JCSI 37 (2025) 405409
JOU NAL Received: 17 June 2025

COMPUTER SCIENCES INSTITUTE Accepted: 6 July 2025

Performance and scalability analysis of monolithic and microservice
architectures in social networks
Viacheslav Chernohor**

@ Department of Computer Science, Kharkiv National University of Radio Electronics, Nauky Ave, 14, 61166 Kharkiv,
Ukraine

Abstract

The article is focused on the research of the efficiency of using monolithic and microservice architectures in web
applications. A comparative analysis of seven architectural configurations is made according to the following metrics:
response time, resource consumption, number of processed requests, and cost of deployment in AWS. Docker, Postman,
Prometheus, and Grafana were used to collect metrics. The results of the experiment allowed us to determine the optimal
architectures for different load levels and formulate recommendations for choosing architectural solutions in modern
systems.

Keywords: microservice architecture; monolith architecture; performance; cloud deployment costs

"Corresponding author

Email address: viacheslav.chernohor@nure.ua (V. Chernohor)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction structure of interaction between components, approaches
to request processing and data storage.
The following architectures were considered in the re-
search:
1. Monolithic architecture [1] - all components are im-
plemented within a single application with a single
database (Figure 1).

In recent years, the choice of software architecture for
web applications has become one of the key issues in in-
formation systems development. Monolithic architecture
has traditionally been used due to its simplicity, fast
development, and convenient centralized management,
but it has significant limitations in terms of scalability
and flexibility. At the same time, microservice architec-
ture is gaining popularity as an approach that allows divi- @
ding a system into independent services, each of which /
can be scaled, updated, and maintained independently. DE
This work aims to conduct an experimental analysis «
of the performance and efficiency of various architectural
approaches, including a monolithic model and several va- Client Service
riants of microservice architecture, based on system load,
resource consumption, and deployment costs.
The research includes an analysis of seven architec-
tures, with subsequent performance testing using Post- Key-value DB

man, Prometheus, and Grafana. The main hypothesis of
the study is that microservices demonstrate higher effi-

L

Figure 1: Monolith architecture.

ciency in medium-load and high-load environments, 2. Microservice architecture [2] - the application is di-
while monolithic architecture is still appropriate for sim- vided into three services; the services share a single
ple and lightly loaded systems. database (Figure 2).
2. Materials and methods I%
2.1. Research object \

User
The research object is a social-type web application that / service Ej
implements the basic functionality of interaction between El
users: authentication, creating and viewing posts, mes- — ‘ ’ o

saging, and receiving system notifications. To implement et Poct

the server side, we developed a set of REST API control- service @
lers divided into logical areas of responsibility. Based on /

a single business logic, seven different architectural con- I%I Keyvalue DB
figurations were implemented, which differ in the

Message and
notification service

Figure 2: Microservice architecture.

405

mailto:viacheslav.chernohor@nure.uak

Journal of Computer Sciences Institute

37 (2025) 405-409

3. Microservices with API Gateway [3] - a basic micro-
service architecture with the additions of API Gate-
way - a service that is a centralized gateway that
routes requests to individual services (Figure 3).

‘\G
/’

User
Servict

©

DB

O

Key—value DB

-

Client

AP Gatewa)\

Post
service

Message and
notification service

Figure 3: Microservice architecture with APl Gateway.

4. Microservices with API Gateway and RabbitMQ [4]
- interaction between services occurs asynchronously
through the RabbitMQ message broker, requests are
transmitted through the Gateway API (Figure 4).

User
service

8- f ~m— o
| —] L
Message Post

broker service

Key-value DE
Meszage and
nofification service

j

Client APl Gateway

Figure 4: Microservice architecture with API Gateway and message
broker.

5. Microservices with the Database-per-Service pattern
[5] - each microservice has its own separate database,
which provides logical and technical data isolation
(Figure 5).

—0

User DB

C

Post DB

w
©
=
&
©

[P

—=
Client

/:Ey_valu e DB

F\\—*—-—»

Message and
notification service

Message and
notification DB

Figure 5: Microservice architecture with split database.

6. Microservices with the Database-per-Service and
API Gateway pattern - each microservice has its own
separate database, with the addition of a centralized

gateway that routes requests to individual services
(Figure 06).

| User DB
User
Service
EI — > |= Post DB
—

Client

/}:Ey_\.ralue DB

API Gateway Post
service

Message and
notification service

Message and
notification DB

Figure 6: Microservice architecture with split database and API
Gateway.

7. Microservices with the Database-per-Service pattern,
API Gateway, and RabbitMQ - an architecture that
combines the API Gateway, asynchronous interaction
through the RabbitMQ broker, and complete database
isolation (Figure 7).

—0

- User DB
User

service
= Post DB

a—irm—

Message Post
broker service

Client

/:(ey value DB

Message and
notification service

Message and
nofification DB

Figure 7: Microservice architecture with split database, API Gateway
and message broker.

2.2. Description of the test method

The research method is experimental and comparative,

involving the implementation of each architecture as an

isolated environment based on Docker containers. The
goal was to evaluate the performance, resource effi-
ciency, and overall economic feasibility of each configu-
ration.

The following metrics were collected for each archi-
tecture:

e Average response time - measured while executing
queries using the Postman [6] tool in performance
testing mode.

e CPU usage - collected automatically from containers
through the cAdvisor [7] agent that integrates with
Prometheus [8], this metric is measured as a percent-
age of the total available computing power of one pro-
cessor core, i.e. it can exceed 100%.

e RAM usage was also collected through Prometheus
and cAdvisor.

406

Journal of Computer Sciences Institute

37 (2025) 405-409

e The number of messages processed in the queue - was
recorded only for architectures using RabbitMQ us-
ing the built-in RabbitMQ monitoring tools.

e Estimated monthly cost of deployment - calculated
manually in the AWS Pricing Calculator [9] based on
the infrastructure parameters selected for each archi-
tecture.

2.3. Conducted research

The experiment was conducted in a controlled environ-

ment by sequentially running each of the seven architec-

tures in Docker [10] containers. For each architectural

configuration, separate containers were run with services,

databases, Redis, a message broker (if applicable), and

additional components (e.g., API Gateway). All

architectures were tested on the same hardware

configurations:

e Processor: AMD Ryzen™ 5 3550H quad-core pro-
cessor (4 cores, 8 threads, 6MB cache, 3.7GHz max.).

e RAM: 16 GB DDR4-2400 SO-DIMM.

e Storage: 512 GB SSD (PCIe® 3.0 NVMe™ M.2).

e Operating system: Pop! OS (based on Linux).

For each architecture, three series of performance
tests were conducted: at low, medium, and high load lev-
els. The load was generated using Postman, which had
pre-created collections of requests that emulated typical
user actions: authorization, viewing posts, creating mes-
sages, and updating a profile. For each load level, a cer-
tain number of requests were executed with the same dis-
tribution by action.

All performance metrics (average response time,
number of requests per second, CPU usage, memory us-
age) were recorded during the testing process. To do this,
we used the stack of Prometheus and cAdvisor, which
automatically polled Docker containers and saved the
collected metrics. Visualization was performed in
Grafana [11], where unified dashboards were set up for
each configuration. For architectures with message bro-
kers, the number of processed messages in the queue was
also tracked using the built-in tools of the RabbitMQ
message broker. Figure 8 shows a diagram of the test
environment for the microservice architecture.

User
,,,,, sevice &
Docker container !

IZI - :
—s :
Postman Post
| sevice
Qpcker container
Grafana \ Iﬁ

Prometheus cAdvirsor
Figure 8: Test environment for microservice architecture.

O

Message and
notification service;

— —= f H
= " » = 1 Messageand |
— — ! nofification DB &
= =/

After each experiment, the cost of cloud deployment
for the corresponding configuration was calculated using
the AWS Pricing Calculator, taking into account EC2 in-
stance types, amount of RAM, number of services, usage
of message brokers, Redis, API Gateway, and other com-
ponents. The configurations were designed to support a
system with two hundred concurrent users.

3. Presentation of results

As a result of the experiment, numerous quantitative
indicators were obtained that allowed comparing the
architectures with each other. Table 1 shows the metrics
collected during the testing of the systems of each system
implementation at low load.

The abbreviations are used in the results:

A1 — Monolithic architecture

A2 — Microservice architecture

A3 — Microservices with API Gateway

A4 — Microservices with API Gateway and Rab-
bitMQ

A5 — Microservices with the Database-per-Service
pattern

A6 —Microservices with API Gateway and Database-
per-Service pattern

A7 — Microservices with the Database-per-Service
pattern, API Gateway, and RabbitMQ

Table 1: Results of testing at low load

Arch. Average CPU Memory Number

type response usage(%) usage of mes.
time(ms) (MiB) (mps)

Al 102 294.705 627.15 -

A2 104 293.316 881.7 -

A3 132 292.682 1089.17 -

A4 159 304.204 1204.57 200

AS 94 287.346 889.34 -

A6 173 299.801 1116.13 -

A7 123 290.824 1229.85 240

Table 2 shows the metrics collected during the testing
of the systems of each system implementation at medium
load.

Table 2: Results of testing at medium load

Arch. Average CPU Memory Number

type response usage(%) usage of mes.
time(ms) (MiB) (mps)

Al 820 292.286 5954 -

A2 758 305.387 147635 -

A3 921 197.383 13782 -

A4 1106 290.267 1177.18 320

A5 726 281.714 908.12 -

A6 1190 246.37 1267.06 -

A7 875 288.282 2473.04 350

Table 3 shows the metrics collected during the testing
of the systems of each system implementation at high
load.

Figure 9 shows a comparison of the average response
time of each architecture implementation when tested
under different loads.

407

Journal of Computer Sciences Institute

37 (2025) 405-409

Table 3: Results of testing at high load

Arch. Average CPU Memory Number
type response usage(%) usage of mes.
time(ms) (MiB) (mps)
Al 2433 257.164 398.13 -
A2 2188 241.8 847.75 -
A3 2735 221.856 953.21 -
A4 2963 225.079 104299 300
AS 2056 213.924 706.26 -
Ab 2986 217.689 942.61 -
A7 2378 273.093 112272 320
Average response time (ms)
5™

Architecture

- Low = Medium EEE High
Figure 9: Average response time(ms).

Figure 10 shows a comparison of the CPU resource
usage of each architecture implementation variant when
tested under different loads.

Average CPU usage (%)

A3 A A5
Architecture

- Low . Medium = High
Figure 10: Average CPU usage.

Figure 11 shows a comparison of the memory usage
of each architecture implementation when tested under
different loads.

Average memory usage (MiB)

2500

H H H

Memory (MiB)

g

AL A2 A3 A4 A5 A A7
Architecture

L = Medium . High
Figure 11: Average memory usage.

Figure 12 shows the number of messages received by
the message broker for the architecture implementation
variants where the message broker is used during testing
under different loads.

Number of messages in the broker (mps)

350

300

4

Messages/sec
g 8

8

o 8

Ad A7
Architecture
m Medium

. Low mmm High

Figure 12: Number of messages in the message broker.

The following components were used to calculate the
estimated monthly cost of deployment:

e An ElastiCache service of the type cache.t3.small
with an average memory usage of 1 GB was used in
the calculations for each system type.

e The EC2 service of the t3.large type was used to
calculate the system with a monolithic architecture,
and the t3a.medium type was used for calculations for
the microservice architecture for each service.

e To calculate the cost of using the API Gateway,
additional EC2 service of the t3a.medium type was
used.

e An RDS service of the db.t3.medium type with 50GB
of memory was used for architectures with a single
database.

e Three RDS services of the db.t3.small type with
20GB of memory were used for architectures with a
split database by a database.

e Amazon RabbitMQ Broker service of the mq.t3.mi-
cro type with 20GB of memory was used was used in
systems where a message broker is required.

Table 1 shows the estimated cost of deploying a
system with a specific architecture per month on AWS.

Table 4: Estimated cost of system deployment per month on AWS

Architecture type Price per
month($/month)
Al 256.48
A2 294.73
A3 333.12
A4 358.28
A5 326.76
A6 365.15
A7 390.31

4. Conclusions

The experimental research compared seven architec-
tural models of a web application based on microservice
and monolithic approaches under three load conditions:
low, medium, and high. The research confirmed the hy-
pothesis that the microservice architecture, especially us-
ing the Database-per-Service design pattern, demon-
strates better performance with increasing load, while the
monolithic model remains efficient in terms of cost and
resource usage at low traffic rates.

According to the results, Microservices with DpS
showed the lowest average response time in all three sce-
narios: 94 ms (low load), 726 ms (medium load), and
2056 ms (high load). This result is caused by the isolation

408

Journal of Computer Sciences Institute

37 (2025) 405-409

of data access, which reduces competition between ser-

vices. At the same time, the monolithic architecture con-

sistently remained the least expensive to deploy (approx-
imately $256/month) and the most economical in terms
of memory usage.

The Gateway and RabbitMQ APIs, despite their ad-
vantages in centralization and asynchronous processing,
significantly increased response times, which was espe-
cially noticeable under high load (up to 2986 ms). This
confirms that such components should be used only in
cases where there are specific requirements, such as se-
curity, integration with external systems, or a distributed
environment with many clients.

Important results of the research:

e It is confirmed that using the Database-per-Service
design pattern significantly improves performance in
high-load systems.

e [t was found that the use of AG significantly increases
the response time, even when data is isolated.

e The results demonstrate that the monolithic architec-
ture is still appropriate for systems with a limited bud-
get and a small number of users.

Possible sources of error are the load emulation, i.e.
user emulation through Postman and simplified configu-
ration during containerization, which do not fully repro-
duce the behavior of a cloud environment with distribu-
ted nodes.

Main conclusions:

1. Microservices using the Database-per-Service design
pattern are the best option for medium to high load
performance.

2. The monolith remains the best solution for small pro-
jects or MVPs due to low infrastructure costs.

3. Adding API Gateway and message brokers is only ad-
visable if there are clear non-functional requirements,
as it reduces performance and increases cost.

Areas for further research include testing the scaling
of services separately, studying the impact of the choice
of DBMS when using the Database-per-Service design
pattern, and extending the experiment to deploy test sys-
tems in cloud environments and scenarios with real users.

References

[11 G. Blinowski, A. Ojdowska, A. Przybytek, Monolithic vs.
microservice architecture: A performance and scalability
evaluation, IEEE Access 10 (2022) 20357-20374,

https://doi.org/10.1109/ACCESS.2022.3152803.

1. Shabani, E. Méziu, B. Berisha, T. Biba, Design of
modern distributed systems based on microservices
architecture, International Journal of Advanced Computer
Science and Applications 12(2) (2021) 153-159,
http://dx.doi.org/10.14569/1JACSA.2021.0120220.

D. Oktaria, J. A. M. Ginting, M. Abdurohman,
R. Yasirandi, Design of API Gateway as middleware on
Platform as a Service, Indonesia Journal on Computing
(Indo-JC) 6(3) (2021) 47-62.
https://doi.org/10.34818/INDOJC.2021.6.3.597.

A. Catovi¢, N. Buzadija, S. Lemes, Microservice
development using RabbitMQ message broker, Science,
Engineering and Technology 2(1) (2022) 30-37,
https://doi.org/10.54327/set2022/v2.11.19.

A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano,
A.Urso, The database-is-the-service pattern for
microservice architectures, Information Technology in
Bio-and Medical Informatics: 7th International
Conference, ITBAM 2016, Porto, Portugal, September 5-
8, 2016, Proceedings 7 (2016) 223-233, Springer
International Publishing, https://doi.org/10.1007/978-3-
319-43949-5 18.

Postman documentation,
https://learning.postman.com/docs, [17.06.2025]

(6]

cAdvisor documentation,
https://github.com/google/cadvisor, [17.06.2025]

Prometheus documentation,
https://prometheus.io/docs, [17.06.2025]

AWS Pricing Calculator,
https://calculator.aws, [17.06.2025]

[10] Docker documentation,

https://docs.docker.com, [17.06.2025]

Grafana documentation,
https://grafana.com/docs, [17.06.2025]

(11]

409

https://doi.org/10.1109/ACCESS.2022.3152803
http://dx.doi.org/10.14569/IJACSA.2021.0120220
https://doi.org/10.34818/INDOJC.2021.6.3.597
https://doi.org/10.54327/set2022/v2.i1.19
https://doi.org/10.1007/978-3-319-43949-5_18
https://doi.org/10.1007/978-3-319-43949-5_18
https://learning.postman.com/docs/
https://github.com/google/cadvisor
https://prometheus.io/docs
https://calculator.aws/
https://docs.docker.com/
https://grafana.com/docs

