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Abstract 

Analysis of three-dimensional motion trajectories plays an important role in medicine, sports, robotics, and the entertain-
ment industry. This research aims to compare the performance of the following six trajectory analysis algorithms: Euclid-
ean Distance, Mean Squared Error, Dynamic Time Warping, Fréchet Distance, Fuzzy C-Means, and Fuzzy Similarity in 
terms of scalability, accuracy, computational efficiency, and robustness to speed variations. The research was conducted 
on the 3DTennisDS dataset containing tennis stroke trajectories recorded with the Vicon motion capture system. Results 
showed that fuzzy methods offer the best combination of accuracy (Fuzzy Similarity: 0.92, FCM: 0.89) and computational 
efficiency while maintaining high resistance to dynamic movements. In conclusion, fuzzy algorithms provide the most 
balanced solution for trajectory comparison in practical applications. 
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Streszczenie 

Analiza trójwymiarowych trajektorii ruchu odgrywa kluczową rolę w medycynie, sporcie, robotyce oraz branży rozryw-
kowej. Celem niniejszego badania jest porównanie wydajności sześciu algorytmów analizy trajektorii: odległości eukli-
desowej, średniego błędu kwadratowego (MSE), dynamicznego dopasowania czasowego (DTW), odległości Frécheta, a 
także metod Fuzzy C-Means i Fuzzy Similarity pod względem skalowalności, dokładności, efektywności obliczeniowej 
oraz odporności na zmiany prędkości. Eksperyment przeprowadzono na zbiorze 3DTennisDS, obejmującym trajektorie 
uderzeń tenisowych zarejestrowane systemem motion capture firmy Vicon. Wyniki wykazały, że metody rozmyte za-
pewniają najlepsze połączenie wysokiej dokładności (Fuzzy Similarity: 0,92; FCM: 0,89) i niskich kosztów obliczenio-
wych, zachowując jednocześnie dużą odporność na dynamiczne ruchy. Podsumowując, algorytmy rozmyte stanowią naj-
bardziej zrównoważone rozwiązanie do porównywania trajektorii w praktycznych zastosowaniach. 
Słowa kluczowe: algorytmy porównywania trajektorii; przechwytywanie ruchu; ruch 3d; tenis 
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1. Introduction 

The analysis of three-dimensional motion trajectories 
plays an important role in medicine, supporting the diag-
nosis of movement disorders, rehabilitation, and surgical 
techniques [1, 2]. In sports, it enables the improvement 
of athletes' techniques [3], and in robotics and engineer-
ing, it assists in designing control systems for robots and 
exoskeletons [4, 5]. Motion capture technology in the en-
tertainment industry allows for acquiring data further uti-
lized for creation of realistic characters and virtual worlds 
[6, 7]. Accurate comparison of motion trajectories en-
hances the efficiency and precision of systems, especially 
in the context of human-machine interaction, workplace 
safety, and crowd behavior analysis [8, 9]. The increasing 
importance of these applications necessitates the devel-
opment and comparison of methods for effective analysis 
of three-dimensional motion trajectories.  

Consequently, this topic was chosen out of curiosity 
about how different methods deal with data uncertainty, 
measurement noise or varying motion speeds. Compar-
ing different comparison methods will help identify the 
most effective algorithms for specific applications, which 
can significantly impact practices in medicine, sports, ro-
botics and occupational safety.  

The aim of this study is to compare selected algorith-
mic methods used for the analysis and comparison of 
three-dimensional motion trajectories. The study is con-
ducted utilizing trajectories obtained from recordings us-
ing an optical motion capture system. 

We will focus on three groups of methods. The first 
group consists of methods based on distance and similar-
ity measures, Euclidean distance method and the mean 
squared error method. The second group includes meth-
ods for finding similar elements in trajectories, the Dy-
namic Time Warping method and the Fréchet distance 
method. The third group comprises methods based on 
fuzzy measurement techniques, the C-means method, and 
fuzzy similarity measures. Against this methodological 
backdrop, the study addresses four research questions: 
RQ1: Does the length of the trajectory affect the perfor-

mance of algorithms?  

RQ2: Which of the algorithms provides the most accurate 

trajectory alignment? 

RQ3: Which algorithm operates the fastest in terms of 

computation? 

RQ4: Which algorithm best aligns trajectories with vari-

able motion speeds? 
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2. Related Work 

2.1. Motion-Capture Hardware and Data Formats 

Progressions in motion capture technology and sophisti-
cated equipment have maximized the collection and pro-
cessing of motion data. For example, Vicon systems sup-
port accurate documentation of movement with the use 
of markers and high-definition cameras [10, 11], storing 
data in the universal C3D format [12]. Analysis is facili-
tated by open-source tools and libraries like Kinetics 
Toolkit [13] and Biomechanical ToolKit [14], which sup-
port processing and visualization in Python and 
MATLAB.  

Researchers often develop custom code to assist in 
studies, for example gait analysis [11] or motion segmen-
tation during ergometer exercises [3]. Databases like the 
KIT Whole-Body Human Motion Database [4] offer 
standardized motion records for research purposes. 

2.2. Distance- and Similarity-Based Metrics 

Beginning with metrics based on distance and similarity: 
a fundamental way uses distance measures like the Eu-
clidean distance, which compares corresponding points 
of two trajectories at each time frame, measuring posi-
tional differences [15, 16]. It is effective for synchronized 
trajectories but limited while dealing with variable 
speeds or temporal shifts. 

Another method is the Mean Squared Error (MSE), 
which calculates the average squared difference between 
trajectory points. It allows for a global assessment of sim-
ilarity [17, 18], although it is sensitive to outliers and 
noise, potentially affecting accuracy. 

2.3. Temporal Alignment Techniques 

While comparing sequences of different lengths or rates 
of motion, Dynamic Time Warping (DTW) with Euclid-
ean distance as the underlying metric becomes handy. 
DTW flexibly synchronizes time sequences, minimizing 
differences even with temporal shifts. It has applications 
in gait recognition using data from marker less systems 
[19] and in analysing sign language trajectories, where an 
optimized version, GLR-DTW, increased accuracy [20]. 

The Fréchet distance, which considers the shape of 
the trajectory and the order of points, is useful in analys-
ing complex movements [18, 21]. In studies of temporo-
mandibular joint mobility, it enabled the assessment of 
differences between trajectories of normal condyles and 
those replaced with prostheses [18]. 

2.4. Fuzzy Measurement and Clustering Methods 

Clustering methods such as Fuzzy C-Means (FCM) [22] 
place trajectories into clusters with membership degrees, 
a property which is useful for cases where data is uncer-
tain or clusters are overlapping [23, 24]. For the analysis 
of crowd movement, this algorithm allowed the more 
precise modelling and prediction of the movement pat-
terns of pedestrians [23]. 

Fuzzy similarity measures are applied to data affected 
by noise, flexibly aligning trajectories and reducing the 
impact of discontinuities. In analysing vehicle behaviour, 

they improved trajectory precision by modelling uncer-
tainty [25], while in air signature verification systems, 
they enabled more accurate comparison of signature tra-
jectories [26]. 

3. Methodology 

3.1. Algorithms Under Comparison 

To address the research questions, we will apply and 
compare six algorithms across various experimental con-
ditions. The methods include: 

 
Euclidean Distance (eq. 1) - Direct point-to-point com-
parison [27] 

𝑑(𝑝, 𝑞) = √∑  𝑛
𝑖=1 (𝑞𝑖 − 𝑝𝑖)2 (1) 

Mean Squared Error (eq. 2) - Average squared difference 
between trajectory points [28] 

MSE = 1𝑛 ∑(𝑌𝑖 − 𝑌𝑖̂)2𝑛
𝑖=1  (2) 

Dynamic Time Warping (eq. 3) - Flexible temporal align-
ment of sequences [19] 

𝐷𝑇𝑊(𝑃, 𝑄) = min𝑤∈𝑊 { ∑ 𝑑(𝑝𝑖 , 𝑞𝑗)(𝑖,𝑗)∈𝑤 } (3) 

Fréchet Distance (eq. 4) - Shape-based comparison con-
sidering point order [21] 𝛿𝐹(𝑓, 𝑔) = inf𝛼,𝛽 max𝑡∈[0,1]|𝑓(𝛼(𝑡)) − 𝑔(𝛽(𝑡)) | (4) 

Fuzzy C-Means (eq. 5) - Soft clustering with variable 
membership [29] 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗𝑚|𝑥𝑖 − 𝑐𝑗|2𝐶
𝑗=1

𝑁
𝑖=1  (5) 

Fuzzy Similarity (eq. 6) - Flexible alignment with noise 
tolerance [30] 𝑆(𝐴, 𝐵) = ∑  𝑥∈𝑋 min(μ𝐴(𝑥), μ𝐵(𝑥))∑  𝑥∈𝑋 max(μ𝐴(𝑥), μ𝐵(𝑥)) (6) 

3.2. Benchmark Dataset 

All algorithms will be tested on the 3DTennisDS [31] da-
taset, a motion capture collection of tennis strokes per-
formed by tennis players at the Lublin University of 
Technology in Poland. This dataset contains recordings 
of various tennis strokes (forehand, backhand, volleys) 
performed with and without ball, captured using the Vi-
con motion capture system.  

The primary data files in the dataset are C3D format 
files named tpX_stroketype_sY.c3d, where X represents 
the participant identification and Y indicates the stroke 
number. The dataset includes data from 10 participants 
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for each stroke type, with 10 recording sessions per par-
ticipant. Each participant was prepared according to the 
Plug-in Gait Model with 39 body markers, while tennis 
rackets were fitted with 7 additional markers.  

 

Figure 1: Three-dimensional path of the racket-hand (RH2) marker 
during Participant 1’s forehand stroke. 

 

3.3. Research stand 

The software tools and hardware utilized in this research 
are summarized in Table 1. 

Table 1: Summary of software libraries and hardware used in the 
study 

Category Tools / Hardware  

Language Python 3.11; R (+ ggplot2) 

Tools /  
Libraries 

NumPy; SciPy; fastdtw; scikit-learn; scikit-
fuzzy; EZC3d; BTK; psutil; pandas 

Worksta-
tion 

AMD Ryzen 5 3600 · 16 GB DDR4-3200 · 
NVIDIA GTX 1060 6 GB 

OS Windows 10 Pro 2009 

 
For each algorithm execution, the following data will 

be systematically recorded: raw performance metrics (ex-
ecution time, memory consumption, CPU usage), align-
ment quality metrics (RMSE, correlation, feature match-
ing). 

3.4. Conducting research 

To ensure the reliability and reproducibility of the results, 
all tests were conducted under controlled system condi-
tions. The workstation, as specified in Table 1, had no 
other resource-intensive applications running in the back-
ground during the measurement sessions. Each test sce-
nario was automated using a Python script to ensure con-
sistent execution and data collection. 

3.4.1.  Sensitivity to trajectory length 

We begin by asking how an algorithm’s runtime, 
memory consumption and alignment quality evolve as 

the analyzed motion grows longer. From participant 1’s 
forehand-with-ball recordings we pair consecutive ses-
sions (1 vs 2, 3 vs 4, …, 9 vs 10) and cut every trajectory 
into short (19-frame), medium (38-frame) and long (76-
frame) snippets centered on the impact phase. 

Each pair is fed to every metric; execution time and 
peak RAM are measured with time, while the metric-spe-
cific score (RMSE, DTW cost, Fréchet distance, fuzzy 
similarity, etc.) is stored by comparing short-, medium- 
and long-segment results we can tell whether a method 
scales linearly, quadratically, or otherwise with sequence 
length. 

3.4.2.  Alignment accuracy 

To isolate geometric accuracy, five medium-length 
strokes (38 frames, identical duration and tempo; see 
§3.2) were compared pairwise. Each algorithm supplied 
its native distance ‘d’ (RMSE, DTW cost, Fréchet dis-
tance, 1−1-1− similarity, etc.). Every set of five distances 
was rescaled to a common quality index q ∈ [0,1] such 
that 1 denotes perfect overlap and 0 the poorest match: q = 1 -  d - dmindmax - dmin (7) 

 
where dmin and dmax are the minimum and maximum 

values returned by that metric for the five pairs. Repeat-
ing the procedure with z-scores and with a global min-
max confirmed that the ranking of algorithms is un-
changed, so (7) does not bias the comparison. 

3.4.3.  Computational efficiency 

Accuracy is irrelevant if a method is too slow for real-
time feedback, therefore the third experiment focuses ex-
clusively on computational cost. To ensure measurement 
stability, tests were run on an idle system.  

Re-using all fifteen trajectory pairs (short, medium, 
long) from the first experiment, we execute fast metrics 
100 times and slower ones 5 times, taking medians to 
smooth out performance fluctuations.  

From the raw numbers we derive the time-per-frame, 
a length-normalised figure of merit, and compute scaling 
factors such as “long-runtime divided by short-runtime.”  

Plotting time against memory on log-axes lets us spot 
outliers that are, for instance, twice as slow and five times 
heavier than their peers. 

3.4.4.  Robustness to speed variation 

Finally, to mimic athletes who execute a stroke faster or 
slower than the reference, we synthetically warp each of 
the five medium-length segments from participant 1's 
sessions 1-5. The warping factors applied were 0.5×, 
0.75×, 0.8×, 0.9×, 1.1×, 1.2×, 1.5×, and 2.0×. Every 
warped trajectory is compared back to its original (1.0x 
speed); thus, each metric must align motions whose ge-
ometry is identical but whose tempo differs by up to ±100 
%.  

For every algorithm we chart the alignment error as a 
function of speed factor, calculate the average percentage 
error increase per 10 % speed change, locate the point 
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where error exceeds an RMSE of 10 mm (failure thresh-
old) and compute the variance of errors across all factors 
(consistency). (consistency). 

4. Experimental Evaluation 

4.1. Results 

The experiments evaluated six trajectory-comparison al-
gorithms on four metrics: scalability with trajectory 
length, alignment accuracy, computational efficiency, 
and robustness to speed variation. 

Execution time for Euclidean Distance and MSE 
grew only 1.04 × when trajectory length quadrupled 
(Fig.  2). Dynamic Time Warping increased 4.75 × and 
Fréchet Distance 14.77 ×, whereas Fuzzy Similarity re-
mained length-invariant (1.00 ×) and Fuzzy C-Means 

rose 1.74 ×. 

 
Figure 2: Trajectory-length scaling factor when the sample count is 

quadrupled (log scale; lower is better). 

Regarding alignment accuracy (Fig. 3), Fuzzy Simi-
larity obtained the highest score at 0.92. It was followed 
by FCM with a score of 0.89 (using the Fuzzy Partition 
Coefficient) and DTW at 0.87. The remaining methods 
scored lower: Fréchet distance at 0.76, Euclidean dis-
tance at 0.68, and MSE at 0.65. 

 
Figure 3: Alignment accuracy of the six algorithms (all values 

normalized to the 0 – 1 range). 

In terms of computational efficiency (Fig. 4), the dis-
tance-based methods had the lowest resource consump-
tion, with execution times under 0.15 ms and memory us-
age between 3–6 KB. Fuzzy Similarity’s execution time 
was approximately 0.30 ms with 15–16 KB of memory. 
FCM’s requirements were higher, at 5–8 ms and 55–161 
KB. DTW and Fréchet distance were the most demand-
ing; DTW took 10–45 ms and ≈226 KB of memory, while 
Fréchet’s execution time exceeded 45 ms. 

 
Figure 4: Computational efficiency on short segments (log-scale 

execution time in ms). 

The assessment involved varying motion speeds from 
0.5× to 2.0× (Fig. 5). The fuzzy methods showed the least 
change in error. For Fuzzy Similarity, the error changed 
by +0.22% per 10% speed shift, while for FCM, it de-
creased by –0.02%. Other algorithms were more sensi-
tive: Fréchet distance had the largest error increase 
(+5.16%), followed by DTW (+2.72%). The Euclid-
ean/MSE metrics were unstable, with their error decreas-
ing by 1.37%. 

 
Figure 5: Change in alignment error per $10\%$ speed shift (lower 

bars indicate higher robustness). 

4.2. Discussion 

The modest scaling of Fuzzy Similarity (1.00 ×) and 
FCM (1.74 ×) contrasts with DTW’s quadratic growth 
(4.75 ×) and Fréchet’s even steeper rise (Fig.  6), con-
sistent with earlier reports of DTW’s computational bur-
den [32, 33, 34]. 

 
Figure 6: Time–complexity growth for each algorithm when trajectory 

length increases from short to long segments (log-ms). 

Accuracy of Fuzzy Similarity led with 0.92, closely 
followed by FCM at 0.89, surpassing DTW (0.87). Iza-
kian et al. document similar superiority of fuzzy hybrids 
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over DTW on multiple datasets [29], while DTW’s vul-
nerability to local noise has been noted by Gong et al. 
[32] and Zhao et al. [35]. These findings confirm that 
fuzzy metrics capture subtle shape variation without 
over-fitting. 

Efficiency on distance measures remain the fastest, 
but Fuzzy Similarity’s sub-millisecond runtime and 
FCM’s single-digit-millisecond cost demonstrate that 
fuzzy methods can be lightweight when coupled with 
weighted DTW-based distances [29]. DTW’s 10–45 ms 
runtime and large memory footprint mirror earlier quad-
ratic analyses [33, 34]. 

Robustness of Fuzzy Similarity’s minimal error drift 
(+0.22 %) and FCM’s slight improvement (–0.02 %) un-
der speed change affirm the hypothesis of temporal in-
variance; Fréchet’s +5.16 % rise underscores its geomet-
ric rigidity. Prior studies on continuous DTW variants 
and learned warp distances corroborate fuzzy and 
learned-warp resilience to timing noise [34, 36]. 

 
Figure 7: Speed–tolerance curves: alignment error versus speed factor 

(0.5x–2.0x). The dashed line marks the reference speed. 

5. Conclusions 

The purpose of this study was to evaluate six prominent 
trajectory-comparison algorithms—Euclidean Distance, 
Mean-Squared Error, Dynamic Time Warping, Fréchet 
Distance, Fuzzy C-Means, and Fuzzy Similarity. This 
evaluation was conducted against four key criteria: scala-
bility with respect to trajectory length, alignment accu-
racy, computational efficiency, and robustness to speed 
variations.  

The research successfully achieved this by conduct-
ing experiments on the 3DTennisDS motion-capture da-
taset. Key accomplishments include demonstrating fuzzy 
methods, particularly Fuzzy Similarity (0.92 accuracy, 
almost length-invariant) and Fuzzy C-Means (0.89 accu-
racy, modest runtime increase), offer the most balanced 
overall performance. In contrast, distance-based 
measures, while fastest, were sensitive to temporal dis-
tortions; Dynamic Time Warping provided good accu-
racy but with quadratic time complexity, and Fréchet 
Distance was the slowest and most length-dependent. 

The research addressed four specific questions. Find-
ings indicated that: (RQ1) algorithm performance, partic-
ularly runtime, is affected by trajectory length, with fuzzy 
methods showing more favorable scaling than DTW; 
(RQ2) fuzzy algorithms generally provide more accurate 
trajectory alignment compared to classical distance 

measures; (RQ3) while distance-based metrics are com-
putationally fastest, fuzzy methods offer a strong balance 
of accuracy and efficiency; and (RQ4) elastic methods 
like DTW are more robust to speed variations than rigid 
metrics, with fuzzy methods also showing high robust-
ness. These experimental outcomes provided compre-
hensive answers to the initial research questions 

This study has two main limitations that also suggest 
directions for future work. First, the evaluation used a 
single dataset (3DTennisDS) specific to tennis, which 
limits the generalizability of the findings. Future work 
should test these algorithms on more diverse movements, 
such as gait or industrial tasks, to confirm their effective-
ness. 

Second, the selection of algorithms was based on the 
author's discretion and was not exhaustive. The perfor-
mance ranking is therefore relative to the chosen set. Fu-
ture studies could expand this comparison to include 
other methods, such as those based on deep learning. 
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