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Abstract 

The paper presents a comparative analysis of the performance of machine learning models and one filter method used for 

semantic segmentation of the coronary vessels based on the source coronary angiographic image. Seven machine learning 

models were tested: UNet3+, AngioNet, Reg-SA-UNet++, EfficientUNet++ B5, SE-RegUNet 4GF,  

SE-RegUNet 16GF, FR-UNet and one filter method, which was implemented as part of the paper. Despite the impossi-

bility of determining the exact hierarchy of model performance, based on the results of statistical tests, the model that 

presented the best results with accuracy of 97,7% was distinguished – FR-UNet and the model that showed the lowest 

quality – UNet3+. 
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Streszczenie 

W pracy zaprezentowano analizę porównawczą jakości działania modeli uczenia maszynowego oraz jednej metody fil-
trowej służących do segmentacji semantycznej struktury ukrwienia wieńcowego na podstawie źródłowego obrazu koro-
narograficznego. Badaniu poddano siedem modeli uczenia maszynowego: UNet3+, AngioNet, Reg-SA-UNet++, Effi-

cientUNet++ B5, SE-RegUNet 4GF, SE-RegUNet 16GF, FR-UNet oraz jedną metodę filtrową, która została zaimple-
mentowana w ramach pracy. Pomimo braku możliwości wyznaczenia dokładnej hierarchii działania modeli, na podstawie 
wyników testów statystycznych, został wyodrębniony model, który prezentował najlepsze wyniki i osiągnął dokładność 
97,7% – FR-UNet oraz model, który wykazał najniższą jakość – UNet3+. 
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1. Introduction 

Coronary artery disease is one of the leading causes of 

death worldwide. According to statistics from the World 

Health Organization (WHO) in 2021 it accounted for 

13% of all deaths worldwide with the highest risk group 

being citizens of high- and middle-income countries [1]. 

The reduction of the lumen of the arteries or their com-

plete occlusion impairs the blood supply to the heart, and 

consequently an insufficient supply of oxygen. Untreated 

coronary artery disease leads to coronary insufficiency, 

angina pectoris and myocardial infarction and most often 

ends in the death of the patient. 

The growing popularity and development of machine 

learning and artificial intelligence methods have resulted 

in great interest among scientists in research on the crea-

tion of diagnostic tools that allow for the detection of 

anomalies in the geometric tree structure of coronary ves-

sels, even at the early stage of development of coronary 

diseases. 

Historically, filter methods using the Hessian filter 

[2], Hough transform and directed filter [3], local energy 

function [4], ROI area of interest with mathematical the-

ory of flux flow [5] and graph theory [6] are known to 

solve this problem. 

In the context of machine learning, the U-Net archi-

tecture [7] is widely used in the process of semantic seg-

mentation of coronary vessels. The UNet 3+ [8] architec-

ture introduced a new way of combining features from 

different levels of the network and deep supervision was 

applied. As part of the research on the UNet++ architec-

ture [9], it was shown that the use of shortcut paths in the 

network reduced the loss of semantic information be-

tween the feature maps of the encoder and decoder struc-

ture. The FR-UNet network [10] is characterized by pre-

serving full resolution information in the process of sig-

nal propagation through the network. The analysis also 

included the possibility of using residual blocks [11], 

used to construct the Reg-SA-UNet++ [12] or SE-

RegUNet [13] networks. The DeepLabV3+ architecture 

was also used for the task of semantic segmentation of 

coronary vessels, on the basis of which the AngioNet net-

work [14] was built. Many authors have drawn attention 

to the significant improvement in prediction efficiency 

through the use of image preprocessing stages, which 

highlighted features important from the point of view of 

semantic segmentation [5, 13, 14]. 
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The aim of this work is to conduct a comparative 

analysis of methods for semantic segmentation of coro-

nary vessels based on source coronary angiography. 

Seven machine learning methods and one filter method, 

which was implemented in the research based on the ar-

ticle [5] were analyzed. All methods were evaluated on 

one set of coronary angiography image pairs and their la-

bels. The results were subjected to statistical tests to de-

termine the hierarchy of the performance quality of mod-

els and methods. 

2. Research material 

The evaluation dataset used to conduct the experiment is 

the publicly available DCA1 (Database X-ray Coronary 

Angiograms) [15]. The DCA1 database consists of 134 

coronary angiographic images with ground truths that 

were manually created by domain experts in cardiology. 

Each pair of grayscale images has dimensions of 

300×300 pixels and is saved in the PGM (Portable Gray 
Map) format. 

  

(a) (b) 

Figure 1: Single images pair from DCA1. Source coronary angi-

ography (a) and its corresponding segmentation mask (b). 

DCA1 is a set dedicated to the study of the perfor-

mance of semantic segmentation methods for coronary 

vessels and in the context of the study covered by this 

work it will constitute one coherent set, providing com-

parative objectivity for selected machine learning models 

and algorithms. Figure 1 shows an example pair of im-

ages selected from the DCA1 dataset [15]. 

3. Selected models 

The research experiment carried out for the purposes of 

this work will be performed using the following machine 

learning models and the implementation of segmentation 

method based on the detection of the area of interest 

(ROI) and the flux-flow measure [5]: 

• AngioNet (M1) [14], 

• Modified UNet3+ architecture (M2) [16], 

• EfficientUNet++ B5 (M3) [17], 

• Reg-SA-UNet++ (M4) [12], 

• FR-UNet (M5) [10], 

• SE-RegUNet 16GF (M6) [13], 

• SE-RegUNet 4GF (M7) [13], 

• Own implementation of the filter method (M8) [5]. 

3.1. AngioNet 

The AngioNet network consists of two smaller neural 

networks, the first of which is responsible for predicting 

the best possible kernel in the convolution operation, so 

as to perform the initial processing of the digital image as 

efficiently as possible, while the second is responsible for 

performing the actual semantic segmentation process. 

The image is processed sequentially. 

The coronary angiography processing neural network 

(APN) receives as input a 512×512 pixel grayscale coro-
nary angiography, subjected to the standardization pro-

cess, while the result of the APN inference is a single-

channel digital image. 

The next stage is the concatenation of the single-

channel digital image and the original X-ray image, 

thanks to which an image containing three channels is 

placed at the input to the DeepLabV3+ basic segmenta-

tion model with the Xception skeleton and the actual seg-

mentation mask prediction process is performed. 

3.2. Modified UNet3+ architecture 

Compared to the reference U-Net 3+ architecture, the au-

thors have introduced a modification of the encoder ar-

chitecture, which is based on residual and inception mod-

ules. The blocks are designed to capture multidimen-

sional features to improve segmentation accuracy. The 

method uses full-dimensional deep supervision. Weights 

of the neural network are optimized in this solution by 

comparing the differences between the ground truth and 

the intermediate network results. Finally, Otsu's thresh-

olding algorithm was used to transform the probability 

map into a binary segmentation mask. 

3.3. EfficientUNet++ B5 

The network consists of encoder layers, which extract 

features from a digital image, and then the decoder, based 

on the extracted features, recreates a digital image of the 

same size as the image that is the input signal to the pro-

cess. The improvement introduced was the concept of us-

ing an EfficientNet-B5 encoder layer and an Efficien-

tUNet++ decoder in the basic U-Net++ architecture. The 

modifications introduced consist in replacing the convo-

lution layer with a 3 × 3 kernel size with residual blocks 

using deep convolutions and applying a channel and spa-

tial attention mechanism to feature maps using concur-

rent scSE blocks. The rest of the U-Net++ architecture 

remains unchanged in this solution. 

3.4. Reg-SA-UNet++ 

The Reg-SA-UNet++ model is a modified UNet++ archi-

tecture and its main improvement is the enhancement of 

feature extraction. The changes introduced in the network 

encoder layer consisted in using the RegNet block devel-

oped as part of the research work of the Facebook AI Re-

search group, as the basic encoder block, which reduces 

the number of neural network parameters and increases 

the possibilities of feature extraction. 
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3.5. FR-UNet 

The FR-UNet network is a modification of the basic 

UNet++ architecture. The deep connections present in 

each phase of the network were removed, and in their 

place a multiresolution interactive convolution mecha-

nism was applied. The shallow phase provides more se-

mantic information, while the deep phases complement 

high-level context information and increase the local re-

ceptive fields of the feature map. In order to reduce the 

parameters of the neural network, feature maps were 

combined only and exclusively between neighboring 

phases, which increased the diversity and efficiency of 

feature aggregation. The parallel process of aggregating 

feature maps from congruent nodes allows the network to 

learn hierarchical representations. In contrast to classical 

solutions based on the encoder-decoder architecture, the 

first phase of the network continuously integrates high-

level context information while maintaining the original 

resolution. 

3.6. SE-RegUNet 

The concept of the SE-RegUNet segmentation model 

uses a pre-processing step in the process to achieve better 

prediction results of the deep convolutional network by 

normalizing the contrast and enhancing the edge sharp-

ness of the coronary angiography image at the model in-

put. The pre-processing step combines two well-estab-

lished digital image processing methods: USM and 

CLAHE. The basic concept of the new convolutional net-

work architecture is to replace the encoder layer with the 

RegNet structure developed by the Facebook AI Re-

search group. The SE-RegUNet network is therefore a fu-

sion of the U-Net and RegNet convolutional neural net-

works. 

3.7. Filter method 

The proposed classical method of coronary vessel seg-

mentation consists of several stages. The first stage in the 

process is the pre-processing of the coronary angio-

graphic image in order to highlight its expected features 

using the USM filter. After the pre-processing stage, the 

process is divided into two independent paths - ROI de-

tection and application of the flux flow in digital image 

processing, combined with Otsu thresholding. The result 

of this connection is a binary flux flow mask. In the de-

cision step, in which the ROI detection and Otsu thresh-

olding stages are combined, a decision is made to match 

the appropriate semantic category. In the last step of al-

gorithm processing, mask cleaning procedures were per-

formed. 

4. Experiment 

This chapter presents the experimental procedures con-

ducted to investigate the proposed hypotheses. It outlines 

the design, methodology, and tools used in the experi-

ments, as well as the conditions under which they were 

performed. The goal is to ensure transparency and repro-

ducibility of the results discussed in subsequent sections. 

 

4.1. Transformation of two-dimensional signals 

All considered machine learning models and algorithms 

process digital images in the size of 512×512 pixels. Due 
to the fact that the original data from the DCA1 set are 

digital images with the size of 300×300 pixels, these two-

dimensional signals should be transformed without sig-

nificant loss of information. For this purpose, the 

OpenCV library [18] was used. 

In order to perform further studies, it is necessary to 

confirm that there is no significant difference between the 

original two-dimensional signals and the transformed 

signals, which will confirm the validity of further studies. 

For this purpose, the average value of the Structural Sim-

ilarity Index Measure (SSIM) [19] was calculated for all 

pairs of coronary angiographic images and their labels in 

the original and transformed versions, which is used to 

measure the similarity of pairs of digital images. 

The SSIM can take values from the range [−1,1], 
where the value 1 indicates perfect similarity, 0 – no sim-

ilarity, and −1 corresponds to perfect anti-correlation. 

The procedure for calculating the metric value was called 

for two sets – coronary angiography and their labels, 

where 𝑆𝑆𝐼𝑀𝐼 = 0.9985 for coronary angiography pairs 

and 𝑆𝑆𝐼𝑀𝐿 = 0.8661 for segmentation mask pairs were 

obtained. These results indicate a high similarity of the 

transformed and source signals. 

4.2. Method 

The selected models and algorithms will be evaluated on 

the DCA1 dataset. For this purpose, inference will be per-

formed by each of the models and algorithms, the result 

of which will be segmentation masks. Then, based on the 

reference and inferred masks, the values of the evaluation 

metrics will be calculated. The evaluation criteria will be 

the following metrics: 

• Accuracy (ACC) 

• Precision (PRE) 

• Sensitivity (SENS) 

• Specificity (SPEC) 

• Intersection over Union (IoU) 

• Dice Score (DSC, F1) 

The study will be conducted based on trained model 

weights. For the FR-UNet model, the trained weights 

were taken from the official model repository on the 

GitHub platform [20], while for the AngioNet, UNet3+, 

EfficientUNet++ B5, Reg-SA-UNet++ and  

SE-RegUNet (4/16GF) models were taken from the re-

pository on the Hugging Face platform [21], which was 

created as part of the research [13]. 

The raw results will be subjected to statistical tests 

that will allow for the construction of a hierarchy of 

model quality. Accordingly, the Friedman rank test [22] 

will be performed for each considered evaluation metric 

to determine whether there is a significant statistical dif-

ference between the models, and the Nemenyi post-hoc 

tests [23], which are designed to find specific groups of 

data that differ from each other. 
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5. Results 

This section presents the outcomes of the conducted ex-

periments and analyses aimed at evaluating the perfor-

mance of the considered methods. The results enable a 

comparison of the approaches based on selected evalua-

tion metrics and highlight statistically significant differ-

ences between models.  

Table 1 – Table 6 present descriptive statistics for 

each metric considered, which include the mean, stand-

ard deviation, median, first and third quartiles. Each sam-

ple size was 134 observations for a single model The 

models are described in the tables by aliases included in 

Section 3 of this work. 

Table 1 Descriptive statistics for ACC metric 

Model Mean SD Md Q1 Q3 

M1 0.948 0.023 0.955 0.943 0.963 

M2 0.955 0.010 0.957 0.949 0.964 

M3 0.942 0.014 0.943 0.933 0.951 

M4 0.943 0.022 0.950 0.933 0.958 

M5 0.977 0.006 0.978 0.973 0.982 

M6 0.958 0.010 0.959 0.953 0.966 

M7 0.949 0.029 0.959 0.937 0.968 

M8 0.880 0.055 0.880 0.840 0.924 

Table 2 Descriptive statistics for PRE metric 

Mo-

del 

Mean SD Md Q1 Q3 

M1 0.684 0.152 0.714 0.573 0.800 

M2 0.784 0.117 0.795 0.728 0.876 

M3 0.422 0.109 0.433 0.355 0.484 

M4 0.787 0.125 0.807 0.736 0.880 

M5 0.797 0.068 0.798 0.760 0.843 

M6 0.767 0.103 0.760 0.699 0.858 

M7 0.764 0.146 0.792 0.672 0.876 

M8 0.437 0.226 0.453 0.260 0.609 

Table 3 Descriptive statistics for SENS metric 

Mo-

del 

Mean SD Md Q1 Q3 

M1 0.546 0.126 0.564 0.467 0.628 

M2 0.562 0.085 0.568 0.524 0.608 

M3 0.189 0.083 0.170 0.134 0.247 

M4 0.495 0.129 0.507 0.411 0.573 

M5 0.777 0.082 0.795 0.738 0.838 

M6 0.592 0.090 0.590 0.548 0.640 

M7 0.560 0.164 0.585 0.457 0.675 

M8 0.265 0.214 0.198 0.091 0.403 

Table 4 Descriptive statistics for SPEC metric 

Mo-

del 

Mean SD Md Q1 Q3 

M1 0.981 0.011 0.984 0.976 0.989 

M2 0.987 0.009 0.989 0.983 0.993 

M3 0.986 0.005 0.986 0.982 0.990 

M4 0.987 0.009 0.989 0.985 0.993 

M5 0.989 0.005 0.989 0.986 0.992 

M6 0.986 0.009 0.986 0.982 0.992 

M7 0.986 0.011 0.989 0.981 0.993 

M8 0.966 0.016 0.967 0.958 0.978 

Table 5 Descriptive statistics for IoU metric 

Mo-

del 

Mean SD Md Q1 Q3 

M1 0.427 0.108 0.433 0.344 0.510 

M2 0.484 0.084 0.492 0.442 0.540 

M3 0.147 0.058 0.145 0.101 0.192 

M4 0.438 0.117 0.459 0.360 0.526 

M5 0.644 0.060 0.651 0.611 0.683 

M6 0.496 0.071 0.496 0.448 0.550 

M7 0.470 0.137 0.497 0.364 0.585 

M8 0.201 0.156 0.143 0.075 0.301 

Table 6 Descriptive statistics for DSC metric 

Mo-

del 

Mean SD Md Q1 Q3 

M1 0.591 0.109 0.605 0.511 0.675 

M2 0.648 0.080 0.660 0.613 0.701 

M3 0.252 0.089 0.253 0.183 0.322 

M4 0.600 0.121 0.629 0.530 0.690 

M5 0.782 0.046 0.788 0.758 0.812 

M6 0.660 0.066 0.664 0.619 0.710 

M7 0.627 0.137 0.664 0.534 0.738 

M8 0.308 0.205 0.250 0.140 0.462 

The analysis began with the Friedman rank test ap-

plied to each of the considered metrics, following the 

stated hypotheses: 𝐻0 – the performance of the models with respect to 

the metric Μ is the same 𝐻𝐴 – the performance of the models with respect to 

the metric 𝛭 differs significantly 

We assume the level of statistical significance of  𝛼 = 0.05. Table 7 presents the test results for each se-

lected metric. 

Table 7: Friedman rank test for all selected metrics 

Evaluation 

metric (𝚳) 𝝌𝟐(df=7)  

statistic 

𝒑-value 

ACC 547.3856 𝑝 < 0.001 

PRE 513.2562 𝑝 < 0.001 

SENS 616.5348 𝑝 < 0.001 

SPEC 320.0622 𝑝 < 0.001 

IoU 686.4677 𝑝 < 0.001 

DSC 686.4677 𝑝 < 0.001 

The Friedman rank test revealed statistically signifi-

cant differences between the evaluated models. This in-

dicates that the models do not perform equally across the 

considered metrics. 

Since the test for each metric showed a significant sta-

tistical difference, Nemenyi post-hoc tests were per-

formed for each metric to determine which groups of data 

differ significantly from each other. The results of Ne-

menyi tests are presented in Figure 2 – Figure 7 as 

heatmaps with four significance levels at which the mod-

els differ from each other, i.e. 0.05, 0.01, 0.001 and no 

statistically significant differences, respectively. 
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Figure 2: Heatmap of p-values for ACC metric based on  

Nemenyi post-hoc test. 

 

Figure 3: Heatmap of p-values for PRE metric based on  

Nemenyi post-hoc test. 

 

Figure 4: Heatmap of p-values for SENS metric based on 

 Nemenyi post-hoc test. 

 

Figure 5: Heatmap of p-values for SPEC metric based on  

Nemenyi post-hoc test. 

 

Figure 6: Heatmap of p-values for IoU metric based on 

 Nemenyi post-hoc test. 

 

Figure 7: Heatmap of p-values for DSC metric based on  

Nemenyi post-hoc test. 
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Critical difference diagrams help interpret results for 

individual metrics. Model ranks were assigned based on 

average values. Figure 8 presents the averaged metric 

values for each model. 

 

Figure 8: Average metrics values for each model considered. 

Figure 9 shows that for the accuracy metric we can 

distinguish four groups of models that differ significantly 

from each other. UNet3+ showed the worst results. The 

filter method and the Reg-SA-UNet++ network are the 

next group of methods showing better results than the 

UNet3+ network, but worse than the group consisting of 

the models: AngioNet, EfficientUNet++ B5,  

SE-RegUNet 4GF, SE-RegUNet 16GF. The best results 

were presented by the FR-UNet model. 

 

Figure 9: Critical difference diagram for all considered models for the 

ACC metric. 

Considering the precision metric (Figure 10), the 

models were divided into three groups of equivalent 

methods, which presented very similar results. The group 

of methods that showed the worst results consists of the 

filter method and the UNet3+ network. The next group 

consisted of only one AngioNet model, while the rest of 

the considered models did not show significant differ-

ences considering the precision. 

 

Figure 10: Critical difference diagram for all considered models for 

the PRE metric. 

Considering the sensitivity metric (Figure 11), the 

models are divided into four groups presenting identical 

quality. The worst results were presented by the group 

consisting of the UNet3+ model and the filter method. 

The next group showing better results was the single-el-

ement group with the Reg-SA-UNet++ model. The third 

and the most numerous group presented clearly better re-

sults than the Reg-SA-UNet++ network, while the FR-

UNet network undoubtedly presented the best results.  

For the specificity metric (Figure 12), three groups of 

models were clearly formed showing identical results, 

while the last group, presenting the best results, is not 

uniform. It would be possible to build its internal hierar-

chy, but in view of the other results, this is unnecessary. 

The UNet3+ network showed the worst results, while the 

AngioNet network was placed between the groups with 

the worst and the best results, building a single-element 

central group. 

 

Figure 11: Critical difference diagram for all considered models for 

the SENS metric. 

 

Figure 12: Critical difference diagram for all considered models for 

the SPEC metric. 

The results for the IoU and DSC (Figure 13 - Figure 

14) metrics are almost identical, so they will be described 

collectively. Within these two metrics, four groups of 

models were formed, which present identical qualitative 

results of the methods' operation. The group showing the 

worst results was the group consisting of the UNet3+ net-

work and the filter method. The group consisting of the 

AngioNet and Reg-SA-UNet++ networks was character-

ized by better quality of inference. Undoubtedly, the best 

results were shown by the FR-UNet model, while the rest 

of the models were placed between the second group and 

the FR-UNet model. 
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Figure 13: Critical difference diagram for all considered models for 

the IoU metric. 

 

Figure 14: Critical difference diagram for all considered models for 

the DSC metric. 

Taking into account all the obtained results, the FR-

UNet model was characterized by the best quality of all 

considered models and achieved an average accuracy of 

97.7%, with the average value of the Dice score metric 

being 78.2%, which indicates that the model is able to 

generate a signal that is almost 80% identical to the signal 

of the ground truth. The observed maximum value of the 

metric was 87.3%, and the minimum was 61.3%. This is 

a large discrepancy and indicates that not every signal is 

equally easy to process.  

The AngioNet, EfficientUNet++ B5, Reg-SA-

UNet++ models and two variants of the SE-RegUNet 

model achieved the Dice score metric value at a similar 

level of about 60%, respectively for AngioNet - 59.1%, 

EfficientUNet++ B5 - 64.8%, Reg-SA-UNet++ - 60%, 

SE-RegUNet-16GF - 66% and SE-RegUNet-4GF - 

62.7%. This shows that despite the differences and im-

provements introduced in these convolutional network 

architectures, the results do not increase significantly, 

which may indicate their limitations and the need to 

search for new solutions. In terms of the Dice score met-

ric, the filter method achieved very poor results at an av-

erage level of 25.2%, which completely disqualifies this 

method in practical applications. 

The UNet3+ model had the lowest accuracy, achiev-

ing an average result of 88%. A case was observed in 

which the Dice score value was 74.4%, but also a case 

was observed for which none of the pixels received the 

correct semantic class through prediction, i.e. achieved 

Dice score value was equal to zero. 

6. Conclusions 

In this paper, a study was conducted on the comparison 

of the quality of models used for semantic segmentation 

of the coronary vessel structure based on source coronary 

angiographic images. The selected models and machine 

learning algorithms and one filter method showed signif-

icant differences in the quality of segmentation mask pre-

dictions. For each considered metric, the Friedman rank 

test and the Nemenyi post-hoc test were performed, 

based on which it can be concluded that the model show-

ing the best quality was the FR-UNet model, while the 

model with clearly the worst results was the UNet3+ 

model. The remaining models, depending on the metric, 

were placed in different places in the hierarchy. It is not 

possible to indicate an exact hierarchy for all the models 

considered, due to the ambiguity resulting from the ex-

periment results.  

In the future, an interesting consequence of research 

in this area may be the geometric analysis of the coronary 

vessel structure and the fusion of vessel geometry and the 

possibility of building a coronary vessel graph. Studying 

the mathematical properties of such structures could al-

low for the development of an objective metric, based on 

which automatic processing tools and artificial intelli-

gence models would be able to determine its compliance 

with the reference structure of a healthy person. In the 

case of sick people, however, a thorough analysis of 

places in the graph that show irregularities and find this 

place in the analyzed coronary angiography should be 

performed, and then the digital image should be analyzed 

only and exclusively in fragments that show divergent 

properties compared to a healthy person. This would 

make it possible to analyze this sensitive fragment of the 

human body not only in terms of stenoses in arteries and 

veins, but also to look at anomalies in the geometric 

structure of the coronary vessels itself, which at the stage 

of development of the human body may be shaped patho-

logically. In this field, it is still worth conducting research 

aimed at better understanding the mathematical proper-

ties of the human body, which will help us objectively 

assess the state of human health in a machine way. 
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