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Abstract 

This article presents a performance analysis of the Jetpack Compose toolkit components in mobile applications executing 

typical user tasks. A performance comparison was conducted between specialized and less specialized components. The 

Macrobenchmark, JUnit, and UIAutomator libraries were used to evaluate the performance of scrollable lists, animations, 

and dispatchers on three different mobile devices, with each implementation in a given scenario appearing identical. The 

results from the conducted tests indicate that specialized components do not always have the same or better performance 

than less specialized components. 
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Streszczenie 

Artykuł przedstawia analizę wydajności komponentów zestawu narzędzi Jetpack Compose w aplikacjach mobilnych re-

alizujących typowe zadania użytkownika. Przeprowadzone zostało porównanie wydajności pomiędzy komponentami wy-
specjalizowanymi i mniej wyspecjalizowanymi. Wykorzystane zostały biblioteki Macrobenchmark, JUnit i UIAutomator 

za pomocą, których zbadana została wydajność listy przewijanej, animacji oraz dyspozytorów na trzech różnych urzą-
dzeniach mobilnych, przy czym każda implementacja w danym scenariuszu wyglądała tak samo. Wyniki przeprowadzo-

nych badań pozwalają stwierdzić, że komponenty wyspecjalizowane nie zawsze cechują się taką samą, bądź lepszą wy-
dajnością od komponentów mniej wyspecjalizowanych. 
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1. Introduction 

The technological advancement of mobile devices has 

led to a significant increase in the number of users, a 

trend that continues to grow each year [1]. Currently, the 

most widely used operating system on mobile devices is 

Android, which is broadly accessible to users [2]. As a 

result, a large number of applications are being devel-

oped for this platform, often offering similar functionali-

ties but differing in non-functional requirements such as 

performance, which play a crucial role in determining an 

application's success and in attracting and retaining the 

largest possible user base [3-6]. Ensuring high perfor-

mance is particularly important, as Android users operate 

a wide variety of mobile devices with differing hardware 

capabilities, including less powerful ones. Given that 

user ratings in app stores significantly influence applica-

tion choice [6] optimizing performance is essential to 

prevent negative reviews arising from inadequate appli-

cation responsiveness. 

Many popular Android applications available on the 

Google Play Store use the Jetpack Compose toolkit for 

user interface development [7]. Jetpack Compose allows 

developers to build native, declarative user interfaces that 

update automatically upon detecting changes in the ob-

served state. 

The objective of this study is to evaluate the perfor-

mance of different implementation variants of compo-

nents in Jetpack Compose by conducting a series of ex-

periments that measure and compare their efficiency on 

representative mobile devices. The findings aim to sup-

port mobile application developers in selecting high-per-

formance components for building user interfaces that fa-

cilitate the execution of typical user tasks. The perfor-

mance analysis will focus on components used for ren-

dering lists, animations, and dispatchers in input and out-

put operations. 

2. Literature review 

This literature review discusses previous research on the 

performance and quality-related factors of mobile appli-

cations. As there is still a limited number of studies spe-

cifically addressing Jetpack Compose, the review also in-

cludes research investigating the performance of other 

technologies. The literature review has been organized 

into the following areas: 

1. Comparison of user interface performance. 

2. Comparison of programming language performance. 

3. Factors influencing application performance. 

4. Factors influencing application quality. 

5. Summary of the literature review. 
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2.1. Comparison of user interface performance 

Study [8] compared the performance of applications built 

with traditional views, Jetpack Compose, and a combina-

tion of both, using Macrobenchmark, JUnit, and UIAu-

tomator. In startup tests across cold, warm, and hot 

modes, the view-based app performed best, followed by 

Jetpack Compose, with the combination of both approach 

performing worst. Additional tests on frame rendering 

during list scrolling and animation showed minor differ-

ences. The combination of both performed best, while 

Jetpack Compose had the most unstable results, possibly 

due to experimental animation features. 

Study [9] conducted a comparative analysis of Jet-

pack Compose and Flutter in an Android application. The 

results showed that Flutter had lower CPU usage, while 

consuming more memory. When comparing application 

size, Flutter performed better for a calculator app, 

whereas for a movie list app Jetpack Compose performed 

better. In duration tests, where execution time of tests 

was measured, Jetpack Compose performed better for 

calculator, however, for the movie list app, Flutter out-

performed Jetpack Compose. Based on these results, the 

authors concluded that both Jetpack Compose and Flutter 

have their strengths and weaknesses, and it is not possible 

to definitely state which solution is superior. 

2.2. Comparison of programming language perfor-

mance 

Programming language performance is an important fac-

tor in selecting the appropriate technology for developing 

a sufficiently efficient application. Previous studies [10-

12] have compared the performance of programming lan-

guages in terms of both runtime performance and the 

compilation time. While Java is superior in compiling 

time and APK size, Kotlin offers a more concise syntax, 

which can contribute to faster application development, 

fewer lines of code, and a reduced number of errors [10]. 

Article [11] compared Java, Flutter, and Kotlin/Na-

tive. In terms of build time, size of the installation file, 

startup time, and RAM usage, Java achieved better re-

sults, while Flutter performed the worst. In performance 

related tests involving operations on collections, REST 

requests, database, files, serialization, and deserializa-

tion, Flutter achieved the best execution times in the ma-

jority of tests. However, in database operations, other ap-

plications were up to ten times faster. Flutter had the 

highest RAM usage, and lowest CPU usage, while Java 

had the lowest RAM usage. Java demonstrated the most 

stable performance overall. The authors noted that both 

Flutter and Kotlin/Native were in the early stages of de-

velopment at the time of testing, and their performance 

could be improved in the future. 

Study [12] conducted an empirical analysis on open-

source repositories to evaluate the impact of migrating 

from Java to Kotlin on application performance. The 

evaluation covered CPU usage, memory usage, garbage 

collector invocations, frame times, application size, and 

energy consumption. Although statistically significant 

differences were observed in CPU and memory usage, as 

well as frame time, the magnitude of these differences 

was negligible. The authors concluded that, due to the 

lack of evidence indicating a substantial negative impact 

on performance, there is no major reason for avoiding mi-

gration from Java to Kotlin. 

2.3. Factors influencing application performance 

Previous studies have addressed the factors influencing 

application performance, including hardware analysis, 

resource utilization, and the implementation of system 

and software [13-16]. A survey of existing literature 

noted that mobile devices are resource-constrained and 

that there are interdependencies among performance 

characteristics. For example, CPU frequency can have 

both positive and negative effects on battery lifetime, 

while inversely impacting responsiveness [13]. However, 

this is not always the case [13], [16], as the use of of-

floading has helped reduce energy consumption while 

simultaneously improving responsiveness. For these and 

other performance characteristics, ways to profile and op-

timize them have been explored. Redundant user inter-

face rendering can cause slow rendering and frozen 

frames which can be solved by reducing complexity of 

the UI hierarchy and background, and using better hard-

ware, but better hardware does not mitigate problems 

with ANR (Application Not Responding) and SNR (Sys-

tem Not Responding) [15]. 

An analysis of 20 popular mobile application reposi-

tories showed that 12 improved at least one nonfunctional 

parameter: most commonly execution time and memory 

consumption, with bandwidth usage and frame rate less 

frequently addressed [16]. Performance gains were often 

achieved through modifications of multiple files, and 

trade-offs between metrics, especially between execution 

time and memory consumption, were common 

In [14] the authors investigated the responsiveness of 

Android software by measuring response time to screen 

taps simulated by ADB (Android Debug Bridge). They 

concluded that the most impact on responsiveness is 

caused by competition for CPU time among concurrent 

threads with equal or higher priorities. Network I/O and 

memory utilization do not significantly affect responsive-

ness unless memory usage approaches 100%. Concurrent 

disk I/O operations or high disk usage can negatively af-

fect responsiveness. Therefore, it is recommended to 

avoid performing such operations while the user is ac-

tively interacting with the mobile device. 

2.4. Factors influencing application quality 

An important factor in the success of a mobile application 

is understanding what influences its quality. Research has 

shown [3-6] that, both functional and non-functional re-

quirements play a significant role in the success of mo-

bile applications. Low user ratings can negatively affect 

the popularity and revenue of an app [4-6]. When in-

stalling an application, user reviews are considered more 

important than application size, review content, recom-

mended apps by store, last update date, number of down-

loads, required permissions, or screenshots [6], while 

when deciding to uninstall and app, the main reasons are 

lack of need for further use, and also app crashes or high 
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resource utilization. There are many reasons why an ap-

plication is of low quality such as poor performance, 

crashes, poorly designed user interface or navigation, 

failure to understand the target audience, lack of commu-

nication with users or insufficient marketing as presented 

in the article [3]. 

There are differences between countries in user be-

havior regarding the adoption and abandonment of mo-

bile applications, but despite these differences, users 

around the world are highly likely to abandon low quality 

applications, such as an app that runs slowly, crashes or 

is difficult to use [4]. Since many apps offer similar func-

tionalities, users switch to better alternatives, indicating 

that, in some cases, non-functional requirements are 

more important than functional requirements. 

User complaints include both functional and nonfunc-

tional requirement problems, with the most common 

complaints involving functional problems, feature re-

quests, application crashes, and connectivity issues. The 

most negative complaints were related to privacy con-

cerns, hidden costs, removal of features in updates, and 

application crashes [5]. The authors emphasize that ap-

plication update can lead to negative complaints, there-

fore, it is recommended to conduct, for example, regres-

sion tests for features that are planned for removal or 

monetization, as well as when introducing changes to the 

user interface. 

2.5. Summary of the literature review 

The literature review shows that existing research has al-

ready addressed the Jetpack Compose toolkit, including 

studies comparing its performance. However, no prior re-

search has specifically examined how this toolkit be-

haves when using different components, nor which com-

ponents are more efficient in executing typical user tasks 

within an application. Research on factors influencing 

application performance and quality have shown that 

both functional and non-functional requirements, such as 

application performance, are important to users and, con-

sequently, to the success of an application. The study pre-

sented in this work aims to systematize existing 

knowledge and support mobile application developers in 

understanding which components and modifiers are more 

performant. Based on literature review, the following re-

search thesis has been formulated: “Specialized compo-
nents in Jetpack Compose offer better performance com-

pared to more general purpose, non-specialized compo-

nents”. In addition, a set of hypotheses has been defined 

to help accept or reject this thesis: 

H1. Dedicated LazyColumn component is more effi-

cient than the Column component regardless of da-

taset size. 

H2. Dedicated animations are more efficient than non-

specialized animations. 

H3. Dedicated dispatcher is more efficient than other 

dispatchers. 

3. Research method 

In order to evaluate the performance of specialized and 

non-specialized components in Jetpack Compose, three 

research scenarios were designed. Each scenario was im-

plemented within a separate activity using both special-

ized and non-specialized components. All implementa-

tions were designed to maintain identical functionalities 

and visual appearance. Performance of components and 

Jetpack Compose itself may vary depending on the mo-

bile device and its specifications. Therefore, the experi-

ments were conducted on three distinct smartphones 

from different manufacturers, each with varying specifi-

cations (Table 1). The devices are further referred to us-

ing abbreviated labels: S1, S2, and S3, respectively from 

left to right. 

The testing environment is unstable due to the pres-

ence of background processes and the potential for device 

overheating, both of which may affect performance dur-

ing testing and contribute to variability between tests. To 

minimize environmental instability, it is essential to per-

form a preparatory procedure prior to benchmarking. 

This includes fully charging the device’s battery, closing 

all background applications, disabling WI-FI and Blue-

tooth connectivity, closing applications that can display 

over other applications, and deactivating screen timeout 

to prevent the device from entering sleep mode during 

performance testing. Additionally, the device should be 

connected to a computer via USB to use ADB, and its 

screen orientation should be set to portrait. The device 

must remain idle and unused for the duration of each test. 

Despite the preparatory procedure, certain uncontrollable 

factors may still contribute to environmental instability 

and affect measurement consistency. To mitigate the im-

pact of such variability, each test was repeated ten times, 

and the final results were obtained by calculating the 

arithmetic mean of the collected data. 

The Macrobenchmark library was used to implement 

automated performance tests simulating typical user in-

teractions within a mobile application. In addition, the 

JUnit and UIAutomator libraries were used to construct 

test cases and simulate user gestures. Macrobenchmark 

runs in a separate process, which allows it to restart and 

precompile the target application. 

Table 1: Smartphone specifications 

Smartphone 

(ID) 

Samsung Gal-

axy A52s 

(S1) 

Xiaomi 

Redmi Note 

10 5G 

(S2) 

Motorola 

Edge 40 

(S3) 

Model SM-

A528B/DS 

M2103K19G XT2303-2 

Operating sys-

tem 

Android 14 Android 13 Android 14 

CPU Snapdragon 

778G 5G 

Mediatek Di-

mensity 700 

Mediatek 

Dimensity 

8020 

GPU Adreno 642L Mali-G57 

MC2 

Mali-G77 

MC9 

RAM 6 GB 6 GB 8 GB 

Display 1080 x 2400 

px, 405 ppi, 

120 Hz 

1080 x 2400 

px, 405 ppi, 

90 Hz 

1080 x 2400 

px, 402 ppi, 

144 Hz 

 

The tested application was build in release mode with 

R8, reflecting the configuration typically encountered by 

end users in production environments, instead of debug 

mode that imposes a performance cost [17]. Furthermore, 
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baseline profiles were used to improve the performance 

of the application’s initial launch and user interactions, 

such as navigation and scrolling, by reducing the code 

interpretation in critical parts of the application. 

The obtained results were processed using a script, af-

ter which the data were imported into a spreadsheet to 

generate the corresponding tables and charts. The distri-

bution of the measurements was examined to determine 

whether they followed a normal distribution. Based on 

this assessment, either an ANOVA statistical test was 

performed, or, in cases where normality was not ob-

served, the Kruskal-Wallis test was applied to compare 

the mean values obtained. 

The first research scenario focused on rendering a list 

of elements, which is a standard method for evaluating 

user interface performance [8-9]. The dataset used to 

generate the list was constructed by creating 40 para-

graphs of Lorem Ipsum text, which were then repeated 

circularly. This approach allowed the dynamic creation 

of datasets of varying sizes. Two approaches were uti-

lized: a dedicated component, LazyColumn, and a less 

specialized component, Column. The LazyColumn cre-

ates a vertically scrollable list that can contain large num-

ber of elements, as it only composes the elements needed 

at a given moment. On the other hand, the Column cre-

ates a vertical list and composes and lays out all elements 

regardless of whether they are visible. In addition, Col-

umn requires the verticalScroll modifier to enable verti-

cal scrolling. Performance was evaluated by measuring 

the startup time to full display, as well as the maximum 

memory usage. Both metrics were averaged, with lower 

startup time and lower memory usage indicating better 

component performance. The components were exam-

ined under lower and higher workloads, specifically for 

list containing 10, 100, and 1000 elements. Each config-

uration was tested across three application startup modes: 

1. Cold – the application process is not alive, and must 

be started in addition to Activity creation. 

2. Warm – create and display a new Activity in a cur-

rently running application process. 

3. Hot – bring existing Activity to the foreground. 

The second research scenario involved rendering 

three types of animations. The selection of dedicated an-

imation components was based on the official Jetpack 

Compose guidelines [18]. In both implementations, ded-

icated and custom, the animations were visually identical 

and executed over the same duration, and performed in 

both forward and reverse directions. In the first animation 

type, the parent container gradually changed its size to 

adapt to the expanding or shrinking child content. The 

child content initially consisted of two vertically ar-

ranged text components that expanded to six and then 

shrink back to two. The dedicated component for this an-

imation was animateContentSize, while the custom im-

plementation used layout modifier and a low-level Ani-

matable object. The second animation type used the same 

graphical interface as in the first and involved toggling 

the visibility of UI elements. This was achieved using the 

AnimatedVisibility component in the dedicated imple-

mentation, while the custom implementation used an 

Animatable object and dynamically controlled the ele-

ment’s opacity via the graphicsLayer modifier. Once the 

element became fully transparent, it was removed from 

the composition. The third and final animation type im-

plemented a crossfade transition between two screens, 

using the Crossfade component in the dedicated imple-

mentation. Similar to the previous custom implementa-

tions, Animatable objects were used to adjust the opacity 

of overlapping screen contents. The initial screen re-

tained the layout from the first animation type, while the 

second screen displayed two images vertically. For all 

animation types, the render thread execution time was 

measured for each frame, and the results were averaged. 

As the metric is subject to minimization, lower thread ex-

ecution times (rendering times) indicate better compo-

nent performance. For reference throughout this study, 

the animations are abbreviated according to the sequence 

of types as follows: A1, A2, A3. 

The third research scenario involved executing tasks 

related to input and output operations on a text file and a 

database, based on which the screen content was ren-

dered. The dataset [19] used in this scenario was the first 

result returned by Kaggle when searching for the term 

“Books”. It contains information about books stored in a 

CSV file. The following tasks were executed: 

• Importing data from the CSV file into the database. 

• Retrieving all records. 

• Retrieving all records and sorting by title. 

• Retrieving all records and sorting by ranking. 

• Retrieving the first record. 

• Deleting data from the database. 

Only the first task was performed on the file, while all 

subsequent tasks were executed on the database. The 

sorting operations were carried out within a Kotlin func-

tion. Each task was considered complete once the corre-

sponding action had been performed and the screen ren-

dered based on the returned data. A dedicated IO dis-

patcher was utilized for the input and output operations, 

along with the Default dispatcher and a custom dis-

patcher configured with the highest thread priority, which 

may influence the software’s responsiveness [14]. The 

execution time of each task was measured and averaged. 

As the measured metric is subject to minimization, a 

shorter execution time indicates better performance of 

the dispatcher. 

During the testing phase of the experiment, issues 

were observed on devices S2 and S3 in obtaining valid 

results for each iteration, despite correct operation on de-

vice S1 and the emulator. Specifically, in the scenario 

comparing list rendering performance, certain iterations 

on S2 and S3 failed to record startup time in the warm 

and hot startup modes. To address this issue, the number 

of iterations for these modes was increased on the af-

fected devices, and the first ten iterations containing valid 

measurement data were selected for analysis. A similar 

issue occurred on the same devices during the measure-

ment of animation frame rendering time. Upon inspection 

of the system trace, it was found that the RenderThread 

was not consistently registered, resulting in the absence 

of valid results for some iterations. As with the previous 
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issue related to list rendering, the number of iterations 

was increased on these devices, and the first ten iterations 

containing valid measurement data were selected for 

analysis. 

4. Results 

This chapter presents the results obtained from the exper-

iments conducted on three mobile devices for each of the 

defined research scenarios. 

For the first research scenario, measurements were 

collected for startup time and memory usage (Tables 2-

4). On devices S2 and S3, some iterations lacked valid 

measurements for the warm and hot startup modes. As a 

result, additional iterations were performed, and only the 

first ten iterations containing valid data were included in 

the analysis. 

For the smallest tested list size of 10 elements, the av-

erage startup time and memory usage were comparable 

between the LazyColumn and Column implementations 

across all startup modes and devices. Under these condi-

tions, each device demonstrated slightly different behav-

ior, with either implementation yielding better perfor-

mance depending on the device. The maximum observed 

differences in startup time and memory usage were 5.6% 

and 27.0%, respectively. The high 27.0% memory differ-

ence was due to two outliers. Despite this, statistical test-

ing showed no significant differences in most cases. The 

only statistically significant differences were found for 

cold startup memory usage on devices S2 and S3, where 

the differences of 1.5% and 1.4% were observed. On S2, 

LazyColumn performed better, whereas on S3, Column 

performed better. A key advantage of LazyColumn is its 

stability, despite the increasing size of the list, both 

startup time and memory usage remained relatively con-

sistent. In contrast, the performance of Column showed a 

significant decrease as the list size increased, resulting in 

higher values for both metrics compared to LazyColumn. 

This trend was observed consistently across all devices 

for the larger list sizes of 100 and 1000 elements and was 

statistically confirmed by significant differences in group 

means for both metrics. 

It is also worth noting the increase in memory usage 

observed in the warm startup mode. In some cases, 

memory consumption in this mode was higher than in 

both cold and hot startups, while memory usage in hot 

startup was consistently the lowest. This pattern was ob-

served across all tested devices. A possible explanation 

is that, in warm startup, the application retained a par-

tially loaded state from the previous launch, which had 

not yet been fully released when a new state was created 

during the activity restart. 

Table 2: Startup time and memory usage results during list appli-

cation startup on smartphone S1 

Implementa-

tion 

Startup 

mode 

Ele-

ment 

count 

Startup time ± 
std 

(ms) 

Memory 

usage ± std 

(MB) 

LazyColumn Cold 10 557.7 ± 27.4 7.5 ± 0.1 

LazyColumn Cold 100 541.3 ± 20.3 7.4 ± 0.0 

LazyColumn Cold 1000 546.0 ± 14.6 7.5 ± 0.0 

Column Cold 10 555.5 ± 33.9 7.5 ± 0.1 

Column Cold 100 679.4 ± 20.4 22.9 ± 0.0 

Column Cold 1000 1,715.8 ± 38.0 242.8 ± 5.0 

LazyColumn Warm 10 153.2 ± 14.3 11.3 ± 2.0 

LazyColumn Warm 100 156.3 ± 17.8 11.3 ± 2.0 

LazyColumn Warm 1000 151.2 ± 11.9 11.2 ± 2.3 

Column Warm 10 146.2 ± 10.3 11.2 ± 2.1 

Column Warm 100 292.6 ± 16.9 37.0 ± 9.8 

Column Warm 1000 1,396.3 ± 16.3 135.0 ± 2.2 

LazyColumn Hot 10 60.2 ± 7.4 5.4 ± 1.4 

LazyColumn Hot 100 60.3 ± 7.6 5.6 ± 1.7 

LazyColumn Hot 1000 61.2 ± 8.6 5.7 ± 1.7 

Column Hot 10 62.0 ± 7.9 5.5 ± 1.8 

Column Hot 100 85.4 ± 5.8 11.5 ± 6.4 

Column Hot 1000 340.2 ± 7.5 47.1 ± 2.5 

Table 3: Startup time and memory usage results during list appli-

cation startup on smartphone S2 

Implementa-

tion 

Startup 

mode 

Ele-

ment 

count 

Startup time ± 
std 

(ms) 

Memory 

usage ± std 

(MB) 

LazyColumn Cold 10 453.7 ± 16.7 6.3 ± 0.1 

LazyColumn Cold 100 479.9 ± 21.5 6.3 ± 0.0 

LazyColumn Cold 1000 486.0 ± 20.0 6.4 ± 0.0 

Column Cold 10 480.9 ± 44.6 6.4 ± 0.0 

Column Cold 100 641.8 ± 86.4 18.8 ± 0.0 

Column Cold 1000 1,978.6 ± 76.3 191.3 ± 
10.0 

LazyColumn Warm 10 190.6 ± 21.1 8.8 ± 2.0 

LazyColumn Warm 100 190.1 ± 10.1 7.5 ± 1.7 

LazyColumn Warm 1000 199.1 ± 12.3 7.5 ± 1.5 

Column Warm 10 187.1 ± 11.4 7.5 ± 1.0 

Column Warm 100 497.4 ± 54.0 27.9 ± 6.7 

Column Warm 1000 2,292.0 ± 283.9 204.7 ± 1.2 

LazyColumn Hot 10 63.7 ± 4.6 5.2 ± 0.8 

LazyColumn Hot 100 63.1 ± 5.4 4.6 ± 0.7 

LazyColumn Hot 1000 65.3 ± 5.9 5.0 ± 0.9 

Column Hot 10 64.8 ± 8.1 5.2 ± 1.2 

Column Hot 100 106.5 ± 3.3 10.8 ± 2.9 

Column Hot 1000 471.0 ± 7.2 94.1 ± 6.8 

Table 4: Startup time and memory usage results during list appli-

cation startup on smartphone S3 

Implementa-

tion 

Startup 

mode 

Ele-

ment 

count 

Startup time ± 
std 

(ms) 

Memory 

usage ± std 

(MB) 

LazyColumn Cold 10 332.8 ± 22.2 10.9 ± 0.0 

LazyColumn Cold 100 331.5 ± 8.5 10.9 ± 0.0 

LazyColumn Cold 1000 333.9 ± 15.6 11.0 ± 0.0 

Column Cold 10 319.7 ± 9.5 10.8 ± 0.0 

Column Cold 100 415.7 ± 15.3 26.0 ± 0.0 

Column Cold 1000 1,181.0 ± 14.6 214.8 ± 0.1 

LazyColumn Warm 10 114.5 ± 5.9 19.2 ± 4.4 

LazyColumn Warm 100 124.5 ± 14.5 20.3 ± 8.8 

LazyColumn Warm 1000 130.5 ± 6.7 22.6 ± 6.1 

Column Warm 10 119.3 ± 8.3 21.7 ± 7.4 

Column Warm 100 210.6 ± 12.4 63.2 ± 21.3 

Column Warm 1000 1,064.8 ± 57.4 260.7 ± 
41.2 

LazyColumn Hot 10 61.9 ± 7.9 6.5 ± 1.7 

LazyColumn Hot 100 67.7 ± 7.2 7.7 ± 4.9 

LazyColumn Hot 1000 63.4 ± 9.7 8.6 ± 3.6 

Column Hot 10 65.2 ± 13.5 8.9 ± 4.3 

Column Hot 100 85.8 ± 8.0 14.8 ± 9.2 

Column Hot 1000 295.6 ± 5.0 51.1 ± 4.8 

The results from the second research scenario (Tables 

5-8), which compared the performance of three types of 

animations, reveal notable differences in frame rendering 

times between the dedicated and custom implementa-

tions. On devices S2 and S3, some iterations did not pro-

duce valid results due to the render thread not being 

properly registered in the system trace. As a result, ani-

mations were executed more than ten times on these 
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devices, and the first ten iterations that contained valid 

frame rendering times were selected for further analysis. 

Depending on the tested device and animation type, 

both the average frame rendering times and standard de-

viations varied. The only case in which the custom im-

plementation achieved a lower mean frame rendering 

time than the dedicated implementation was for anima-

tion A1 on device S1, where the difference was 0.03 ms 

(0.6%). 

Table 5: Animation frame rendering time results 

Ani-

mation 

Smartphone Dedicated imple-

mentation ± std 

(ms) 

Custom imple-

mentation ± std 

(ms) 

A1 S1 5.53 ± 0.11 5.49 ± 0.07 

S2 4.99 ± 0.04 5.03 ± 0.08 

S3 2.89 ± 0.09 4.10 ± 0.71 

A2 S1 5.29 ± 0.12 5.39 ± 0.08 

S2 4.68 ± 0.06 4.76 ± 0.05 

S3 3.05 ± 0.40 3.67 ± 0.64 

A3 S1 5.86 ± 1.17 6.98 ± 1.84 

S2 5.62 ± 2.07 5.75 ± 0.94 

S3 3.56 ± 0.86 3.73 ± 0.87 

Table 6: Detailed frame rendering time results for animation A1 

 Dedicated implementation  

(ms) 

Custom implementation 

(ms) 

P50 4.79 4.99 

P90 5.83 6.12 

P95 6.07 8.97 

P99 7.01 14.61 

Average 4.33 4.82 

Std 1.58 2.39 

Min 1.38 1.44 

Max 20.49 24.58 

Table 7: Detailed frame rendering time results for animation A2 

 Dedicated implementation 

(ms) 

Custom implementation 

(ms) 

P50 4.63 4.80 

P90 5.52 5.91 

P95 5.92 7.99 

P99 9.32 11.36 

Average 4.23 4.54 

Std 1.63 1.97 

Min 1.44 1.48 

Max 19.71 20.03 

Table 8: Detailed frame rendering time results for animation A3 

 Dedicated implementation 

(ms) 

Custom implementation 

(ms) 

P50 4.77 4.88 

P90 6.82 10.77 

P95 10.25 13.42 

P99 15.08 15.60 

Average 4.80 5.33 

Std 3.02 3.98 

Min 1.42 1.55 

Max 72.98 166.75 

However, statistical analysis indicated that this differ-

ence was not significant. A similar situation occurred 

also with animation A1 on device S2, where the differ-

ence was also 0.03 ms (0.6%) and likewise not statisti-

cally significant. In all other animations and across all 

tested devices, the statistical tests confirmed significant 

differences in average frame times in favor of the dedi-

cated implementations, with differences ranging from 

1.9% to 41.6%. In the aggregated results for each 

animation type, half of the animation frames were ren-

dered faster using the dedicated components. Addition-

ally, the dedicated implementations achieved lower aver-

age frame times, lower standard deviations, as well as 

lower minimum and maximum values. The highest stand-

ard deviation was observed for animation A3, which in-

volved transitioning between two different screens using 

a crossfade effect. 

The results obtained from the final research scenario 

(Table 9) present the average execution times of individ-

ual tasks along with their corresponding standard devia-

tions. Analysis of the results indicates that the perfor-

mance of all three tested dispatchers was comparable. 

The shortest average total task execution time on each of 

the tested mobile devices was achieved by the implemen-

tation using the custom dispatcher configured with the 

highest thread priority. However, statistical tests did not 

reveal any significant differences between the dispatch-

ers in the average total task execution time. It is notewor-

thy that the custom dispatcher exhibited lower standard 

deviations compared to the other two dispatchers. De-

spite achieving the shortest total execution time, the cus-

tom dispatcher did not consistently outperform the others 

in every task. Among the six analyzed tasks, it achieved 

the fastest execution time in three cases on device S1, in 

four on device S2, and in two on device S3. 

Table 9: Task execution time results using different dispatchers 

Task Smar

tpho

ne 

IO 

Average ± 
std 

(ms) 

Default 

Average ± 
std 

(ms) 

Custom Av-

erage ± std 

(ms) 

Importing 

data 

S1 1,376 ± 157 1,378 ± 115 1,354 ± 52 

S2 1,542 ± 62 1,557 ± 86 1,508 ± 45 

S3 1,377 ± 76 1,355 ± 53 1,356 ± 43 

Retrieving 

all records 

S1 219 ± 16 211 ± 13 206 ± 16 

S2 226 ± 10 258 ± 119 214 ± 16 

S3 184 ± 22 177 ± 10 176 ± 16 

Retrieving 

all records 

and sorting 

by title 

S1 199 ± 6 193 ± 5 195 ± 7 

S2 222 ± 9 221 ± 11 214 ± 17 

S3 182 ± 10 181 ± 12 170 ± 9 

Retrieving 

all records 

and sorting 

by ranking 

S1 196 ± 6 193 ± 7 192 ± 5 

S2 229 ± 13 232 ± 18 220 ± 10 

S3 174 ± 12 172 ± 8 174 ± 7 

Retrieving 

the first 

record 

S1 72 ± 9 68 ± 8 69 ± 8 

S2 78 ± 4 91 ± 46 87 ± 33 

S3 52 ± 7 51 ± 8 55 ± 10 

Deleting 

data 

S1 112 ± 55 80 ± 9 87 ± 34 

S2 125 ± 72 160 ± 74 136 ± 75 

S3 71 ± 49 112 ± 51 77 ± 53 

Total time S1 2,173 ± 148 2,124 ± 115 2,104 ± 49 

S2 2,422 ± 131 2,518 ± 171 2,379 ± 102 

S3 2,039 ± 90 2,048 ± 73 2,008 ± 75 

At the same time, there were no cases in which the 

custom dispatcher was the slowest on devices S1 and S2. 

However, on device S3, there were two tasks in which it 

recorded the longest execution time among the compared 

dispatchers. 

5. Discussion 

The experimental study was successfully conducted in its 

entirety, and all test scenarios were implemented as 

planned. A complete set of performance data was 
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collected across three different mobile devices, allowing 

for comprehensive analysis. 

In the first research scenario, for the smallest tested 

dataset of 10 elements, the average values were compa-

rable between the LazyColumn and Column implemen-

tations, regardless of the startup mode. Statistical tests re-

vealed no notable differences, except for memory usage 

in the cold startup mode on devices S2 and S3, where La-

zyColumn used less memory on S2, and Column was 

more efficient on S3. These experimental results do not 

allow for a definitive conclusion about which implemen-

tation is more efficient for small lists. As the number of 

list elements increased, a significant decline in perfor-

mance was observed for the Column implementation in 

terms of both startup time and memory usage, while the 

performance for LazyColumn remained considerably sta-

ble. This observation supports the assumption that La-

zyColumn composes and lays out only the currently 

needed elements, in contrast to Column, which composes 

and lays out all components regardless of their visibility. 

According to the statistical test results, the differences in 

mean values between these implementations for larger 

datasets were statistically significant, demonstrating that 

LazyColumn is a more efficient and scalable solution 

than Column. Based on these findings, hypothesis H1, 

that the dedicated LazyColumn component is more effi-

cient than the Column component regardless of data size, 

was rejected. Although significant differences were ob-

served for larger datasets, both implementations demon-

strated similar performance for small datasets containing 

10 elements. Therefore, the use of LazyColumn is rec-

ommended for large or unknown dataset sizes, while for 

small datasets, both implementations exhibit similar per-

formance. 

In the second research scenario, the dedicated anima-

tion implementations achieved shorter average frame 

rendering times in all tested cases, except for animation 

A1 on device S1, where the difference between imple-

mentations was not statistically significant. Similarly, no 

statistically significant difference in favor of the dedi-

cated implementation was found for animation A1 on de-

vice S2. In all other combinations of devices and anima-

tion types, the average frame rendering times were sig-

nificantly lower for the dedicated implementations. Ad-

ditionally, in half of the measured frames, rendering was 

faster with dedicated animations than with custom ones. 

Based on these observations, hypothesis H2, stating that 

dedicated animations are more efficient than non-special-

ized animations, was accepted, as dedicated animations 

proved to be equally or more efficient than their custom 

counterparts. Given their higher performance and availa-

bility as built-in, tested components, it is recommended 

to use dedicated animations. This not only enhances per-

formance but also reduces developer workload and min-

imizes the risk of introducing bugs into the code. 

In the third research scenario, it was observed that the 

configuration using a custom dispatcher with the highest 

thread priority achieved the shortest average total task ex-

ecution time across all tested devices. However, statisti-

cal tests did not indicate any significant differences in the 

average execution times among the analyzed dispatchers. 

The absence of a clear performance advantage for the 

custom dispatcher may be attributed to the characteristics 

of the tested application, which did not perform a high 

number of concurrent operations across multiple threads. 

During task execution, the main thread remained idle, 

awaiting the results from the dispatcher. Furthermore, the 

application operated in the foreground, which led the op-

erating system to schedule approximately 95% of CPU 

time [20] to this application, regardless of thread priority. 

As a result, the dispatcher did not need to compete with 

other threads for CPU time, which limited the potential 

performance benefit of using a custom dispatcher with 

highest thread priority. Given the lack of evidence sup-

porting a performance advantage of the dedicated IO dis-

patcher, hypothesis H3, stating that a dedicated dis-

patcher is more efficient than other dispatchers, must be 

rejected. 

6. Conclusions 

In summary, the results obtained across all research sce-

narios indicate that dedicated components in Jetpack 

Compose do not always provide better performance than 

their less specialized counterparts. While dedicated com-

ponents were more performant in the majority of perfor-

mance tests, there were cases in which non-specialized 

components delivered comparable or even better results. 

Consequently, the research thesis stating that specialized 

components in Jetpack Compose offer better perfor-

mance compared to more general purpose, non-special-

ized components must be partially rejected. 

Nevertheless, the use of specialized components is 

recommended, particularly in applications where perfor-

mance is not a critical concern and the characteristics of 

the data, such as size, are unknown. Dedicated compo-

nents demonstrated greater stability and robustness with 

respect to varying data inputs, and in some scenarios, sig-

nificant performance advantages were observed. In con-

trast, the performance gains achieved through custom im-

plementations were not consistently observed across all 

devices and did not differ significantly from those 

achieved using dedicated components. 

Further research should consider expanding the ex-

perimental scope to include scenarios involving lists with 

image containing elements, the use of keys versus key-

less elements, and interactive operations such as scroll-

ing, item insertion, deletion, and sorting. In the context 

of animations, it would be valuable to explore additional 

animation types, evaluate whether varying frame rates 

impact component performance, and measure both the 

number of frames that exceeded their assigned rendering 

time and the extent of those overruns, as these factors di-

rectly influence animation smoothness. For dispatchers, 

testing under higher concurrency conditions involving 

multiple threads and parallel tasks would help assess 

whether increased thread priority affects performance un-

der heavier workloads. Such investigations would con-

tribute to a more comprehensive understanding of the be-

havior of Jetpack Compose components in real world 

mobile application use cases. 
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