based app performed best, followed by

Jetpack Compose, with the combination of both approach

performing worst. Additional tests on frame rendering

during list scrolling and animation showed minor differ-

ences. The combination of both performed best, while

Jetpack Compose had the most unstable results, possibly

due to experimental animation features.

Study [9] conducted a comparative analysis of Jet-

pack Compose and Flutter in an Android application. The

results showed that Flutter had lower CPU usage, while

consuming more memory. When comparing application

size, Flutter performed better for a calculator app,

whereas for a movie list app Jetpack Compose performed

better. In duration tests, where execution time of tests

was measured, Jetpack Compose performed better for

calculator, however, for the movie list app, Flutter out-

performed Jetpack Compose. Based on these results, the

authors concluded that both Jetpack Compose and Flutter

have their strengths and weaknesses, and it is not possible

to definitely state which solution is superior.

2.2. Comparison of programming language perfor-

mance

Programming language performance is an important fac-

tor in selecting the appropriate technology for developing

a sufficiently efficient application. Previous studies [10-

12] have compared the performance of programming lan-

guages in terms of both runtime performance and the

compilation time. While Java is superior in compiling

time and APK size, Kotlin offers a more concise syntax,

which can contribute to faster application development,

fewer lines of code, and a reduced number of errors [10].

Article [11] compared Java, Flutter, and Kotlin/Na-

tive. In terms of build time, size of the installation file,

startup time, and RAM usage, Java achieved better re-

sults, while Flutter performed the worst. In performance

related tests involving operations on collections, REST

requests, database, files, serialization, and deserializa-

tion, Flutter achieved the best execution times in the ma-

jority of tests. However, in database operations, other ap-

plications were up to ten times faster. Flutter had the

highest RAM usage, and lowest CPU usage, while Java

had the lowest RAM usage. Java demonstrated the most

stable performance overall. The authors noted that both

Flutter and Kotlin/Native were in the early stages of de-

velopment at the time of testing, and their performance

could be improved in the future.

Study [12] conducted an empirical analysis on open-

source repositories to evaluate the impact of migrating

from Java to Kotlin on application performance. The

evaluation covered CPU usage, memory usage, garbage

collector invocations, frame times, application size, and

energy consumption. Although statistically significant

differences were observed in CPU and memory usage, as

well as frame time, the magnitude of these differences

was negligible. The authors concluded that, due to the

lack of evidence indicating a substantial negative impact

on performance, there is no major reason for avoiding mi-

gration from Java to Kotlin.

2.3. Factors influencing application performance

Previous studies have addressed the factors influencing

application performance, including hardware analysis,

resource utilization, and the implementation of system

and software [13-16]. A survey of existing literature

noted that mobile devices are resource-constrained and

that there are interdependencies among performance

characteristics. For example, CPU frequency can have

both positive and negative effects on battery lifetime,

while inversely impacting responsiveness [13]. However,

this is not always the case [13], [16], as the use of of-

floading has helped reduce energy consumption while

simultaneously improving responsiveness. For these and

other performance characteristics, ways to profile and op-

timize them have been explored. Redundant user inter-

face rendering can cause slow rendering and frozen

frames which can be solved by reducing complexity of

the UI hierarchy and background, and using better hard-

ware, but better hardware does not mitigate problems

with ANR (Application Not Responding) and SNR (Sys-

tem Not Responding) [15].

An analysis of 20 popular mobile application reposi-

tories showed that 12 improved at least one nonfunctional

parameter: most commonly execution time and memory

consumption, with bandwidth usage and frame rate less

frequently addressed [16]. Performance gains were often

achieved through modifications of multiple files, and

trade-offs between metrics, especially between execution

time and memory consumption, were common

In [14] the authors investigated the responsiveness of

Android software by measuring response time to screen

taps simulated by ADB (Android Debug Bridge). They

concluded that the most impact on responsiveness is

caused by competition for CPU time among concurrent

threads with equal or higher priorities. Network I/O and

memory utilization do not significantly affect responsive-

ness unless memory usage approaches 100%. Concurrent

disk I/O operations or high disk usage can negatively af-

fect responsiveness. Therefore, it is recommended to

avoid performing such operations while the user is ac-

tively interacting with the mobile device.

2.4. Factors influencing application quality

An important factor in the success of a mobile application

is understanding what influences its quality. Research has

shown [3-6] that, both functional and non-functional re-

quirements play a significant role in the success of mo-

bile applications. Low user ratings can negatively affect

the popularity and revenue of an app [4-6]. When in-

stalling an application, user reviews are considered more

important than application size, review content, recom-

mended apps by store, last update date, number of down-

loads, required permissions, or screenshots [6], while

when deciding to uninstall and app, the main reasons are

lack of need for further use, and also app crashes or high

Journal of Computer Sciences Institute 37 (2025) 391-398

393

resource utilization. There are many reasons why an ap-

plication is of low quality such as poor performance,

crashes, poorly designed user interface or navigation,

failure to understand the target audience, lack of commu-

nication with users or insufficient marketing as presented

in the article [3].

There are differences between countries in user be-

havior regarding the adoption and abandonment of mo-

bile applications, but despite these differences, users

around the world are highly likely to abandon low quality

applications, such as an app that runs slowly, crashes or

is difficult to use [4]. Since many apps offer similar func-

tionalities, users switch to better alternatives, indicating

that, in some cases, non-functional requirements are

more important than functional requirements.

User complaints include both functional and nonfunc-

tional requirement problems, with the most common

complaints involving functional problems, feature re-

quests, application crashes, and connectivity issues. The

most negative complaints were related to privacy con-

cerns, hidden costs, removal of features in updates, and

application crashes [5]. The authors emphasize that ap-

plication update can lead to negative complaints, there-

fore, it is recommended to conduct, for example, regres-

sion tests for features that are planned for removal or

monetization, as well as when introducing changes to the

user interface.

2.5. Summary of the literature review

The literature review shows that existing research has al-

ready addressed the Jetpack Compose toolkit, including

studies comparing its performance. However, no prior re-

search has specifically examined how this toolkit be-

haves when using different components, nor which com-

ponents are more efficient in executing typical user tasks

within an application. Research on factors influencing

application performance and quality have shown that

both functional and non-functional requirements, such as

application performance, are important to users and, con-

sequently, to the success of an application. The study pre-

sented in this work aims to systematize existing

knowledge and support mobile application developers in

understanding which components and modifiers are more

performant. Based on literature review, the following re-

search thesis has been formulated: “Specialized compo-
nents in Jetpack Compose offer better performance com-

pared to more general purpose, non-specialized compo-

nents”. In addition, a set of hypotheses has been defined

to help accept or reject this thesis:

H1. Dedicated LazyColumn component is more effi-

cient than the Column component regardless of da-

taset size.

H2. Dedicated animations are more efficient than non-

specialized animations.

H3. Dedicated dispatcher is more efficient than other

dispatchers.

3. Research method

In order to evaluate the performance of specialized and

non-specialized components in Jetpack Compose, three

research scenarios were designed. Each scenario was im-

plemented within a separate activity using both special-

ized and non-specialized components. All implementa-

tions were designed to maintain identical functionalities

and visual appearance. Performance of components and

Jetpack Compose itself may vary depending on the mo-

bile device and its specifications. Therefore, the experi-

ments were conducted on three distinct smartphones

from different manufacturers, each with varying specifi-

cations (Table 1). The devices are further referred to us-

ing abbreviated labels: S1, S2, and S3, respectively from

left to right.

The testing environment is unstable due to the pres-

ence of background processes and the potential for device

overheating, both of which may affect performance dur-

ing testing and contribute to variability between tests. To

minimize environmental instability, it is essential to per-

form a preparatory procedure prior to benchmarking.

This includes fully charging the device’s battery, closing

all background applications, disabling WI-FI and Blue-

tooth connectivity, closing applications that can display

over other applications, and deactivating screen timeout

to prevent the device from entering sleep mode during

performance testing. Additionally, the device should be

connected to a computer via USB to use ADB, and its

screen orientation should be set to portrait. The device

must remain idle and unused for the duration of each test.

Despite the preparatory procedure, certain uncontrollable

factors may still contribute to environmental instability

and affect measurement consistency. To mitigate the im-

pact of such variability, each test was repeated ten times,

and the final results were obtained by calculating the

arithmetic mean of the collected data.

The Macrobenchmark library was used to implement

automated performance tests simulating typical user in-

teractions within a mobile application. In addition, the

JUnit and UIAutomator libraries were used to construct

test cases and simulate user gestures. Macrobenchmark

runs in a separate process, which allows it to restart and

precompile the target application.

Table 1: Smartphone specifications

Smartphone

(ID)

Samsung Gal-

axy A52s

(S1)

Xiaomi

Redmi Note

10 5G

(S2)

Motorola

Edge 40

(S3)

Model SM-

A528B/DS

M2103K19G XT2303-2

Operating sys-

tem

Android 14 Android 13 Android 14

CPU Snapdragon

778G 5G

Mediatek Di-

mensity 700

Mediatek

Dimensity

8020

GPU Adreno 642L Mali-G57

MC2

Mali-G77

MC9

RAM 6 GB 6 GB 8 GB

Display 1080 x 2400

px, 405 ppi,

120 Hz

1080 x 2400

px, 405 ppi,

90 Hz

1080 x 2400

px, 402 ppi,

144 Hz

The tested application was build in release mode with

R8, reflecting the configuration typically encountered by

end users in production environments, instead of debug

mode that imposes a performance cost [17]. Furthermore,

Journal of Computer Sciences Institute 37 (2025) 391-398

394

baseline profiles were used to improve the performance

of the application’s initial launch and user interactions,

such as navigation and scrolling, by reducing the code

interpretation in critical parts of the application.

The obtained results were processed using a script, af-

ter which the data were imported into a spreadsheet to

generate the corresponding tables and charts. The distri-

bution of the measurements was examined to determine

whether they followed a normal distribution. Based on

this assessment, either an ANOVA statistical test was

performed, or, in cases where normality was not ob-

served, the Kruskal-Wallis test was applied to compare

the mean values obtained.

The first research scenario focused on rendering a list

of elements, which is a standard method for evaluating

user interface performance [8-9]. The dataset used to

generate the list was constructed by creating 40 para-

graphs of Lorem Ipsum text, which were then repeated

circularly. This approach allowed the dynamic creation

of datasets of varying sizes. Two approaches were uti-

lized: a dedicated component, LazyColumn, and a less

specialized component, Column. The LazyColumn cre-

ates a vertically scrollable list that can contain large num-

ber of elements, as it only composes the elements needed

at a given moment. On the other hand, the Column cre-

ates a vertical list and composes and lays out all elements

regardless of whether they are visible. In addition, Col-

umn requires the verticalScroll modifier to enable verti-

cal scrolling. Performance was evaluated by measuring

the startup time to full display, as well as the maximum

memory usage. Both metrics were averaged, with lower

startup time and lower memory usage indicating better

component performance. The components were exam-

ined under lower and higher workloads, specifically for

list containing 10, 100, and 1000 elements. Each config-

uration was tested across three application startup modes:

1. Cold – the application process is not alive, and must

be started in addition to Activity creation.

2. Warm – create and display a new Activity in a cur-

rently running application process.

3. Hot – bring existing Activity to the foreground.

The second research scenario involved rendering

three types of animations. The selection of dedicated an-

imation components was based on the official Jetpack

Compose guidelines [18]. In both implementations, ded-

icated and custom, the animations were visually identical

and executed over the same duration, and performed in

both forward and reverse directions. In the first animation

type, the parent container gradually changed its size to

adapt to the expanding or shrinking child content. The

child content initially consisted of two vertically ar-

ranged text components that expanded to six and then

shrink back to two. The dedicated component for this an-

imation was animateContentSize, while the custom im-

plementation used layout modifier and a low-level Ani-

matable object. The second animation type used the same

graphical interface as in the first and involved toggling

the visibility of UI elements. This was achieved using the

AnimatedVisibility component in the dedicated imple-

mentation, while the custom implementation used an

Animatable object and dynamically controlled the ele-

ment’s opacity via the graphicsLayer modifier. Once the

element became fully transparent, it was removed from

the composition. The third and final animation type im-

plemented a crossfade transition between two screens,

using the Crossfade component in the dedicated imple-

mentation. Similar to the previous custom implementa-

tions, Animatable objects were used to adjust the opacity

of overlapping screen contents. The initial screen re-

tained the layout from the first animation type, while the

second screen displayed two images vertically. For all

animation types, the render thread execution time was

measured for each frame, and the results were averaged.

As the metric is subject to minimization, lower thread ex-

ecution times (rendering times) indicate better compo-

nent performance. For reference throughout this study,

the animations are abbreviated according to the sequence

of types as follows: A1, A2, A3.

The third research scenario involved executing tasks

related to input and output operations on a text file and a

database, based on which the screen content was ren-

dered. The dataset [19] used in this scenario was the first

result returned by Kaggle when searching for the term

“Books”. It contains information about books stored in a

CSV file. The following tasks were executed:

• Importing data from the CSV file into the database.

• Retrieving all records.

• Retrieving all records and sorting by title.

• Retrieving all records and sorting by ranking.

• Retrieving the first record.

• Deleting data from the database.

Only the first task was performed on the file, while all

subsequent tasks were executed on the database. The

sorting operations were carried out within a Kotlin func-

tion. Each task was considered complete once the corre-

sponding action had been performed and the screen ren-

dered based on the returned data. A dedicated IO dis-

patcher was utilized for the input and output operations,

along with the Default dispatcher and a custom dis-

patcher configured with the highest thread priority, which

may influence the software’s responsiveness [14]. The

execution time of each task was measured and averaged.

As the measured metric is subject to minimization, a

shorter execution time indicates better performance of

the dispatcher.

During the testing phase of the experiment, issues

were observed on devices S2 and S3 in obtaining valid

results for each iteration, despite correct operation on de-

vice S1 and the emulator. Specifically, in the scenario

comparing list rendering performance, certain iterations

on S2 and S3 failed to record startup time in the warm

and hot startup modes. To address this issue, the number

of iterations for these modes was increased on the af-

fected devices, and the first ten iterations containing valid

measurement data were selected for analysis. A similar

issue occurred on the same devices during the measure-

ment of animation frame rendering time. Upon inspection

of the system trace, it was found that the RenderThread

was not consistently registered, resulting in the absence

of valid results for some iterations. As with the previous

Journal of Computer Sciences Institute 37 (2025) 391-398

395

issue related to list rendering, the number of iterations

was increased on these devices, and the first ten iterations

containing valid measurement data were selected for

analysis.

4. Results

This chapter presents the results obtained from the exper-

iments conducted on three mobile devices for each of the

defined research scenarios.

For the first research scenario, measurements were

collected for startup time and memory usage (Tables 2-

4). On devices S2 and S3, some iterations lacked valid

measurements for the warm and hot startup modes. As a

result, additional iterations were performed, and only the

first ten iterations containing valid data were included in

the analysis.

For the smallest tested list size of 10 elements, the av-

erage startup time and memory usage were comparable

between the LazyColumn and Column implementations

across all startup modes and devices. Under these condi-

tions, each device demonstrated slightly different behav-

ior, with either implementation yielding better perfor-

mance depending on the device. The maximum observed

differences in startup time and memory usage were 5.6%

and 27.0%, respectively. The high 27.0% memory differ-

ence was due to two outliers. Despite this, statistical test-

ing showed no significant differences in most cases. The

only statistically significant differences were found for

cold startup memory usage on devices S2 and S3, where

the differences of 1.5% and 1.4% were observed. On S2,

LazyColumn performed better, whereas on S3, Column

performed better. A key advantage of LazyColumn is its

stability, despite the increasing size of the list, both

startup time and memory usage remained relatively con-

sistent. In contrast, the performance of Column showed a

significant decrease as the list size increased, resulting in

higher values for both metrics compared to LazyColumn.

This trend was observed consistently across all devices

for the larger list sizes of 100 and 1000 elements and was

statistically confirmed by significant differences in group

means for both metrics.

It is also worth noting the increase in memory usage

observed in the warm startup mode. In some cases,

memory consumption in this mode was higher than in

both cold and hot startups, while memory usage in hot

startup was consistently the lowest. This pattern was ob-

served across all tested devices. A possible explanation

is that, in warm startup, the application retained a par-

tially loaded state from the previous launch, which had

not yet been fully released when a new state was created

during the activity restart.

Table 2: Startup time and memory usage results during list appli-

cation startup on smartphone S1

Implementa-

tion

Startup

mode

Ele-

ment

count

Startup time ±
std

(ms)

Memory

usage ± std

(MB)

LazyColumn Cold 10 557.7 ± 27.4 7.5 ± 0.1

LazyColumn Cold 100 541.3 ± 20.3 7.4 ± 0.0

LazyColumn Cold 1000 546.0 ± 14.6 7.5 ± 0.0

Column Cold 10 555.5 ± 33.9 7.5 ± 0.1

Column Cold 100 679.4 ± 20.4 22.9 ± 0.0

Column Cold 1000 1,715.8 ± 38.0 242.8 ± 5.0

LazyColumn Warm 10 153.2 ± 14.3 11.3 ± 2.0

LazyColumn Warm 100 156.3 ± 17.8 11.3 ± 2.0

LazyColumn Warm 1000 151.2 ± 11.9 11.2 ± 2.3

Column Warm 10 146.2 ± 10.3 11.2 ± 2.1

Column Warm 100 292.6 ± 16.9 37.0 ± 9.8

Column Warm 1000 1,396.3 ± 16.3 135.0 ± 2.2

LazyColumn Hot 10 60.2 ± 7.4 5.4 ± 1.4

LazyColumn Hot 100 60.3 ± 7.6 5.6 ± 1.7

LazyColumn Hot 1000 61.2 ± 8.6 5.7 ± 1.7

Column Hot 10 62.0 ± 7.9 5.5 ± 1.8

Column Hot 100 85.4 ± 5.8 11.5 ± 6.4

Column Hot 1000 340.2 ± 7.5 47.1 ± 2.5

Table 3: Startup time and memory usage results during list appli-

cation startup on smartphone S2

Implementa-

tion

Startup

mode

Ele-

ment

count

Startup time ±
std

(ms)

Memory

usage ± std

(MB)

LazyColumn Cold 10 453.7 ± 16.7 6.3 ± 0.1

LazyColumn Cold 100 479.9 ± 21.5 6.3 ± 0.0

LazyColumn Cold 1000 486.0 ± 20.0 6.4 ± 0.0

Column Cold 10 480.9 ± 44.6 6.4 ± 0.0

Column Cold 100 641.8 ± 86.4 18.8 ± 0.0

Column Cold 1000 1,978.6 ± 76.3 191.3 ±
10.0

LazyColumn Warm 10 190.6 ± 21.1 8.8 ± 2.0

LazyColumn Warm 100 190.1 ± 10.1 7.5 ± 1.7

LazyColumn Warm 1000 199.1 ± 12.3 7.5 ± 1.5

Column Warm 10 187.1 ± 11.4 7.5 ± 1.0

Column Warm 100 497.4 ± 54.0 27.9 ± 6.7

Column Warm 1000 2,292.0 ± 283.9 204.7 ± 1.2

LazyColumn Hot 10 63.7 ± 4.6 5.2 ± 0.8

LazyColumn Hot 100 63.1 ± 5.4 4.6 ± 0.7

LazyColumn Hot 1000 65.3 ± 5.9 5.0 ± 0.9

Column Hot 10 64.8 ± 8.1 5.2 ± 1.2

Column Hot 100 106.5 ± 3.3 10.8 ± 2.9

Column Hot 1000 471.0 ± 7.2 94.1 ± 6.8

Table 4: Startup time and memory usage results during list appli-

cation startup on smartphone S3

Implementa-

tion

Startup

mode

Ele-

ment

count

Startup time ±
std

(ms)

Memory

usage ± std

(MB)

LazyColumn Cold 10 332.8 ± 22.2 10.9 ± 0.0

LazyColumn Cold 100 331.5 ± 8.5 10.9 ± 0.0

LazyColumn Cold 1000 333.9 ± 15.6 11.0 ± 0.0

Column Cold 10 319.7 ± 9.5 10.8 ± 0.0

Column Cold 100 415.7 ± 15.3 26.0 ± 0.0

Column Cold 1000 1,181.0 ± 14.6 214.8 ± 0.1

LazyColumn Warm 10 114.5 ± 5.9 19.2 ± 4.4

LazyColumn Warm 100 124.5 ± 14.5 20.3 ± 8.8

LazyColumn Warm 1000 130.5 ± 6.7 22.6 ± 6.1

Column Warm 10 119.3 ± 8.3 21.7 ± 7.4

Column Warm 100 210.6 ± 12.4 63.2 ± 21.3

Column Warm 1000 1,064.8 ± 57.4 260.7 ±
41.2

LazyColumn Hot 10 61.9 ± 7.9 6.5 ± 1.7

LazyColumn Hot 100 67.7 ± 7.2 7.7 ± 4.9

LazyColumn Hot 1000 63.4 ± 9.7 8.6 ± 3.6

Column Hot 10 65.2 ± 13.5 8.9 ± 4.3

Column Hot 100 85.8 ± 8.0 14.8 ± 9.2

Column Hot 1000 295.6 ± 5.0 51.1 ± 4.8

The results from the second research scenario (Tables

5-8), which compared the performance of three types of

animations, reveal notable differences in frame rendering

times between the dedicated and custom implementa-

tions. On devices S2 and S3, some iterations did not pro-

duce valid results due to the render thread not being

properly registered in the system trace. As a result, ani-

mations were executed more than ten times on these

Journal of Computer Sciences Institute 37 (2025) 391-398

396

devices, and the first ten iterations that contained valid

frame rendering times were selected for further analysis.

Depending on the tested device and animation type,

both the average frame rendering times and standard de-

viations varied. The only case in which the custom im-

plementation achieved a lower mean frame rendering

time than the dedicated implementation was for anima-

tion A1 on device S1, where the difference was 0.03 ms

(0.6%).

Table 5: Animation frame rendering time results

Ani-

mation

Smartphone Dedicated imple-

mentation ± std

(ms)

Custom imple-

mentation ± std

(ms)

A1 S1 5.53 ± 0.11 5.49 ± 0.07

S2 4.99 ± 0.04 5.03 ± 0.08

S3 2.89 ± 0.09 4.10 ± 0.71

A2 S1 5.29 ± 0.12 5.39 ± 0.08

S2 4.68 ± 0.06 4.76 ± 0.05

S3 3.05 ± 0.40 3.67 ± 0.64

A3 S1 5.86 ± 1.17 6.98 ± 1.84

S2 5.62 ± 2.07 5.75 ± 0.94

S3 3.56 ± 0.86 3.73 ± 0.87

Table 6: Detailed frame rendering time results for animation A1

 Dedicated implementation

(ms)

Custom implementation

(ms)

P50 4.79 4.99

P90 5.83 6.12

P95 6.07 8.97

P99 7.01 14.61

Average 4.33 4.82

Std 1.58 2.39

Min 1.38 1.44

Max 20.49 24.58

Table 7: Detailed frame rendering time results for animation A2

 Dedicated implementation

(ms)

Custom implementation

(ms)

P50 4.63 4.80

P90 5.52 5.91

P95 5.92 7.99

P99 9.32 11.36

Average 4.23 4.54

Std 1.63 1.97

Min 1.44 1.48

Max 19.71 20.03

Table 8: Detailed frame rendering time results for animation A3

 Dedicated implementation

(ms)

Custom implementation

(ms)

P50 4.77 4.88

P90 6.82 10.77

P95 10.25 13.42

P99 15.08 15.60

Average 4.80 5.33

Std 3.02 3.98

Min 1.42 1.55

Max 72.98 166.75

However, statistical analysis indicated that this differ-

ence was not significant. A similar situation occurred

also with animation A1 on device S2, where the differ-

ence was also 0.03 ms (0.6%) and likewise not statisti-

cally significant. In all other animations and across all

tested devices, the statistical tests confirmed significant

differences in average frame times in favor of the dedi-

cated implementations, with differences ranging from

1.9% to 41.6%. In the aggregated results for each

animation type, half of the animation frames were ren-

dered faster using the dedicated components. Addition-

ally, the dedicated implementations achieved lower aver-

age frame times, lower standard deviations, as well as

lower minimum and maximum values. The highest stand-

ard deviation was observed for animation A3, which in-

volved transitioning between two different screens using

a crossfade effect.

The results obtained from the final research scenario

(Table 9) present the average execution times of individ-

ual tasks along with their corresponding standard devia-

tions. Analysis of the results indicates that the perfor-

mance of all three tested dispatchers was comparable.

The shortest average total task execution time on each of

the tested mobile devices was achieved by the implemen-

tation using the custom dispatcher configured with the

highest thread priority. However, statistical tests did not

reveal any significant differences between the dispatch-

ers in the average total task execution time. It is notewor-

thy that the custom dispatcher exhibited lower standard

deviations compared to the other two dispatchers. De-

spite achieving the shortest total execution time, the cus-

tom dispatcher did not consistently outperform the others

in every task. Among the six analyzed tasks, it achieved

the fastest execution time in three cases on device S1, in

four on device S2, and in two on device S3.

Table 9: Task execution time results using different dispatchers

Task Smar

tpho

ne

IO

Average ±
std

(ms)

Default

Average ±
std

(ms)

Custom Av-

erage ± std

(ms)

Importing

data

S1 1,376 ± 157 1,378 ± 115 1,354 ± 52

S2 1,542 ± 62 1,557 ± 86 1,508 ± 45

S3 1,377 ± 76 1,355 ± 53 1,356 ± 43

Retrieving

all records

S1 219 ± 16 211 ± 13 206 ± 16

S2 226 ± 10 258 ± 119 214 ± 16

S3 184 ± 22 177 ± 10 176 ± 16

Retrieving

all records

and sorting

by title

S1 199 ± 6 193 ± 5 195 ± 7

S2 222 ± 9 221 ± 11 214 ± 17

S3 182 ± 10 181 ± 12 170 ± 9

Retrieving

all records

and sorting

by ranking

S1 196 ± 6 193 ± 7 192 ± 5

S2 229 ± 13 232 ± 18 220 ± 10

S3 174 ± 12 172 ± 8 174 ± 7

Retrieving

the first

record

S1 72 ± 9 68 ± 8 69 ± 8

S2 78 ± 4 91 ± 46 87 ± 33

S3 52 ± 7 51 ± 8 55 ± 10

Deleting

data

S1 112 ± 55 80 ± 9 87 ± 34

S2 125 ± 72 160 ± 74 136 ± 75

S3 71 ± 49 112 ± 51 77 ± 53

Total time S1 2,173 ± 148 2,124 ± 115 2,104 ± 49

S2 2,422 ± 131 2,518 ± 171 2,379 ± 102

S3 2,039 ± 90 2,048 ± 73 2,008 ± 75

At the same time, there were no cases in which the

custom dispatcher was the slowest on devices S1 and S2.

However, on device S3, there were two tasks in which it

recorded the longest execution time among the compared

dispatchers.

5. Discussion

The experimental study was successfully conducted in its

entirety, and all test scenarios were implemented as

planned. A complete set of performance data was

Journal of Computer Sciences Institute 37 (2025) 391-398

397

collected across three different mobile devices, allowing

for comprehensive analysis.

In the first research scenario, for the smallest tested

dataset of 10 elements, the average values were compa-

rable between the LazyColumn and Column implemen-

tations, regardless of the startup mode. Statistical tests re-

vealed no notable differences, except for memory usage

in the cold startup mode on devices S2 and S3, where La-

zyColumn used less memory on S2, and Column was

more efficient on S3. These experimental results do not

allow for a definitive conclusion about which implemen-

tation is more efficient for small lists. As the number of

list elements increased, a significant decline in perfor-

mance was observed for the Column implementation in

terms of both startup time and memory usage, while the

performance for LazyColumn remained considerably sta-

ble. This observation supports the assumption that La-

zyColumn composes and lays out only the currently

needed elements, in contrast to Column, which composes

and lays out all components regardless of their visibility.

According to the statistical test results, the differences in

mean values between these implementations for larger

datasets were statistically significant, demonstrating that

LazyColumn is a more efficient and scalable solution

than Column. Based on these findings, hypothesis H1,

that the dedicated LazyColumn component is more effi-

cient than the Column component regardless of data size,

was rejected. Although significant differences were ob-

served for larger datasets, both implementations demon-

strated similar performance for small datasets containing

10 elements. Therefore, the use of LazyColumn is rec-

ommended for large or unknown dataset sizes, while for

small datasets, both implementations exhibit similar per-

formance.

In the second research scenario, the dedicated anima-

tion implementations achieved shorter average frame

rendering times in all tested cases, except for animation

A1 on device S1, where the difference between imple-

mentations was not statistically significant. Similarly, no

statistically significant difference in favor of the dedi-

cated implementation was found for animation A1 on de-

vice S2. In all other combinations of devices and anima-

tion types, the average frame rendering times were sig-

nificantly lower for the dedicated implementations. Ad-

ditionally, in half of the measured frames, rendering was

faster with dedicated animations than with custom ones.

Based on these observations, hypothesis H2, stating that

dedicated animations are more efficient than non-special-

ized animations, was accepted, as dedicated animations

proved to be equally or more efficient than their custom

counterparts. Given their higher performance and availa-

bility as built-in, tested components, it is recommended

to use dedicated animations. This not only enhances per-

formance but also reduces developer workload and min-

imizes the risk of introducing bugs into the code.

In the third research scenario, it was observed that the

configuration using a custom dispatcher with the highest

thread priority achieved the shortest average total task ex-

ecution time across all tested devices. However, statisti-

cal tests did not indicate any significant differences in the

average execution times among the analyzed dispatchers.

The absence of a clear performance advantage for the

custom dispatcher may be attributed to the characteristics

of the tested application, which did not perform a high

number of concurrent operations across multiple threads.

During task execution, the main thread remained idle,

awaiting the results from the dispatcher. Furthermore, the

application operated in the foreground, which led the op-

erating system to schedule approximately 95% of CPU

time [20] to this application, regardless of thread priority.

As a result, the dispatcher did not need to compete with

other threads for CPU time, which limited the potential

performance benefit of using a custom dispatcher with

highest thread priority. Given the lack of evidence sup-

porting a performance advantage of the dedicated IO dis-

patcher, hypothesis H3, stating that a dedicated dis-

patcher is more efficient than other dispatchers, must be

rejected.

6. Conclusions

In summary, the results obtained across all research sce-

narios indicate that dedicated components in Jetpack

Compose do not always provide better performance than

their less specialized counterparts. While dedicated com-

ponents were more performant in the majority of perfor-

mance tests, there were cases in which non-specialized

components delivered comparable or even better results.

Consequently, the research thesis stating that specialized

components in Jetpack Compose offer better perfor-

mance compared to more general purpose, non-special-

ized components must be partially rejected.

Nevertheless, the use of specialized components is

recommended, particularly in applications where perfor-

mance is not a critical concern and the characteristics of

the data, such as size, are unknown. Dedicated compo-

nents demonstrated greater stability and robustness with

respect to varying data inputs, and in some scenarios, sig-

nificant performance advantages were observed. In con-

trast, the performance gains achieved through custom im-

plementations were not consistently observed across all

devices and did not differ significantly from those

achieved using dedicated components.

Further research should consider expanding the ex-

perimental scope to include scenarios involving lists with

image containing elements, the use of keys versus key-

less elements, and interactive operations such as scroll-

ing, item insertion, deletion, and sorting. In the context

of animations, it would be valuable to explore additional

animation types, evaluate whether varying frame rates

impact component performance, and measure both the

number of frames that exceeded their assigned rendering

time and the extent of those overruns, as these factors di-

rectly influence animation smoothness. For dispatchers,

testing under higher concurrency conditions involving

multiple threads and parallel tasks would help assess

whether increased thread priority affects performance un-

der heavier workloads. Such investigations would con-

tribute to a more comprehensive understanding of the be-

havior of Jetpack Compose components in real world

mobile application use cases.

Journal of Computer Sciences Institute 37 (2025) 391-398

398

Literature

[1] Key statistics of smartphone users worldwide,

https://prioridata.com/data/smartphone-stats/,

[13.06.2025].

[2] Number of Android users worldwide,

https://www.bankmycell.com/blog/how-many-android-

users-are-there, [07.05.2025].

[3] V. N. Inukollu, D. D. Keshamoni, T. Kang, M. Inukollu,

Factors Influencing Quality of Mobile Apps: Role of

Mobile App Development Life Cycle, International

Journal of Software Engineering & Applications 5(5)

(2014) 15–34, https://doi.org/10.5121/ijsea.2014.5502.

[4] S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, S.

Honiden, Investigating Country Differences in Mobile

App User Behavior and Challenges for Software

Engineering, IEEE Transactions on Software Engineering

41(1) (2015) 40–64,

https://doi.org/10.1109/TSE.2014.2360674.

[5] H. Khalid, E. Shihab, M. Nagappan, A. E. Hassan, What

Do Mobile App Users Complain About?, IEEE Software

32(3) (2015) 70–77, https://doi.org/10.1109/MS.2014.50.

[6] S. Ickin, K. Petersen, J. Gonzalez-Huerta, Why Do Users

Install and Delete Apps? A Survey Study, Proceedings of

the 8th International Conference on Software Business

(2017) 186–191, https://doi.org/10.1007/978-3-319-

69191-6_13.

[7] What developers are saying about Jetpack Compose,

https://developer.android.com/develop/ui/compose/adopt

#what-developers-are-saying, [19.05.2025].

[8] J. Szczukin, Performance analysis of user interface

implementation methods in mobile applications, Journal

of Computer Sciences Institute 26 (2023) 13–17,

https://doi.org/10.35784/jcsi.3070.

[9] M. Kusuma, A. H. Rifani, B. Sugiantoro, Comparison

analysis of Jetpack Compose and Flutter in Android-based

application development using Technical Domain, In 2023

Eighth International Conference on Informatics and

Computing (ICIC) (2023) 1–5,

https://doi.org/10.1109/icic60109.2023.10381987.

[10] B. P. D. Putranto, R. Saptoto, O. C. Jakaria, W. Andriyani,

A Comparative Study of Java and Kotlin for Android

Mobile Application Development, In 2020 3rd

International Seminar on Research of Information

Technology and Intelligent Systems (ISRITI) (2020) 383–
388, https://doi.org/10.1109/isriti51436.2020.9315483.

[11] K. Wasilewski, W. Zabierowski, A Comparison of Java,

Flutter and Kotlin/Native Technologies for Sensor Data-

Driven Applications, Sensors 21(10) (2021) 3324,

https://doi.org/10.3390/s21103324.

[12] M. Peters, G. L. Scoccia, I. Malavolta, How does

Migrating to Kotlin Impact the Run-time Efficiency of

Android Apps?, In 2021 In IEEE 21st International

Working Conference on Source Code Analysis and

Manipulation (SCAM) (2021) 36–46,

https://doi.org/10.1109/SCAM52516.2021.00014.

[13] M. Hort, M. Kechagia, F. Sarro, M. Harman, A Survey of

Performance Optimization for Mobile Applications, IEEE

Transactions on Software Engineering 48(8) (2022) 2879–
2904, https://doi.org/10.1109/TSE.2021.3071193.

[14] J. Fu, Y. Wang, Y. Zhou, X. Wang, How resource

utilization influences UI responsiveness of Android

software, Information and Software Technology 141

(2022) 106728,

https://doi.org/10.1016/j.infsof.2021.106728.

[15] H. Lin, C. Liu, Z. Li, F. Qian, M. Li, P. Xiong, Y. Liu,

Aging or Glitching? What Leads to Poor Android

Responsiveness and What Can We Do About It?, IEEE

Transactions on Mobile Computing 23(2) (2024) 1521–
1533, https://doi.org/10.1109/TMC.2023.3237716.

[16] J. Callan, O. Krauss, J. Petke, F. Sarro, How do Android

developers improve non-functional properties of

software?, Empirical Software Engineering 27(5) (2022)

113, https://doi.org/10.1007/s10664-022-10137-2.

[17] Jetpack Compose performance overview,

https://developer.android.com/develop/ui/compose/perfor

mance, [17.04.2025].

[18] Quick Jetpack Compose animation guide,

https://developer.android.com/develop/ui/compose/anima

tion/quick-guide, [17.04.2025].

[19] Goodreads books dataset from Kaggle,

https://www.kaggle.com/datasets/jealousleopard/goodrea

dsbooks, [22.04.2025].

[20] Guide to better performance through threading,

https://developer.android.com/topic/performance/threads

#priority, [22.04.2025].

https://prioridata.com/data/smartphone-stats/
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://doi.org/10.5121/ijsea.2014.5502
https://doi.org/10.1109/TSE.2014.2360674
https://doi.org/10.1109/MS.2014.50
https://doi.org/10.1007/978-3-319-69191-6_13
https://doi.org/10.1007/978-3-319-69191-6_13
https://developer.android.com/develop/ui/compose/adopt#what-developers-are-saying
https://developer.android.com/develop/ui/compose/adopt#what-developers-are-saying
https://doi.org/10.35784/jcsi.3070
https://doi.org/10.1109/icic60109.2023.10381987
https://doi.org/10.1109/isriti51436.2020.9315483
https://doi.org/10.3390/s21103324
https://doi.org/10.1109/SCAM52516.2021.00014
https://doi.org/10.1109/TSE.2021.3071193
https://doi.org/10.1016/j.infsof.2021.106728
https://doi.org/10.1109/TMC.2023.3237716
https://doi.org/10.1007/s10664-022-10137-2
https://developer.android.com/develop/ui/compose/performance
https://developer.android.com/develop/ui/compose/performance
https://developer.android.com/develop/ui/compose/animation/quick-guide
https://developer.android.com/develop/ui/compose/animation/quick-guide
https://www.kaggle.com/datasets/jealousleopard/goodreadsbooks
https://www.kaggle.com/datasets/jealousleopard/goodreadsbooks
https://developer.android.com/topic/performance/threads#priority
https://developer.android.com/topic/performance/threads#priority

