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Abstract

This article presents a performance analysis of the Jetpack Compose toolkit components in mobile applications executing
typical user tasks. A performance comparison was conducted between specialized and less specialized components. The
Macrobenchmark, JUnit, and UlAutomator libraries were used to evaluate the performance of scrollable lists, animations,
and dispatchers on three different mobile devices, with each implementation in a given scenario appearing identical. The
results from the conducted tests indicate that specialized components do not always have the same or better performance
than less specialized components.
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Streszczenie

Artykut przedstawia analize wydajnosci komponentéw zestawu narzedzi Jetpack Compose w aplikacjach mobilnych re-
alizujacych typowe zadania uzytkownika. Przeprowadzone zostato poréwnanie wydajno$ci pomigdzy komponentami wy-
specjalizowanymi i mniej wyspecjalizowanymi. Wykorzystane zostaty biblioteki Macrobenchmark, JUnit i UL Automator
za pomoca, ktorych zbadana zostata wydajno$¢ listy przewijanej, animacji oraz dyspozytorow na trzech réznych urza-
dzeniach mobilnych, przy czym kazda implementacja w danym scenariuszu wygladata tak samo. Wyniki przeprowadzo-
nych badan pozwalaja stwierdzi¢, ze komponenty wyspecjalizowane nie zawsze cechujg si¢ takg sama, badz lepsza wy-
dajnoscia od komponentéw mniej wyspecjalizowanych.
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1. Introduction The objective of this study is to evaluate the perfor-
mance of different implementation variants of compo-
nents in Jetpack Compose by conducting a series of ex-
periments that measure and compare their efficiency on
representative mobile devices. The findings aim to sup-
port mobile application developers in selecting high-per-
formance components for building user interfaces that fa-
cilitate the execution of typical user tasks. The perfor-
mance analysis will focus on components used for ren-
dering lists, animations, and dispatchers in input and out-
put operations.

The technological advancement of mobile devices has
led to a significant increase in the number of users, a
trend that continues to grow each year [1]. Currently, the
most widely used operating system on mobile devices is
Android, which is broadly accessible to users [2]. As a
result, a large number of applications are being devel-
oped for this platform, often offering similar functionali-
ties but differing in non-functional requirements such as
performance, which play a crucial role in determining an
application's success and in attracting and retaining the
largest possible user base [3-6]. Ensuring high perfor- 2. Literature review
mance is particularly important, as Android users operate
a wide variety of mobile devices with differing hardware
capabilities, including less powerful ones. Given that
user ratings in app stores significantly influence applica-
tion choice [6] optimizing performance is essential to
prevent negative reviews arising from inadequate appli-
cation responsiveness.

Many popular Android applications available on the
Google Play Store use the Jetpack Compose toolkit for
user interface development [7]. Jetpack Compose allows
developers to build native, declarative user interfaces that
update automatically upon detecting changes in the ob-
served state.

This literature review discusses previous research on the
performance and quality-related factors of mobile appli-
cations. As there is still a limited number of studies spe-
cifically addressing Jetpack Compose, the review also in-
cludes research investigating the performance of other
technologies. The literature review has been organized
into the following areas:

Comparison of user interface performance.
Comparison of programming language performance.
Factors influencing application performance.

Factors influencing application quality.

Summary of the literature review.
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2.1. Comparison of user interface performance

Study [8] compared the performance of applications built
with traditional views, Jetpack Compose, and a combina-
tion of both, using Macrobenchmark, JUnit, and UIAu-
tomator. In startup tests across cold, warm, and hot
modes, the view-based app performed best, followed by
Jetpack Compose, with the combination of both approach
performing worst. Additional tests on frame rendering
during list scrolling and animation showed minor differ-
ences. The combination of both performed best, while
Jetpack Compose had the most unstable results, possibly
due to experimental animation features.

Study [9] conducted a comparative analysis of Jet-
pack Compose and Flutter in an Android application. The
results showed that Flutter had lower CPU usage, while
consuming more memory. When comparing application
size, Flutter performed better for a calculator app,
whereas for a movie list app Jetpack Compose performed
better. In duration tests, where execution time of tests
was measured, Jetpack Compose performed better for
calculator, however, for the movie list app, Flutter out-
performed Jetpack Compose. Based on these results, the
authors concluded that both Jetpack Compose and Flutter
have their strengths and weaknesses, and it is not possible
to definitely state which solution is superior.

2.2. Comparison of programming language perfor-
mance

Programming language performance is an important fac-
tor in selecting the appropriate technology for developing
a sufficiently efficient application. Previous studies [10-
12] have compared the performance of programming lan-
guages in terms of both runtime performance and the
compilation time. While Java is superior in compiling
time and APK size, Kotlin offers a more concise syntax,
which can contribute to faster application development,
fewer lines of code, and a reduced number of errors [10].

Article [11] compared Java, Flutter, and Kotlin/Na-
tive. In terms of build time, size of the installation file,
startup time, and RAM usage, Java achieved better re-
sults, while Flutter performed the worst. In performance
related tests involving operations on collections, REST
requests, database, files, serialization, and deserializa-
tion, Flutter achieved the best execution times in the ma-
jority of tests. However, in database operations, other ap-
plications were up to ten times faster. Flutter had the
highest RAM usage, and lowest CPU usage, while Java
had the lowest RAM usage. Java demonstrated the most
stable performance overall. The authors noted that both
Flutter and Kotlin/Native were in the early stages of de-
velopment at the time of testing, and their performance
could be improved in the future.

Study [12] conducted an empirical analysis on open-
source repositories to evaluate the impact of migrating
from Java to Kotlin on application performance. The
evaluation covered CPU usage, memory usage, garbage
collector invocations, frame times, application size, and
energy consumption. Although statistically significant
differences were observed in CPU and memory usage, as
well as frame time, the magnitude of these differences

was negligible. The authors concluded that, due to the
lack of evidence indicating a substantial negative impact
on performance, there is no major reason for avoiding mi-
gration from Java to Kotlin.

2.3. Factors influencing application performance

Previous studies have addressed the factors influencing
application performance, including hardware analysis,
resource utilization, and the implementation of system
and software [13-16]. A survey of existing literature
noted that mobile devices are resource-constrained and
that there are interdependencies among performance
characteristics. For example, CPU frequency can have
both positive and negative effects on battery lifetime,
while inversely impacting responsiveness [13]. However,
this is not always the case [13], [16], as the use of of-
floading has helped reduce energy consumption while
simultaneously improving responsiveness. For these and
other performance characteristics, ways to profile and op-
timize them have been explored. Redundant user inter-
face rendering can cause slow rendering and frozen
frames which can be solved by reducing complexity of
the UT hierarchy and background, and using better hard-
ware, but better hardware does not mitigate problems
with ANR (Application Not Responding) and SNR (Sys-
tem Not Responding) [15].

An analysis of 20 popular mobile application reposi-
tories showed that 12 improved at least one nonfunctional
parameter: most commonly execution time and memory
consumption, with bandwidth usage and frame rate less
frequently addressed [16]. Performance gains were often
achieved through modifications of multiple files, and
trade-offs between metrics, especially between execution
time and memory consumption, were common

In [14] the authors investigated the responsiveness of
Android software by measuring response time to screen
taps simulated by ADB (Android Debug Bridge). They
concluded that the most impact on responsiveness is
caused by competition for CPU time among concurrent
threads with equal or higher priorities. Network I/0O and
memory utilization do not significantly affect responsive-
ness unless memory usage approaches 100%. Concurrent
disk I/O operations or high disk usage can negatively af-
fect responsiveness. Therefore, it is recommended to
avoid performing such operations while the user is ac-
tively interacting with the mobile device.

2.4. Factors influencing application quality

An important factor in the success of a mobile application
is understanding what influences its quality. Research has
shown [3-6] that, both functional and non-functional re-
quirements play a significant role in the success of mo-
bile applications. Low user ratings can negatively affect
the popularity and revenue of an app [4-6]. When in-
stalling an application, user reviews are considered more
important than application size, review content, recom-
mended apps by store, last update date, number of down-
loads, required permissions, or screenshots [6], while
when deciding to uninstall and app, the main reasons are
lack of need for further use, and also app crashes or high
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resource utilization. There are many reasons why an ap-
plication is of low quality such as poor performance,
crashes, poorly designed user interface or navigation,
failure to understand the target audience, lack of commu-
nication with users or insufficient marketing as presented
in the article [3].

There are differences between countries in user be-
havior regarding the adoption and abandonment of mo-
bile applications, but despite these differences, users
around the world are highly likely to abandon low quality
applications, such as an app that runs slowly, crashes or
is difficult to use [4]. Since many apps offer similar func-
tionalities, users switch to better alternatives, indicating
that, in some cases, non-functional requirements are
more important than functional requirements.

User complaints include both functional and nonfunc-
tional requirement problems, with the most common
complaints involving functional problems, feature re-
quests, application crashes, and connectivity issues. The
most negative complaints were related to privacy con-
cerns, hidden costs, removal of features in updates, and
application crashes [5]. The authors emphasize that ap-
plication update can lead to negative complaints, there-
fore, it is recommended to conduct, for example, regres-
sion tests for features that are planned for removal or
monetization, as well as when introducing changes to the
user interface.

2.5. Summary of the literature review

The literature review shows that existing research has al-
ready addressed the Jetpack Compose toolkit, including
studies comparing its performance. However, no prior re-
search has specifically examined how this toolkit be-
haves when using different components, nor which com-
ponents are more efficient in executing typical user tasks
within an application. Research on factors influencing
application performance and quality have shown that
both functional and non-functional requirements, such as
application performance, are important to users and, con-
sequently, to the success of an application. The study pre-
sented in this work aims to systematize existing
knowledge and support mobile application developers in
understanding which components and modifiers are more
performant. Based on literature review, the following re-
search thesis has been formulated: “Specialized compo-
nents in Jetpack Compose offer better performance com-
pared to more general purpose, non-specialized compo-
nents”. In addition, a set of hypotheses has been defined
to help accept or reject this thesis:

H1. Dedicated LazyColumn component is more effi-
cient than the Column component regardless of da-
taset size.

Dedicated animations are more efficient than non-
specialized animations.

Dedicated dispatcher is more efficient than other
dispatchers.

H2.
H3.

3. Research method

In order to evaluate the performance of specialized and
non-specialized components in Jetpack Compose, three

research scenarios were designed. Each scenario was im-
plemented within a separate activity using both special-
ized and non-specialized components. All implementa-
tions were designed to maintain identical functionalities
and visual appearance. Performance of components and
Jetpack Compose itself may vary depending on the mo-
bile device and its specifications. Therefore, the experi-
ments were conducted on three distinct smartphones
from different manufacturers, each with varying specifi-
cations (Table 1). The devices are further referred to us-
ing abbreviated labels: S1, S2, and S3, respectively from
left to right.

The testing environment is unstable due to the pres-
ence of background processes and the potential for device
overheating, both of which may affect performance dur-
ing testing and contribute to variability between tests. To
minimize environmental instability, it is essential to per-
form a preparatory procedure prior to benchmarking.
This includes fully charging the device’s battery, closing
all background applications, disabling WI-FI and Blue-
tooth connectivity, closing applications that can display
over other applications, and deactivating screen timeout
to prevent the device from entering sleep mode during
performance testing. Additionally, the device should be
connected to a computer via USB to use ADB, and its
screen orientation should be set to portrait. The device
must remain idle and unused for the duration of each test.
Despite the preparatory procedure, certain uncontrollable
factors may still contribute to environmental instability
and affect measurement consistency. To mitigate the im-
pact of such variability, each test was repeated ten times,
and the final results were obtained by calculating the
arithmetic mean of the collected data.

The Macrobenchmark library was used to implement
automated performance tests simulating typical user in-
teractions within a mobile application. In addition, the
JUnit and UIAutomator libraries were used to construct
test cases and simulate user gestures. Macrobenchmark
runs in a separate process, which allows it to restart and
precompile the target application.

Table 1: Smartphone specifications

Smartphone Samsung Gal- Xiaomi Motorola
(ID) axy A52s Redmi Note Edge 40
(S1) 10 5G (S3)
(52)
Model SM- M2103K19G XT2303-2
A528B/DS
Operating sys- Android 14 Android 13 Android 14
tem
CPU Snapdragon Mediatek Di- Mediatek
778G 5G mensity 700 Dimensity
8020
GPU Adreno 6421 Mali-G57 Mali-G77
MC2 MC9
RAM 6 GB 6 GB 8 GB
Display 1080 x 2400 1080 x 2400 1080 x 2400
px, 405 ppi, pX, 405 ppi, px, 402 ppi,
120 Hz 90 Hz 144 Hz

The tested application was build in release mode with
RS, reflecting the configuration typically encountered by
end users in production environments, instead of debug
mode that imposes a performance cost [17]. Furthermore,
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baseline profiles were used to improve the performance
of the application’s initial launch and user interactions,
such as navigation and scrolling, by reducing the code
interpretation in critical parts of the application.

The obtained results were processed using a script, af-
ter which the data were imported into a spreadsheet to
generate the corresponding tables and charts. The distri-
bution of the measurements was examined to determine
whether they followed a normal distribution. Based on
this assessment, either an ANOVA statistical test was
performed, or, in cases where normality was not ob-
served, the Kruskal-Wallis test was applied to compare
the mean values obtained.

The first research scenario focused on rendering a list
of elements, which is a standard method for evaluating
user interface performance [8-9]. The dataset used to
generate the list was constructed by creating 40 para-
graphs of Lorem Ipsum text, which were then repeated
circularly. This approach allowed the dynamic creation
of datasets of varying sizes. Two approaches were uti-
lized: a dedicated component, LazyColumn, and a less
specialized component, Column. The LazyColumn cre-
ates a vertically scrollable list that can contain large num-
ber of elements, as it only composes the elements needed
at a given moment. On the other hand, the Column cre-
ates a vertical list and composes and lays out all elements
regardless of whether they are visible. In addition, Col-
umn requires the verticalScroll modifier to enable verti-
cal scrolling. Performance was evaluated by measuring
the startup time to full display, as well as the maximum
memory usage. Both metrics were averaged, with lower
startup time and lower memory usage indicating better
component performance. The components were exam-
ined under lower and higher workloads, specifically for
list containing 10, 100, and 1000 elements. Each config-
uration was tested across three application startup modes:
1. Cold — the application process is not alive, and must

be started in addition to Activity creation.

2. Warm — create and display a new Activity in a cur-
rently running application process.
3. Hot — bring existing Activity to the foreground.

The second research scenario involved rendering
three types of animations. The selection of dedicated an-
imation components was based on the official Jetpack
Compose guidelines [18]. In both implementations, ded-
icated and custom, the animations were visually identical
and executed over the same duration, and performed in
both forward and reverse directions. In the first animation
type, the parent container gradually changed its size to
adapt to the expanding or shrinking child content. The
child content initially consisted of two vertically ar-
ranged text components that expanded to six and then
shrink back to two. The dedicated component for this an-
imation was animateContentSize, while the custom im-
plementation used layout modifier and a low-level Ani-
matable object. The second animation type used the same
graphical interface as in the first and involved toggling
the visibility of UI elements. This was achieved using the
AnimatedVisibility component in the dedicated imple-
mentation, while the custom implementation used an

Animatable object and dynamically controlled the ele-
ment’s opacity via the graphicsLayer modifier. Once the
element became fully transparent, it was removed from
the composition. The third and final animation type im-
plemented a crossfade transition between two screens,
using the Crossfade component in the dedicated imple-
mentation. Similar to the previous custom implementa-
tions, Animatable objects were used to adjust the opacity
of overlapping screen contents. The initial screen re-
tained the layout from the first animation type, while the
second screen displayed two images vertically. For all
animation types, the render thread execution time was
measured for each frame, and the results were averaged.
As the metric is subject to minimization, lower thread ex-
ecution times (rendering times) indicate better compo-
nent performance. For reference throughout this study,
the animations are abbreviated according to the sequence
of types as follows: Al, A2, A3.

The third research scenario involved executing tasks
related to input and output operations on a text file and a
database, based on which the screen content was ren-
dered. The dataset [19] used in this scenario was the first
result returned by Kaggle when searching for the term
“Books”. It contains information about books stored in a
CSV file. The following tasks were executed:

Importing data from the CSV file into the database.
Retrieving all records.

Retrieving all records and sorting by title.

Retrieving all records and sorting by ranking.
Retrieving the first record.

Deleting data from the database.

Only the first task was performed on the file, while all
subsequent tasks were executed on the database. The
sorting operations were carried out within a Kotlin func-
tion. Each task was considered complete once the corre-
sponding action had been performed and the screen ren-
dered based on the returned data. A dedicated 1O dis-
patcher was utilized for the input and output operations,
along with the Default dispatcher and a custom dis-
patcher configured with the highest thread priority, which
may influence the software’s responsiveness [14]. The
execution time of each task was measured and averaged.
As the measured metric is subject to minimization, a
shorter execution time indicates better performance of
the dispatcher.

During the testing phase of the experiment, issues
were observed on devices S2 and S3 in obtaining valid
results for each iteration, despite correct operation on de-
vice S1 and the emulator. Specifically, in the scenario
comparing list rendering performance, certain iterations
on S2 and S3 failed to record startup time in the warm
and hot startup modes. To address this issue, the number
of iterations for these modes was increased on the af-
fected devices, and the first ten iterations containing valid
measurement data were selected for analysis. A similar
issue occurred on the same devices during the measure-
ment of animation frame rendering time. Upon inspection
of the system trace, it was found that the RenderThread
was not consistently registered, resulting in the absence
of valid results for some iterations. As with the previous
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issue related to list rendering, the number of iterations
was increased on these devices, and the first ten iterations
containing valid measurement data were selected for
analysis.

4. Results

This chapter presents the results obtained from the exper-
iments conducted on three mobile devices for each of the
defined research scenarios.

For the first research scenario, measurements were
collected for startup time and memory usage (Tables 2-
4). On devices S2 and S3, some iterations lacked valid
measurements for the warm and hot startup modes. As a
result, additional iterations were performed, and only the
first ten iterations containing valid data were included in
the analysis.

For the smallest tested list size of 10 elements, the av-
erage startup time and memory usage were comparable
between the LazyColumn and Column implementations
across all startup modes and devices. Under these condi-
tions, each device demonstrated slightly different behav-
ior, with either implementation yielding better perfor-
mance depending on the device. The maximum observed
differences in startup time and memory usage were 5.6%
and 27.0%, respectively. The high 27.0% memory differ-
ence was due to two outliers. Despite this, statistical test-
ing showed no significant differences in most cases. The
only statistically significant differences were found for
cold startup memory usage on devices S2 and S3, where
the differences of 1.5% and 1.4% were observed. On S2,
LazyColumn performed better, whereas on S3, Column
performed better. A key advantage of LazyColumn is its
stability, despite the increasing size of the list, both
startup time and memory usage remained relatively con-
sistent. In contrast, the performance of Column showed a
significant decrease as the list size increased, resulting in
higher values for both metrics compared to LazyColumn.
This trend was observed consistently across all devices
for the larger list sizes of 100 and 1000 elements and was
statistically confirmed by significant differences in group
means for both metrics.

It is also worth noting the increase in memory usage
observed in the warm startup mode. In some cases,
memory consumption in this mode was higher than in
both cold and hot startups, while memory usage in hot
startup was consistently the lowest. This pattern was ob-
served across all tested devices. A possible explanation
is that, in warm startup, the application retained a par-
tially loaded state from the previous launch, which had
not yet been fully released when a new state was created
during the activity restart.

Table 2: Startup time and memory usage results during list appli-
cation startup on smartphone S1

Implementa- Startup Ele- Startup time + Memory

tion mode ment std usage + std
count (ms) (MB)

LazyColumn Cold 10 557.7+£274 7.5+0.1

LazyColumn Cold 100 541.3+20.3 7.4£0.0

LazyColumn Cold 1000 546.0 = 14.6 7.5+£0.0

Column Cold 10 555.5+339 7.5+0.1
Column Cold 100 679.4+20.4 22.9+0.0

Column Cold 1000 1,715.8 £ 38.0 242.8+5.0
LazyColumn Warm 10 1532+ 143 11.3+2.0
LazyColumn Warm 100 156.3+17.8 11.3+2.0
LazyColumn Warm 1000 151.2+11.9 11.2+£23

Column Warm 10 146.2 £ 10.3 11.2+£2.1

Column Warm 100 292.6+16.9 37.0+9.8

Column Warm 1000 1,396.3+£16.3 135.0+2.2
LazyColumn Hot 10 60.2+7.4 54+14
LazyColumn Hot 100 60.3+7.6 5.6+1.7
LazyColumn Hot 1000 61.2+8.6 5.7+1.7

Column Hot 10 62.0+7.9 55+1.8

Column Hot 100 854+5.8 11.5+6.4

Column Hot 1000 340.2+7.5 47.1+£2.5

Table 3: Startup time and memory usage results during list appli-
cation startup on smartphone S2

Implementa- Startup Ele- Startup time + Memory
tion mode ment std usage =+ std
count (ms) (MB)
LazyColumn Cold 10 453.7+16.7 63+0.1
LazyColumn Cold 100 4799 +21.5 6.3+0.0
LazyColumn Cold 1000 486.0 +20.0 6.4+0.0
Column Cold 10 480.9 +44.6 6.4+0.0
Column Cold 100 641.8 +£86.4 18.8+0.0
Column Cold 1000 1,978.6 £ 76.3 1913+
10.0
LazyColumn Warm 10 190.6 +21.1 8.8+2.0
LazyColumn Warm 100 190.1 +10.1 7.5+1.7
LazyColumn Warm 1000 199.1+12.3 75+1.5
Column Warm 10 187.1+11.4 75+1.0
Column Warm 100 497.4+54.0 27.9+6.7
Column Warm 1000 2,292.0+283.9 204.7+1.2
LazyColumn Hot 10 63.7+4.6 52+038
LazyColumn Hot 100 63.1+£5.4 46+0.7
LazyColumn Hot 1000 653+5.9 5.0£0.9
Column Hot 10 64.8 +8.1 52+1.2
Column Hot 100 106.5+3.3 10.8+2.9
Column Hot 1000 471.0+7.2 94.1+£6.8

Table 4: Startup time and memory usage results during list appli-
cation startup on smartphone S3

Implementa- Startup Ele- Startup time + Memory
tion mode ment std usage =+ std
count (ms) (MB)
LazyColumn Cold 10 332.8+22.2 10.9+0.0
LazyColumn Cold 100 331.5+85 10.9+0.0
LazyColumn Cold 1000 3339+ 15.6 11.0£0.0
Column Cold 10 319.7+9.5 10.8 +£0.0
Column Cold 100 4157+ 153 26.0+0.0
Column Cold 1000 1,181.0 + 14.6 214.8+0.1
LazyColumn Warm 10 1145+59 19.2+4.4
LazyColumn Warm 100 1245+ 14.5 20.3+8.8
LazyColumn Warm 1000 130.5+ 6.7 22.6+6.1
Column Warm 10 1193 +83 21.7+74
Column Warm 100 210.6+12.4 63.2+21.3
Column Warm 1000 1,064.8 + 57.4 260.7 +
41.2
LazyColumn Hot 10 61.9+7.9 6.5+1.7
LazyColumn Hot 100 67.7+7.2 7.7+4.9
LazyColumn Hot 1000 63.4+9.7 8.6+3.6
Column Hot 10 652+ 13.5 89+43
Column Hot 100 85.8+8.0 14.8+9.2
Column Hot 1000 295.6 £5.0 51.1+4.38

The results from the second research scenario (Tables
5-8), which compared the performance of three types of
animations, reveal notable differences in frame rendering
times between the dedicated and custom implementa-
tions. On devices S2 and S3, some iterations did not pro-
duce valid results due to the render thread not being
properly registered in the system trace. As a result, ani-
mations were executed more than ten times on these
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devices, and the first ten iterations that contained valid
frame rendering times were selected for further analysis.

Depending on the tested device and animation type,
both the average frame rendering times and standard de-
viations varied. The only case in which the custom im-
plementation achieved a lower mean frame rendering
time than the dedicated implementation was for anima-
tion Al on device S1, where the difference was 0.03 ms
(0.6%).

Table 5: Animation frame rendering time results

Ani- Smartphone Dedicated imple- Custom imple-
mation mentation =+ std mentation + std
(ms) (ms)
Al S1 5.53+0.11 5.49 +0.07
S2 4.99 +£0.04 5.03 £0.08
S3 2.89+£0.09 4.10+£0.71
A2 S1 5.29+0.12 5.39+0.08
S2 4.68 £0.06 4.76 £0.05
S3 3.05+0.40 3.67 £0.64
A3 S1 5.86+1.17 6.98 +1.84
S2 5.62+2.07 5.75+0.94
S3 3.56 + 0.86 3.73 £0.87

Table 6: Detailed frame rendering time results for animation A1l

Dedicated implementation ~ Custom implementation

(ms) (ms)

P50 4.79 4.99
P90 5.83 6.12
P95 6.07 8.97
P99 7.01 14.61
Average 4.33 4.82
Std 1.58 2.39
Min 1.38 1.44
Max 20.49 24.58

Table 7: Detailed frame rendering time results for animation A2

Dedicated implementation ~ Custom implementation

(ms) (ms)

P50 4.63 4.80
P90 5.52 5.91
P95 5.92 7.99
P99 9.32 11.36
Average 4.23 4.54
Std 1.63 1.97
Min 1.44 1.48
Max 19.71 20.03

Table 8: Detailed frame rendering time results for animation A3

Dedicated implementation ~ Custom implementation

(ms) (ms)

P50 4.77 4.88
P90 6.82 10.77
P95 10.25 13.42
P99 15.08 15.60

Average 4.80 5.33

Std 3.02 3.98

Min 1.42 1.55
Max 72.98 166.75

However, statistical analysis indicated that this differ-
ence was not significant. A similar situation occurred
also with animation Al on device S2, where the differ-
ence was also 0.03 ms (0.6%) and likewise not statisti-
cally significant. In all other animations and across all
tested devices, the statistical tests confirmed significant
differences in average frame times in favor of the dedi-
cated implementations, with differences ranging from
1.9% to 41.6%. In the aggregated results for each

animation type, half of the animation frames were ren-
dered faster using the dedicated components. Addition-
ally, the dedicated implementations achieved lower aver-
age frame times, lower standard deviations, as well as
lower minimum and maximum values. The highest stand-
ard deviation was observed for animation A3, which in-
volved transitioning between two different screens using
a crossfade effect.

The results obtained from the final research scenario
(Table 9) present the average execution times of individ-
ual tasks along with their corresponding standard devia-
tions. Analysis of the results indicates that the perfor-
mance of all three tested dispatchers was comparable.
The shortest average total task execution time on each of
the tested mobile devices was achieved by the implemen-
tation using the custom dispatcher configured with the
highest thread priority. However, statistical tests did not
reveal any significant differences between the dispatch-
ers in the average total task execution time. It is notewor-
thy that the custom dispatcher exhibited lower standard
deviations compared to the other two dispatchers. De-
spite achieving the shortest total execution time, the cus-
tom dispatcher did not consistently outperform the others
in every task. Among the six analyzed tasks, it achieved
the fastest execution time in three cases on device S1, in
four on device S2, and in two on device S3.

Table 9: Task execution time results using different dispatchers

Task Smar 10 Default Custom Av-
tpho Average + Average + erage + std
ne std std (ms)
(ms) (ms)
Importing S1 1,376 £ 157 1,378 £ 115 1,354 £52
data S2 1,542 £ 62 1,557 + 86 1,508 + 45
S3 1,377+76 1,355 +53 1,356 43
Retrieving S1 219+ 16 211+13 206+ 16
all records S2 226+ 10 258 £119 214+ 16
S3 184 +22 177+ 10 176 £ 16
Retrieving S1 199+6 193+£5 195+7
all records S2 222+9 221+ 11 214+ 17
and sorting S3 182+ 10 181+ 12 170+9
by title
Retrieving S1 196 £ 6 193 +7 192+5
all records S2 229 +£13 232 +£18 220+ 10
and sorting S3 174 £ 12 1728 174 £7
by ranking
Retrieving S1 72+9 68+ 8 69£8
the first S2 78 +4 91+46 87+33
record S3 5247 51+8 55+10
Deleting S1 112+ 55 80+9 87+34
data S2 125+ 72 160 + 74 136 £ 75
S3 71 £49 112+ 51 77+ 53
Total time S1 2,173 £ 148 2,124+ 115 2,104 £ 49
S2 2,422 + 131 2,518 171 2,379 + 102
S3 2,039 + 90 2,048 +73 2,008 + 75

At the same time, there were no cases in which the
custom dispatcher was the slowest on devices S1 and S2.
However, on device S3, there were two tasks in which it
recorded the longest execution time among the compared
dispatchers.

5. Discussion

The experimental study was successfully conducted in its
entirety, and all test scenarios were implemented as
planned. A complete set of performance data was
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collected across three different mobile devices, allowing
for comprehensive analysis.

In the first research scenario, for the smallest tested
dataset of 10 elements, the average values were compa-
rable between the LazyColumn and Column implemen-
tations, regardless of the startup mode. Statistical tests re-
vealed no notable differences, except for memory usage
in the cold startup mode on devices S2 and S3, where La-
zyColumn used less memory on S2, and Column was
more efficient on S3. These experimental results do not
allow for a definitive conclusion about which implemen-
tation is more efficient for small lists. As the number of
list elements increased, a significant decline in perfor-
mance was observed for the Column implementation in
terms of both startup time and memory usage, while the
performance for LazyColumn remained considerably sta-
ble. This observation supports the assumption that La-
zyColumn composes and lays out only the currently
needed elements, in contrast to Column, which composes
and lays out all components regardless of their visibility.
According to the statistical test results, the differences in
mean values between these implementations for larger
datasets were statistically significant, demonstrating that
LazyColumn is a more efficient and scalable solution
than Column. Based on these findings, hypothesis H1,
that the dedicated LazyColumn component is more effi-
cient than the Column component regardless of data size,
was rejected. Although significant differences were ob-
served for larger datasets, both implementations demon-
strated similar performance for small datasets containing
10 elements. Therefore, the use of LazyColumn is rec-
ommended for large or unknown dataset sizes, while for
small datasets, both implementations exhibit similar per-
formance.

In the second research scenario, the dedicated anima-
tion implementations achieved shorter average frame
rendering times in all tested cases, except for animation
Al on device S1, where the difference between imple-
mentations was not statistically significant. Similarly, no
statistically significant difference in favor of the dedi-
cated implementation was found for animation A1 on de-
vice S2. In all other combinations of devices and anima-
tion types, the average frame rendering times were sig-
nificantly lower for the dedicated implementations. Ad-
ditionally, in half of the measured frames, rendering was
faster with dedicated animations than with custom ones.
Based on these observations, hypothesis H2, stating that
dedicated animations are more efficient than non-special-
ized animations, was accepted, as dedicated animations
proved to be equally or more efficient than their custom
counterparts. Given their higher performance and availa-
bility as built-in, tested components, it is recommended
to use dedicated animations. This not only enhances per-
formance but also reduces developer workload and min-
imizes the risk of introducing bugs into the code.

In the third research scenario, it was observed that the
configuration using a custom dispatcher with the highest
thread priority achieved the shortest average total task ex-
ecution time across all tested devices. However, statisti-
cal tests did not indicate any significant differences in the

average execution times among the analyzed dispatchers.
The absence of a clear performance advantage for the
custom dispatcher may be attributed to the characteristics
of the tested application, which did not perform a high
number of concurrent operations across multiple threads.
During task execution, the main thread remained idle,
awaiting the results from the dispatcher. Furthermore, the
application operated in the foreground, which led the op-
erating system to schedule approximately 95% of CPU
time [20] to this application, regardless of thread priority.
As a result, the dispatcher did not need to compete with
other threads for CPU time, which limited the potential
performance benefit of using a custom dispatcher with
highest thread priority. Given the lack of evidence sup-
porting a performance advantage of the dedicated 1O dis-
patcher, hypothesis H3, stating that a dedicated dis-
patcher is more efficient than other dispatchers, must be
rejected.

6. Conclusions

In summary, the results obtained across all research sce-
narios indicate that dedicated components in Jetpack
Compose do not always provide better performance than
their less specialized counterparts. While dedicated com-
ponents were more performant in the majority of perfor-
mance tests, there were cases in which non-specialized
components delivered comparable or even better results.
Consequently, the research thesis stating that specialized
components in Jetpack Compose offer better perfor-
mance compared to more general purpose, non-special-
ized components must be partially rejected.

Nevertheless, the use of specialized components is
recommended, particularly in applications where perfor-
mance is not a critical concern and the characteristics of
the data, such as size, are unknown. Dedicated compo-
nents demonstrated greater stability and robustness with
respect to varying data inputs, and in some scenarios, sig-
nificant performance advantages were observed. In con-
trast, the performance gains achieved through custom im-
plementations were not consistently observed across all
devices and did not differ significantly from those
achieved using dedicated components.

Further research should consider expanding the ex-
perimental scope to include scenarios involving lists with
image containing elements, the use of keys versus key-
less elements, and interactive operations such as scroll-
ing, item insertion, deletion, and sorting. In the context
of animations, it would be valuable to explore additional
animation types, evaluate whether varying frame rates
impact component performance, and measure both the
number of frames that exceeded their assigned rendering
time and the extent of those overruns, as these factors di-
rectly influence animation smoothness. For dispatchers,
testing under higher concurrency conditions involving
multiple threads and parallel tasks would help assess
whether increased thread priority affects performance un-
der heavier workloads. Such investigations would con-
tribute to a more comprehensive understanding of the be-
havior of Jetpack Compose components in real world
mobile application use cases.
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