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Abstract

The paper presents a comparative analysis of the performance of machine learning models and one filter method used for
semantic segmentation of the coronary vessels based on the source coronary angiographic image. Seven machine learning
models were tested: UNet3+, AngioNet, Reg-SA-UNet++, EfficientUNet++ BS5, SE-RegUNet 4GF,
SE-RegUNet 16GF, FR-UNet and one filter method, which was implemented as part of the paper. Despite the impossi-
bility of determining the exact hierarchy of model performance, based on the results of statistical tests, the model that
presented the best results with accuracy of 97,7% was distinguished — FR-UNet and the model that showed the lowest
quality — UNet3+.
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Streszczenie

W pracy zaprezentowano analize porownawcza jakosci dziatania modeli uczenia maszynowego oraz jednej metody fil-
trowej stuzacych do segmentacji semantycznej struktury ukrwienia wiencowego na podstawie zrodtowego obrazu koro-
narograficznego. Badaniu poddano siedem modeli uczenia maszynowego: UNet3+, AngioNet, Reg-SA-UNet++, Effi-
cientUNet++ BS, SE-RegUNet 4GF, SE-RegUNet 16GF, FR-UNet oraz jedng metode filtrowa, ktora zostata zaimple-
mentowana w ramach pracy. Pomimo braku mozliwoséci wyznaczenia doktadnej hierarchii dziatania modeli, na podstawie
wynikow testow statystycznych, zostal wyodrebniony model, ktory prezentowat najlepsze wyniki i osiggnat doktadnosé
97,7% — FR-UNet oraz model, ktory wykazat najnizszg jakos¢ — UNet3+.
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1. Introduction In the context of machine learning, the U-Net archi-
tecture [7] is widely used in the process of semantic seg-
mentation of coronary vessels. The UNet 3+ [8] architec-
ture introduced a new way of combining features from
different levels of the network and deep supervision was
applied. As part of the research on the UNet++ architec-
ture [9], it was shown that the use of shortcut paths in the
network reduced the loss of semantic information be-
tween the feature maps of the encoder and decoder struc-
ture. The FR-UNet network [10] is characterized by pre-
serving full resolution information in the process of sig-
nal propagation through the network. The analysis also
included the possibility of using residual blocks [11],
used to construct the Reg-SA-UNet++ [12] or SE-
RegUNet [13] networks. The DeepLabV3+ architecture
was also used for the task of semantic segmentation of
coronary vessels, on the basis of which the AngioNet net-
work [14] was built. Many authors have drawn attention
to the significant improvement in prediction efficiency
through the use of image preprocessing stages, which
highlighted features important from the point of view of
semantic segmentation [5, 13, 14].

Coronary artery disease is one of the leading causes of
death worldwide. According to statistics from the World
Health Organization (WHO) in 2021 it accounted for
13% of all deaths worldwide with the highest risk group
being citizens of high- and middle-income countries [1].
The reduction of the lumen of the arteries or their com-
plete occlusion impairs the blood supply to the heart, and
consequently an insufficient supply of oxygen. Untreated
coronary artery disease leads to coronary insufficiency,
angina pectoris and myocardial infarction and most often
ends in the death of the patient.

The growing popularity and development of machine
learning and artificial intelligence methods have resulted
in great interest among scientists in research on the crea-
tion of diagnostic tools that allow for the detection of
anomalies in the geometric tree structure of coronary ves-
sels, even at the early stage of development of coronary
diseases.

Historically, filter methods using the Hessian filter
[2], Hough transform and directed filter [3], local energy
function [4], ROI area of interest with mathematical the-
ory of flux flow [5] and graph theory [6] are known to
solve this problem.
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The aim of this work is to conduct a comparative
analysis of methods for semantic segmentation of coro-
nary vessels based on source coronary angiography.
Seven machine learning methods and one filter method,
which was implemented in the research based on the ar-
ticle [5] were analyzed. All methods were evaluated on
one set of coronary angiography image pairs and their la-
bels. The results were subjected to statistical tests to de-
termine the hierarchy of the performance quality of mod-
els and methods.

2. Research material

The evaluation dataset used to conduct the experiment is
the publicly available DCA1 (Database X-ray Coronary
Angiograms) [15]. The DCA1 database consists of 134
coronary angiographic images with ground truths that
were manually created by domain experts in cardiology.
Each pair of grayscale images has dimensions of
300%300 pixels and is saved in the PGM (Portable Gray
Map) format.

(@)

(b)

Figure 1: Single images pair from DCA1. Source coronary angi-
ography (a) and its corresponding segmentation mask (b).

DCAL is a set dedicated to the study of the perfor-
mance of semantic segmentation methods for coronary
vessels and in the context of the study covered by this
work it will constitute one coherent set, providing com-
parative objectivity for selected machine learning models
and algorithms. Figure 1 shows an example pair of im-
ages selected from the DCA1 dataset [15].

3. Selected models

The research experiment carried out for the purposes of
this work will be performed using the following machine
learning models and the implementation of segmentation
method based on the detection of the area of interest
(ROI) and the flux-flow measure [5]:

AngioNet (M1) [14],

Modified UNet3+ architecture (M2) [16],
EfficientUNet++ BS (M3) [17],

Reg-SA-UNet++ (M4) [12],

FR-UNet (M5) [10],

SE-RegUNet 16GF (M6) [13],

SE-RegUNet 4GF (M7) [13],

Own implementation of the filter method (MS) [5].

3.1. AngioNet

The AngioNet network consists of two smaller neural
networks, the first of which is responsible for predicting
the best possible kernel in the convolution operation, so
as to perform the initial processing of the digital image as
efficiently as possible, while the second is responsible for
performing the actual semantic segmentation process.
The image is processed sequentially.

The coronary angiography processing neural network
(APN) receives as input a 512x512 pixel grayscale coro-
nary angiography, subjected to the standardization pro-
cess, while the result of the APN inference is a single-
channel digital image.

The next stage is the concatenation of the single-
channel digital image and the original X-ray image,
thanks to which an image containing three channels is
placed at the input to the DeepLabV3+ basic segmenta-
tion model with the Xception skeleton and the actual seg-
mentation mask prediction process is performed.

3.2. Modified UNet3+ architecture

Compared to the reference U-Net 3+ architecture, the au-
thors have introduced a modification of the encoder ar-
chitecture, which is based on residual and inception mod-
ules. The blocks are designed to capture multidimen-
sional features to improve segmentation accuracy. The
method uses full-dimensional deep supervision. Weights
of the neural network are optimized in this solution by
comparing the differences between the ground truth and
the intermediate network results. Finally, Otsu's thresh-
olding algorithm was used to transform the probability
map into a binary segmentation mask.

3.3. EfficientUNet++ B5S

The network consists of encoder layers, which extract
features from a digital image, and then the decoder, based
on the extracted features, recreates a digital image of the
same size as the image that is the input signal to the pro-
cess. The improvement introduced was the concept of us-
ing an EfficientNet-B5 encoder layer and an Efficien-
tUNet++ decoder in the basic U-Net++ architecture. The
modifications introduced consist in replacing the convo-
lution layer with a 3 X 3 kernel size with residual blocks
using deep convolutions and applying a channel and spa-
tial attention mechanism to feature maps using concur-
rent scSE blocks. The rest of the U-Net++ architecture
remains unchanged in this solution.

3.4. Reg-SA-UNet++

The Reg-SA-UNet++ model is a modified UNet++ archi-
tecture and its main improvement is the enhancement of
feature extraction. The changes introduced in the network
encoder layer consisted in using the RegNet block devel-
oped as part of the research work of the Facebook Al Re-
search group, as the basic encoder block, which reduces
the number of neural network parameters and increases
the possibilities of feature extraction.
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3.5. FR-UNet

The FR-UNet network is a modification of the basic
UNet++ architecture. The deep connections present in
each phase of the network were removed, and in their
place a multiresolution interactive convolution mecha-
nism was applied. The shallow phase provides more se-
mantic information, while the deep phases complement
high-level context information and increase the local re-
ceptive fields of the feature map. In order to reduce the
parameters of the neural network, feature maps were
combined only and exclusively between neighboring
phases, which increased the diversity and efficiency of
feature aggregation. The parallel process of aggregating
feature maps from congruent nodes allows the network to
learn hierarchical representations. In contrast to classical
solutions based on the encoder-decoder architecture, the
first phase of the network continuously integrates high-
level context information while maintaining the original
resolution.

3.6. SE-RegUNet

The concept of the SE-RegUNet segmentation model
uses a pre-processing step in the process to achieve better
prediction results of the deep convolutional network by
normalizing the contrast and enhancing the edge sharp-
ness of the coronary angiography image at the model in-
put. The pre-processing step combines two well-estab-
lished digital image processing methods: USM and
CLAHE. The basic concept of the new convolutional net-
work architecture is to replace the encoder layer with the
RegNet structure developed by the Facebook AI Re-
search group. The SE-RegUNet network is therefore a fu-
sion of the U-Net and RegNet convolutional neural net-
works.

3.7. Filter method

The proposed classical method of coronary vessel seg-
mentation consists of several stages. The first stage in the
process is the pre-processing of the coronary angio-
graphic image in order to highlight its expected features
using the USM filter. After the pre-processing stage, the
process is divided into two independent paths - ROI de-
tection and application of the flux flow in digital image
processing, combined with Otsu thresholding. The result
of this connection is a binary flux flow mask. In the de-
cision step, in which the ROI detection and Otsu thresh-
olding stages are combined, a decision is made to match
the appropriate semantic category. In the last step of al-
gorithm processing, mask cleaning procedures were per-
formed.

4. Experiment

This chapter presents the experimental procedures con-
ducted to investigate the proposed hypotheses. It outlines
the design, methodology, and tools used in the experi-
ments, as well as the conditions under which they were
performed. The goal is to ensure transparency and repro-
ducibility of the results discussed in subsequent sections.

4.1. Transformation of two-dimensional signals

All considered machine learning models and algorithms
process digital images in the size of 512x512 pixels. Due
to the fact that the original data from the DCA1 set are
digital images with the size of 300%300 pixels, these two-
dimensional signals should be transformed without sig-
nificant loss of information. For this purpose, the
OpenCV library [18] was used.

In order to perform further studies, it is necessary to
confirm that there is no significant difference between the
original two-dimensional signals and the transformed
signals, which will confirm the validity of further studies.
For this purpose, the average value of the Structural Sim-
ilarity Index Measure (SSIM) [19] was calculated for all
pairs of coronary angiographic images and their labels in
the original and transformed versions, which is used to
measure the similarity of pairs of digital images.

The SSIM can take values from the range [—1,1],
where the value 1 indicates perfect similarity, 0 — no sim-
ilarity, and —1 corresponds to perfect anti-correlation.
The procedure for calculating the metric value was called
for two sets — coronary angiography and their labels,
where SSIM; = 0.9985 for coronary angiography pairs
and SSIM,; = 0.8661 for segmentation mask pairs were
obtained. These results indicate a high similarity of the
transformed and source signals.

4.2. Method

The selected models and algorithms will be evaluated on
the DCA1 dataset. For this purpose, inference will be per-
formed by each of the models and algorithms, the result
of which will be segmentation masks. Then, based on the
reference and inferred masks, the values of the evaluation
metrics will be calculated. The evaluation criteria will be
the following metrics:

Accuracy (ACC)

Precision (PRE)

Sensitivity (SENS)

Specificity (SPEC)

Intersection over Union (IoU)

Dice Score (DSC, F1)

The study will be conducted based on trained model
weights. For the FR-UNet model, the trained weights
were taken from the official model repository on the
GitHub platform [20], while for the AngioNet, UNet3+,
EfficientUNet++ BS, Reg-SA-UNet++ and
SE-RegUNet (4/16GF) models were taken from the re-
pository on the Hugging Face platform [21], which was
created as part of the research [13].

The raw results will be subjected to statistical tests
that will allow for the construction of a hierarchy of
model quality. Accordingly, the Friedman rank test [22]
will be performed for each considered evaluation metric
to determine whether there is a significant statistical dif-
ference between the models, and the Nemenyi post-hoc
tests [23], which are designed to find specific groups of
data that differ from each other.
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5. Results

This section presents the outcomes of the conducted ex-
periments and analyses aimed at evaluating the perfor-
mance of the considered methods. The results enable a
comparison of the approaches based on selected evalua-
tion metrics and highlight statistically significant differ-
ences between models.

Table 1 — Table 6 present descriptive statistics for
each metric considered, which include the mean, stand-
ard deviation, median, first and third quartiles. Each sam-
ple size was 134 observations for a single model The
models are described in the tables by aliases included in
Section 3 of this work.

Table 1 Descriptive statistics for ACC metric

Model Mean SD Md Q1 Q3
M1 0.948 0.023 0.955 0.943 0.963
M2 0.955 0.010 0.957 0.949 0.964
M3 0.942 0.014 0.943 0.933 0.951
M4 0.943 0.022 0.950 0.933 0.958
M5 0.977 0.006 0.978 0.973 0.982
M6 0.958 0.010 0.959 0.953 0.966
M7 0.949 0.029 0.959 0.937 0.968
M8 0.880 0.055 0.880 0.840 0.924
Table 2 Descriptive statistics for PRE metric
Mo-  Mean SD Md Q1 Q3
del
M1 0.684 0.152 0.714 0.573 0.800
M2 0.784 0.117 0.795 0.728 0.876
M3 0422 0.109 0433 0.355 0.484
M4 0.787 0.125 0.807 0.736  0.880
M5 0.797 0.068 0.798 0.760 0.843
M6 0.767 0.103 0.760 0.699  0.858
M7 0.764 0.146 0.792 0.672 0.876
M8 0437 0226 0453 0.260 0.609
Table 3 Descriptive statistics for SENS metric
Mo- Mean SD Md Q1 Q3
del
M1 0546 0.126 0.564 0.467 0.628
M2 0.562 0.085 0.568 0.524  0.608
M3 0.189  0.083 0.170 0.134 0.247
M4 0495 0.129 0.507 0411 0.573
M5 0.777 0.082 0.795 0.738 0.838
M6 0.592  0.090 0.590 0.548 0.640
M7 0.560 0.164 0.585 0.457 0.675
M8 0.265 0.214 0.198 0.091 0.403
Table 4 Descriptive statistics for SPEC metric
Mo- Mean SD Md Q1 Q3
del
M1 0.981 0.011 0984 0976 0.989
M2 0987 0.009 0.989 0.983 0.993
M3 0986 0.005 0.986 0.982 0.990
M4 0987 0.009 0.989 0.985 0.993
M5 0989 0.005 0.989 0.986 0.992
M6 0986 0.009 0986 0.982 0.992
M7 0986 0.011 0.989 0.981 0.993
M8 0966 0.016 0.967 0.958 0.978

Table 5 Descriptive statistics for loU metric

Mo- Mean SD Md Q1 Q3

del
M1 0.427 0.108 0433 0344 0.510
M2 0.484 0.084 0492 0442 0.540
M3 0.147 0.058 0.145 0.101 0.192
M4 0.438 0.117 0459 0360 0.526
M5 0.644 0.060 0.651 0.611 0.683
M6 0.496 0.071 0496 0448 0.550
M7 0.470 0.137 0497 0364 0.585
M8 0.201 0.156 0.143 0.075 0.301

Table 6 Descriptive statistics for DSC metric

Mo- Mean SD Md Q1 Q3

del
M1 0.591 0.109 0.605 0.511  0.675
M2 0.648 0.080 0.660 0.613 0.701
M3 0.252 0.089 0.253 0.183 0.322
M4 0.600 0.121  0.629 0.530 0.690
M5 0.782 0.046 0.788 0.758 0.812
M6 0.660 0.066 0.664 0.619 0.710
M7 0.627 0.137 0.664 0.534 0.738
M8 0.308 0205 0250 0.140 0.462

The analysis began with the Friedman rank test ap-
plied to each of the considered metrics, following the
stated hypotheses:

H, — the performance of the models with respect to
the metric M is the same

H, — the performance of the models with respect to
the metric M differs significantly

We assume the level of statistical significance of
a = 0.05. Table 7 presents the test results for each se-
lected metric.

Table 7: Friedman rank test for all selected metrics

Evaluation x%(df=7) p-value

metric (M) statistic
ACC 547.3856 p < 0.001
PRE 513.2562 p < 0.001
SENS 616.5348 p < 0.001
SPEC 320.0622 p < 0.001
IoU 686.4677 p < 0.001
DSC 686.4677 p <0.001

The Friedman rank test revealed statistically signifi-
cant differences between the evaluated models. This in-
dicates that the models do not perform equally across the
considered metrics.

Since the test for each metric showed a significant sta-
tistical difference, Nemenyi post-hoc tests were per-
formed for each metric to determine which groups of data
differ significantly from each other. The results of Ne-
menyi tests are presented in Figure 2 — Figure 7 as
heatmaps with four significance levels at which the mod-
els differ from each other, i.e. 0.05, 0.01, 0.001 and no
statistically significant differences, respectively.
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Figure 2: Heatmap of p-values for ACC metric based on Figure 5: Heatmap of p-values for SPEC metric based on
Nemenyi post-hoc test. Nemenyi post-hoc test.
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Figure 3: Heatmap of p-values for PRE metric based on Figure 6: Heatmap of p-values for IoU metric based on
Nemenyi post-hoc test. Nemenyi post-hoc test.
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Figure 4: Heatmap of p-values for SENS metric based on Figure 7: Heatmap of p-values for DSC metric based on
Nemenyi post-hoc test. Nemenyi post-hoc test.
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Critical difference diagrams help interpret results for
individual metrics. Model ranks were assigned based on
average values. Figure 8 presents the averaged metric
values for each model.
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Figure 8: Average metrics values for each model considered.

Figure 9 shows that for the accuracy metric we can
distinguish four groups of models that differ significantly
from each other. UNet3+ showed the worst results. The
filter method and the Reg-SA-UNet++ network are the
next group of methods showing better results than the
UNet3+ network, but worse than the group consisting of
the models: AngioNet, EfficientUNet++ BS,
SE-RegUNet 4GF, SE-RegUNet 16GF. The best results
were presented by the FR-UNet model.
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Figure 9: Critical difference diagram for all considered models for the
ACC metric.

Considering the precision metric (Figure 10), the
models were divided into three groups of equivalent
methods, which presented very similar results. The group
of methods that showed the worst results consists of the
filter method and the UNet3+ network. The next group
consisted of only one AngioNet model, while the rest of
the considered models did not show significant differ-
ences considering the precision.
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Figure 10: Critical difference diagram for all considered models for
the PRE metric.

Considering the sensitivity metric (Figure 11), the
models are divided into four groups presenting identical
quality. The worst results were presented by the group
consisting of the UNet3+ model and the filter method.
The next group showing better results was the single-el-
ement group with the Reg-SA-UNet++ model. The third
and the most numerous group presented clearly better re-
sults than the Reg-SA-UNet++ network, while the FR-
UNet network undoubtedly presented the best results.

For the specificity metric (Figure 12), three groups of
models were clearly formed showing identical results,
while the last group, presenting the best results, is not
uniform. It would be possible to build its internal hierar-
chy, but in view of the other results, this is unnecessary.
The UNet3+ network showed the worst results, while the
AngioNet network was placed between the groups with
the worst and the best results, building a single-element
central group.
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Figure 11: Critical difference diagram for all considered models for
the SENS metric.
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Figure 12: Critical difference diagram for all considered models for
the SPEC metric.

The results for the IoU and DSC (Figure 13 - Figure
14) metrics are almost identical, so they will be described
collectively. Within these two metrics, four groups of
models were formed, which present identical qualitative
results of the methods' operation. The group showing the
worst results was the group consisting of the UNet3+ net-
work and the filter method. The group consisting of the
AngioNet and Reg-SA-UNet++ networks was character-
ized by better quality of inference. Undoubtedly, the best
results were shown by the FR-UNet model, while the rest
of the models were placed between the second group and
the FR-UNet model.
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Figure 13: Critical difference diagram for all considered models for
the IoU metric.
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Figure 14: Critical difference diagram for all considered models for
the DSC metric.

Taking into account all the obtained results, the FR-
UNet model was characterized by the best quality of all
considered models and achieved an average accuracy of
97.7%, with the average value of the Dice score metric
being 78.2%, which indicates that the model is able to
generate a signal that is almost 80% identical to the signal
of the ground truth. The observed maximum value of the
metric was 87.3%, and the minimum was 61.3%. This is
a large discrepancy and indicates that not every signal is
equally easy to process.

The AngioNet, EfficientUNet++ BS5, Reg-SA-
UNet++ models and two variants of the SE-RegUNet
model achieved the Dice score metric value at a similar
level of about 60%, respectively for AngioNet - 59.1%,
EfficientUNet++ B5 - 64.8%, Reg-SA-UNet++ - 60%,
SE-RegUNet-16GF - 66% and SE-RegUNet-4GF -
62.7%. This shows that despite the differences and im-
provements introduced in these convolutional network
architectures, the results do not increase significantly,
which may indicate their limitations and the need to
search for new solutions. In terms of the Dice score met-
ric, the filter method achieved very poor results at an av-
erage level of 25.2%, which completely disqualifies this
method in practical applications.

The UNet3+ model had the lowest accuracy, achiev-
ing an average result of 88%. A case was observed in
which the Dice score value was 74.4%, but also a case
was observed for which none of the pixels received the
correct semantic class through prediction, i.e. achieved
Dice score value was equal to zero.

6. Conclusions

In this paper, a study was conducted on the comparison
of the quality of models used for semantic segmentation
of the coronary vessel structure based on source coronary
angiographic images. The selected models and machine
learning algorithms and one filter method showed signif-
icant differences in the quality of segmentation mask pre-
dictions. For each considered metric, the Friedman rank
test and the Nemenyi post-hoc test were performed,
based on which it can be concluded that the model show-
ing the best quality was the FR-UNet model, while the
model with clearly the worst results was the UNet3+
model. The remaining models, depending on the metric,
were placed in different places in the hierarchy. It is not
possible to indicate an exact hierarchy for all the models
considered, due to the ambiguity resulting from the ex-
periment results.

In the future, an interesting consequence of research
in this area may be the geometric analysis of the coronary
vessel structure and the fusion of vessel geometry and the
possibility of building a coronary vessel graph. Studying
the mathematical properties of such structures could al-
low for the development of an objective metric, based on
which automatic processing tools and artificial intelli-
gence models would be able to determine its compliance
with the reference structure of a healthy person. In the
case of sick people, however, a thorough analysis of
places in the graph that show irregularities and find this
place in the analyzed coronary angiography should be
performed, and then the digital image should be analyzed
only and exclusively in fragments that show divergent
properties compared to a healthy person. This would
make it possible to analyze this sensitive fragment of the
human body not only in terms of stenoses in arteries and
veins, but also to look at anomalies in the geometric
structure of the coronary vessels itself, which at the stage
of development of the human body may be shaped patho-
logically. In this field, it is still worth conducting research
aimed at better understanding the mathematical proper-
ties of the human body, which will help us objectively
assess the state of human health in a machine way.
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