JOURNAL

COMPUTER SCIENCES INSTITUTE

JCSI 37 (2025) 426430
Received: 18 June 2025
Accepted: 19 August 2025

Analysis of ORM framework approaches for Node.js

Serhii Zhadko-Bazilevych*

Department of Computer Science, Kharkiv National University of Radioelectronics, Nauky Ave, 14, Kharkiv, Kharkiv

Oblast, 61166, Ukraine

Abstract

This work analyzes the performance of three ORM frameworks for Node.js Sequelize, Prisma, and TypeORM under
different database interaction modes: single cached and uncached queries, as well as parallel load. Testing was conducted
across various usage scenarios using a simple online store system backed by a PostgreSQL database. Collected data
provides insights into how each ORM behaves under different conditions and may be helpful when selecting a tool for
working with databases. The results show that Prisma provides the best performance under parallel load, while Sequelize
performs efficiently in single-query scenarios with low concurrency. TypeORM demonstrated stable behavior across all
modes and supports more advanced features such as hierarchical data processing.

Keywords: ORM performance analysis; Node; Sequelize; Prisma; TypeORM

*Corresponding author

Email address: serhii.zhadkobazilevych@gmail.com (S. G. Zhadko-Bazilevych)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

Databases serve as fundamental components in infor-
mation systems by providing structured storage and man-
agement of data. The integrity, availability, and con-
sistency of stored data are critical for the correct func-
tioning of software applications across various domains.

The interaction between a backend application and a
database is quite complex due to fundamental differences
between relational data models and the object-oriented
approach in programming. In relational databases, data is
organized in tables with clearly defined fields, and
relationships are implemented using foreign keys,
ensuring data integrity. In contrast, object-oriented
languages operate with objects that have attributes,
methods, and complex interconnections through classes
and interfaces. This mismatch complicates the
integration of these two data structuring methods.

To simplify this process, Object-Relational Mapping
(ORM) frameworks [1] are used to automate the
transformation of data between code objects and database
records, significantly reducing development time. There
is a wide range of ORM solutions available, each with
varying functionality, levels of abstraction, and
architectural features. Among the most common
solutions for Node.js are Sequelize [2], Prisma [3], and
TypeORM [4].

Sequelize follows the Active Record pattern,
allowing each database row to be directly represented as
a JavaScript object.

Prisma applies the Data Mapper pattern, separating
application logic from the database layer and aiming for
high performance and type safety.

TypeORM supports both Active Record and Data
Mapper approaches and offers advanced features such as
a query builder and support for hierarchical data
structures.

The primary objective of this work is to
experimentally investigate and compare the efficiency of
selected ORM frameworks.

2. Materials and methods

Numerous studies have been conducted on the topic of
ORM performance and usage characteristics. For exam-
ple, Béicke and Lindstrém compared common ORM
frameworks in terms of performance, maintainability,
and usability using a containerized environment and a re-
alistic backend structure [5].

While their research provides a broader evaluation
across multiple criteria, this work focuses specifically on
detailed performance benchmarking across a greater va-
riety of usage scenarios. In particular, the study isolates
the impact of each ORM’s internal query generation and
execution behavior under three distinct load conditions.

2.1. Research object

The object of this study is the backend of an online store
information system, developed in the Node.js
environment using the NestJS framework [6] and the
PostgreSQL database management system. The system is
designed to provide realistic data interaction conditions
typical for commercial web services. The structure of the
system's database is shown in FCigure 1.
omment

72id: int NOT NULL

user_id: int NOT NULL (FK)

product_id: int NOT NULL (FK)

parent_id: int NULL (FK)

content: text NOT NULL
created_at: timestamp NOT NULL
W i
L] ¢ |
Product
id: int NOT NULL

User
Rid: int NOT NULL

email: varchar(255) NOT NULL
password_hash: text NOT NULL
full_name: varchar(255) NOT NULL
created_at: timestamp NOT NULL

Order
id: int NOT NULL

user_id: int NOT NULL (FK)
total_price: decimal(10,2) NULL
created_at: timestamp NOT NULL
order_status: enum NOT NULL

name: varchar(255) NOT NULL
description: text NOT NULL
price: decimal(10,2) NOT NULL
stock: int NOT NULL
category_id: int NOT NULL (FK)
last_updated: timestamp NULL

Order_item -

order id: int NOT NULL (FK)
=product _id: int NOT NULL (FK)

Category
=Bid: int NOT NULL

quantity: int NOT NULL
price: decimal(10,2) NOT NULL

name: varchar(255) NOT NULL

Figure 1: Physical data model.

426

mailto:serhii.zhadkobazilevych@gmail.com

Journal of Computer Sciences Institute

37 (2025) 426-430

To evaluate the performance and capabilities of
different ORM frameworks, a set of nine endpoints was
developed to simulate typical interactions between a
backend system and a relational database. Each endpoint
corresponds to a common scenario found in real-world
applications — from simple Create, Read, Update, Delete
(CRUD) operations to more complex interactions such as
nested data retrieval, transactional operations, and
hierarchical data processing. All endpoints were
implemented using Sequelize, TypeORM, and Prisma to
enable direct comparison under identical conditions. This
approach allows for a comprehensive assessment of each
framework’s behavior, efficiency, and query generation
strategies in a variety of usage contexts.

The implemented endpoints are as follows:

e Read user data by a given ID — a simple data reading

operation.

Create user — a simple data insertion operation.

Update user data — a simple data update operation.

Delete user — a simple data deletion operation.

Get list of products — a data reading operation

involving filtering, sorting, and pagination.

e Read order data — a read operation involving
multiple tables to fetch nested records.

e Create order — an operation that inserts nested
records across multiple tables.

e Confirm order — a set of operations wrapped in a
transaction:

o Update the order status to "Confirmed".

o Retrieve the list of ordered products.

o Decrease the stock quantity of the ordered

products.
e Get comment tree by the given parent comment ID

— a set of operations to work with a simple

hierarchical structure.

2.2. Test methods

The testing methods focused on measuring the execution
time of database queries using each of the ORM
frameworks.

During the study, three types of testing were applied:

e Single cached query execution: Each subsequent
query is executed only after the previous one has
completed.

¢ Single uncached execution: After executing a query
and before sending the next one, the PostgreSQL
cache is cleared.

e Parallel query execution: 50 queries are sent to the
database simultaneously; after the completion of
each, a new one is immediately created until the target
number is reached.

For each endpoint and each testing type, 1000 queries
were sent to ensure a sufficient data volume and obtain
statistically reliable results.

With the use of logging tools, the raw SQL queries
generated by the ORM frameworks were obtained.
Comparing the execution time of queries through the
ORM and the directly generated raw SQL queries

allowed evaluating the overhead introduced by the ORM
during query formation.

The obtained raw query was further analyzed using
PostgreSQL EXPLAIN (ANALYZE) command [7]. This
made it possible to assess the quality of queries generated
by each ORM framework both in terms of execution
speed and the efficiency of the execution plan created by
PostgreSQL.

The database was populated with more than 5 million
records for testing purposes (Table 1).

Table 1: Number of generated test records for each table

Table name Number of records
User 300 000

Profile 150 000

Category 20

Product 600 000

Order 600 000

Order item 1 800 000

To ensure stability and isolation of the testing
environment, the Nest]S server and the database were
deployed in two separate Docker containers [8].

Docker containers have next versions:

e Database container: Debian 17.4-1.pgdgl120+2 by
using postgres:latest image.

e Server container: Alpine Linux v3.21 by using
node:18-alpine image.

Testing was conducted on a device with the following
technical specifications:

e Processor: Intel Core i5 8265U.
e RAM: 16 GB DDR4 2400MHz SODIMM.
e Storage: 256 GB SSD Seagate BarraCuda 510.

3. Results

The data collected for each endpoint is visualized in four
diagrams. Three of them show the average time spent on
SQL query creation, sending/receiving and database ex-
ecution, across three modes: cached, uncached and with
parallel load. The fourth chart summarizes the total re-
quest time per framework for direct comparison.

3.1. Endpoint "Read user data"

During the testing of the endpoint (Figure 2), under
cached query conditions, TypeORM and Sequelize
demonstrated comparable performance, whereas Prisma
exhibited approximately 30% longer execution times.

In the uncached query mode, Sequelize showed the
best performance. Prisma once again proved to be the
slowest, with execution times nearly three times longer
than results of Sequelize.

However, under parallel load conditions, Prisma
showed the highest processing efficiency, while
Sequelize demonstrated the worst performance among all
frameworks.

427

Journal of Computer Sciences Institute

37 (2025) 426-430

SQL query construction (ms) Average request time for "Read user data” endpaint

Cachod{ 015 012 027 0L query processing by the database
= Sending and receiving the SQL query

== SOL query construction

TypeoRm f 1.1
Uncached 0.31 039
sequelize J] 1.2
Parallel | 147 184
prisma] 16

Pisma Sequelize TypeORM

Sending and receiving the SOL query (ms)
Cached{ 101 0.96 arr

Single uncached requests

I

Typeor)

Uncachea{ 2108 a6a 13.40 sequelize {3

Poraliel | 2061 Prisma {}

Prisma e TypeORM

SQL query processing by the database (ms) oy
Cached 0.10 0.09 o.10

Uncachod (NGS5

Forallel | 0.12 0.4 016

Frama Sequelize TypeORM

Time (ms)

Figure 2: Results of testing the "Read user data" endpoint.

3.2. Endpoint "Create user"

During the testing of the "Create user" endpoint
(Figure 3), the results differed from the previous
findings.

In the cached query mode, Sequelize demonstrated
the highest performance, while TypeORM was
approximately 20% slower.

In the uncached query mode, the results generally
followed the same patterns observed earlier during user
data reading. It is worth noting that at the level of raw
SQL execution, the database exhibited the highest
latency for Sequelize. However, due to more efficient
query generation, and result processing, this ORM
framework turned out to be the fastest overall.

Under parallel load conditions, all ORM frameworks
demonstrated better processing time than in the cached
single-query mode. This may indicate the influence of
connection pool behavior and asynchronous request

handling, which enable more efficient resource
distribution under high concurrency.
SQL guery construction (ms) Awerage request time for *Create user” endpaint
Cached{ 0.8 0.44 168 Single cached requasts. SOL query processing by the database
mmm Sending and receiving the SOL query
Locached chis el m 50L query construction
Parallel 0.53 0.51 162
Sending and receiving the SOL query (ms) Single uncached requests.
N R
ncache s [L
Prisma Sequelize TypeORM
-
SOL query processing by the database (ms) ol
aoma| 00 on om
Frama Seqveize TypeoRM) n] 0 50 £ a0

Time (ms)

Figure 3: Results of testing the "Create user" endpoint.

3.3. Endpoint "Update user data"

During the testing of the user data update endpoint
(Figure 4), the results did not differ significantly from
those obtained during user creation.

In the cached query mode, all ORM frameworks
demonstrated approximately the same execution speed,
with Sequelize performing slightly better.

In the uncached query mode, the situation was similar
to previous tests; however, the queries generated by
TypeORM proved to be less optimized in terms of
database processing efficiency.

Under parallel load conditions, the performance was
comparable to the level demonstrated during single
cached queries.

SQL query construction ms) Average request time for "Update user data” endpaint

Cachod{ 105 057 158 QL query processing by the database
= Sending and receiving the SQL query

== SOL query construction

TypeORM
Uncached { 213 (¥

Sequelize
Parallel | 0.78 0.48 145

Pisma Sequelize TypedRM bk
Sending and receiving the SQL query (ms)

acrea] 315 s ast | Typeonn]

113 2563 sequelize {0

341 336 307 prisma i

TypeoaM
SQL query processing by the database (ms) oy
Cached | 147 031 =

Uncached

Porallel { 026 023 223

Frsma Sequelize TypeORM

Time (ms)

Figure 4: Results of testing the "Update user data" endpoint.

3.4. Endpoint "Delete user"

During the testing of the user deletion endpoint
(Figure 5), a number of interesting results were obtained.

In the cached query mode, all ORM frameworks
executed the operation at nearly identical speeds, with
Sequelize performing slightly faster due to more efficient
query generation.

In the case of uncached queries, the performance of
the frameworks was also nearly equivalent across all
execution stages.

Under parallel load conditions, the results resembled
the user data retrieval scenario: Prisma demonstrated the
highest efficiency, while Sequelize exhibited the lowest
performance, slightly trailing TypeORM.

The list of endpoints presented above provides
comparative statistics for basic CRUD operations. The
following endpoints will test more complex usage
scenarios of ORM frameworks.

SQL query construction (ms) Average request time for "Delete user endpaint
Single cached requests

typeorm i 2.7

Cached | 027 005 02 m SOL query processing by the database
= Sending and receiving the SQL query

neach 038 054 003
uncached == 50L query construction

sequelize JJ] 26
Pavalel oar [NS31

Prisma
Prisma

Sequelize TypeORM

Sending and receiving the SQL query (ms)
Cached { 251 M 221
uncachea| 384 438 an

Porallel | 1685

he database (ms}

Uncached

faliel{ 023 014 215

Prima Sequeize TypsORM

Time (ms)

Figure 5: Results of testing the "Delete user" endpoint.

3.5. Endpoint "Get list of products"

This endpoint operates on product records, performing
complex operations such as sorting by name, filtering by
selected category, and pagination, which results in
performance outcomes (Figure 6) that differ significantly
from previous cases.

In the cached query mode, results are similar to those
observed in user data retrieval: TypeORM and Sequelize
demonstrate comparable execution speeds, while Prisma
lags behind by approximately 30%.

In the uncached query scenario, the majority of the
time is spent on query processing by the database itself,
accounting for over 90% of the total time. Since this
portion is roughly the same across all frameworks, the
key factor is the speed of query generation and
submission. In this regard, Prisma again showed the
poorest performance.

428

Journal of Computer Sciences Institute

37 (2025) 426-430

Under parallel load conditions, Prisma proved to be
the most stable and fastest, whereas Sequelize once again
exhibited the lowest performance.

SQL query construction (ms) Average request time for "Get list of preducts® endpeint
Single cached requests.

a2

Cached | 085 0.28 007 m SOL query processing by the database
= Sending and receiving the SQL query

32 = SOL query construction

TypeORM
Uncached 421
Sequelize
Favalel 692

Prisma | 4.3

PSma Sequelize TYpEOAM
Sending and receiving the SOL query (ms)

Single uncached requests
Cached 156 106 100 o o

N
| g
B o

Uncached | 1800 588 10

Paraliel | 5150

SQL query processing by the datsbase (ms) 1o,

Porallel | 247 a7 511

Frama Sequelize TypeORM 0 100 200 00 00 50

Figure 6: Results of testing the "Get list of products" endpoint.

3.6. Endpoint "Read order data"

Next endpoint operates on two tables simultaneously:
Order and Order item. The scenario requires retrieving
order information along with the list of ordered items.
The implementation of this scenario varies depending on
the chosen ORM framework [9]:

e Sequelize performs the database query using a single
SQL statement with a LEFT OUTER JOIN.

e Prisma executes two separate sequential queries to
each table.

e TypeORM uses a nested subquery to avoid order
duplication due to mismatches between relational and
object data structures.

According to the test results (Figure 7), such complex
implementation for TypeORM negatively impacted
performance: across all three testing modes, this
framework exhibited the longest SQL query execution
time. It also had the longest query generation and
submission time, except for Prisma, which was
predictably slow in the uncached query mode.

5QL query construction (ms) Average reguest time for "Read order data® endpoint

Single cached requests.
26

Cachod{ 006 068 076 5L query processing by the database
= Sending and receiving the SQL query

== SOL query construction

TypeORM
Uncached { 188 102 042

sequelize] 1.8
Parallel | 0.52

Prisma

Pisma Sequelize TypeORM

Sending and receiving the SOL query (ms)
Cached{ 197 0.04 152
3102 617

Uncached 1886

Poraliel | 26.86

Prisma Sequelize TypeORM

SOL query processing by the database {ms) 105.5
Cached{ 0.8 0.7 0.33
Uncached

Porallel { 025 028 0s5

Frama Sequelize TypeORM

&
Time (ms)

Figure 7: Results of testing the "Read order data" endpoint.

3.7. Endpoint "Create order"

Next endpoint also requires working with two tables sim-
ultaneously, but this time for data insertion operations.

According to the obtained results (Figure 8), Se-
quelize’s performance was significantly lower compared
to the other ORM frameworks.

In the cached single-query mode, Sequelize showed
the worst results.

Nevertheless, in the uncached mode, it remained the
fastest, although only slightly ahead of TypeORM.

Under parallel load conditions, Sequelize’s query ex-
ecution time was approximately three times longer than
that observed for Prisma.

SQL query construction ms) Awerage request time for "Create arder” endpaint
on Single cached requests
TypeoRm] 5.3

Cached | 0.22 (e m SOL query processing by the database
= Sending and receiving the SQL query

neach 350 840 236
uncached == 50L query construction

sequelize Jf 9.6
mavaliel | 310

67
Pisma Sequeize TypeOAM i
Sending and receiving the SQL query (ms]

Cached{ 595 870 492

-

Uncachea{ 3976 15.03 1503 sequelize {3

Paraliel | 7525 105,01 Prisma {]

Pisma Sequelize TypeORM

SOL query processing by the database (ms) .o,
Cached | 0.58 0.50 a3
Uncached

Forallel | 0.89 0.76 064

TypeORM 0 =0 100 150 200 250 300
Time (ms)

Frisma Sequelize

Figure 8: Results of testing the "Create order" endpoint.

3.8. Endpoint "Confirm order"

The results of the transaction tests (Figure 9) largely
depend on the efficiency of executing nested queries and
should therefore be interpreted with caution, as they may
not universally apply to all transaction cases. The
transaction execution time was calculated as the sum of
the durations of each of its constituent queries.

The most notable difference is the significant increase
in Prisma’s query execution time under parallel load
conditions, which contrasts with its typical stability in
other scenarios. Meanwhile, TypeORM exhibited the
poorest performance in this mode, primarily due to the
considerable time spent generating the raw SQL query.

Based on the obtained results, it can be concluded that
the majority of resources consumed by each ORM frame-
work are dedicated to transaction formation and manage-
ment, as evidenced by the proportion of time each ORM
spends processing queries during parallel load, in con-
trast to the other endpoint testing results.

5QL query construetion ims) Awerage request time fer "Confirm order” endpoint

Cachod{ 614 246 262 0L query processing by the database
= Sending and receiving the SQL query

== SOL query construction

tpeore J] 2.4
tneached| 098 e 12
sequele] 101

Parallel | 57.20 9157

prsma] 2.2
Prisma. Sequelize TypeOAM g

Sending and receiving the SQL query (ms) ingle uncached raquests

TypeORM . 708
"L
S

Cached | 13.85 1240 962

3028 Sequelize

38156 Prisma

TypeoAM

uests load

—
R

TipORM 0 00 200 00 a00 1000
Time (ms)

SOL query processing by the database {ms}

cacnea{ 134 125 213
Sequelize {l
Uncached | 2731

18 maz

Prisma

Porallel {2111 69.66

Prsma Sequaiize

Figure 9: Results of testing the "Confirm order" endpoint.

3.9. Endpoint "Get comment tree"

Since most ORM frameworks do not support hierarchical
data structures, the Adjacency List model was used to
store comments in the database. This approach relies on
recursively querying each descendant in order to
reconstruct the full comment tree. As the method
primarily involves simple read operations, the resulting
performance metrics (Figure 10) were similar to those
observed when retrieving user data.

Although TypeORM does not demonstrate the high-
est performance results, unlike other ORM frameworks,
it supports more advanced hierarchical data structures

429

Journal of Computer Sciences Institute

37 (2025) 426-430

such as Closure Table, Nested Set, and Materialized Path
[10]. These approaches offer significant advantages over
the basic Adjacency List method, particularly in terms of
query efficiency and flexibility when working with
deeply nested or frequently accessed hierarchies.

QL query construction (ms) Average request time for "Get comment tree” endpoint

cached { 338 252 075 5':!;" Cached semests SOL query processing by the database
TypeORM vl
— o i = Sending and receiving the SQL query
sequeize JJ 49 == 50L query construction
parallel { 15,88 855
a3
Prisma Sequelize TypeORM Piama
Sending and receiving the SOL query (ms) ingla incachad racueats
Cached { 408 215 245
Uncached 638 86.32
Parallel { 116.38 RERE

eque

ize TypeoRM

0L query processing by the database () 2656

Cached | 0.80 0.23 [0
78

150
Time (ms)

Figure 10: Results of testing the "Get comment tree" endpoint.

4. Conclusions

Prisma proved to have the best scalability under parallel
load, particularly in scenarios involving high query
concurrency. It demonstrates stable performance when
handling a large number of simultaneous requests — for
example, during mass user or order creation. In parallel
execution modes, Prisma consistently outperforms other
ORM frameworks due to its efficient connection pooling,
fast SQL query generation, and minimal resource
locking. However, in single uncached query scenarios,
Prisma often exhibits increased latency, especially when
reading complex structures. This makes it less suitable
for systems with low throughput and predominantly
sequential access patterns.

Sequelize performs best for simple or single queries,
particularly in read or create operations targeting
individual records. Its compact SQL generation model
allows it to handle nested data structures efficiently, for
example, when retrieving an order with its associated
items. Nevertheless, under parallel load, Sequelize
experiences a notable decline in performance. The
increased overhead in query construction and response
transmission leads to reduced throughput, limiting its
effectiveness in high-concurrency systems.

TypeORM offers the most balanced performance
profile across various operational modes without critical
regressions. Its main strengths lie in handling complex
data structures, nested queries, transactions, and
implementing hierarchical trees using more advanced
methods. TypeORM delivers consistent results in both
read and update operations, ensuring predictable
behavior even in multi-level processing scenarios. While
it may trail behind Prisma under intense parallel
workloads and is not always faster than Sequelize for
basic operations, its versatility and support for advanced
storage patterns make it a strong candidate for complex
application architectures.

References

[11 J. Barnes, Object-Relational Mapping as a Persistence
Mechanism for Object-Oriented Applications, Macalester
College, Saint Paul, 2007,

https://digitalcommons.macalester.edu/mathcs _honors/6/.

Sequelize documentation,
https://sequelize.org/docs/v6/, [26.07.2025].

Prisma documentation,
https://www.prisma.io/docs/orm, [26.07.2025].

TypeORM documentation,
https://typeorm.io/docs/, [26.07.2025].

A. Bicke, E. Lindstrom, Evaluation of ORM frameworks
for Node.js applications, Master thesis, Linnaeus
University, Vaxjo, 2024, https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1881324.

NestJS documentation,
https://docs.nestjs.com/, [26.07.2025].

[71 PostgreSQL documentation: EXPLAIN,
https://www.postgresql.org/docs/17/sql-explain.html,

[26.07.2025].

[8] C. Boettiger, An introduction to Docker for reproducible
research, ACM SIGOPS Operating Systems Review 49(1)

(2015) 71-79, https://doi.org/10.1145/2723872.2723882.

[91 P. Mishra, M. H. Eich, Join processing in relational
databases, ACM Computing Surveys 24(1) (1992) 63—

113, https://doi.org/10.1145/128762.128764.

[10] P. Novotny, J. Wild, Modeling hierarchical structures in
biodiversity databases, Database (2024)

https://doi.org/10.1093/database/baael107.

430

https://digitalcommons.macalester.edu/mathcs_honors/6/
https://sequelize.org/docs/v6/
https://www.prisma.io/docs/orm
https://typeorm.io/docs/
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1881324
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1881324
https://docs.nestjs.com/
https://www.postgresql.org/docs/17/sql-explain.html
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/128762.128764
https://doi.org/10.1093/database/baae107

