
JCSI 37 (2025) 426–430

Received: 18 June 2025

Accepted: 19 August 2025

426

Analysis of ORM framework approaches for Node.js

Serhii Zhadko-Bazilevych*

Department of Computer Science, Kharkiv National University of Radioelectronics, Nauky Ave, 14, Kharkiv, Kharkiv

Oblast, 61166, Ukraine

Abstract

This work analyzes the performance of three ORM frameworks for Node.js Sequelize, Prisma, and TypeORM under

different database interaction modes: single cached and uncached queries, as well as parallel load. Testing was conducted

across various usage scenarios using a simple online store system backed by a PostgreSQL database. Collected data

provides insights into how each ORM behaves under different conditions and may be helpful when selecting a tool for

working with databases. The results show that Prisma provides the best performance under parallel load, while Sequelize

performs efficiently in single-query scenarios with low concurrency. TypeORM demonstrated stable behavior across all

modes and supports more advanced features such as hierarchical data processing.

Keywords: ORM performance analysis; Node; Sequelize; Prisma; TypeORM

*Corresponding author

Email address: serhii.zhadkobazilevych@gmail.com (S. G. Zhadko-Bazilevych)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

Databases serve as fundamental components in infor-

mation systems by providing structured storage and man-

agement of data. The integrity, availability, and con-

sistency of stored data are critical for the correct func-

tioning of software applications across various domains.

The interaction between a backend application and a

database is quite complex due to fundamental differences

between relational data models and the object-oriented

approach in programming. In relational databases, data is

organized in tables with clearly defined fields, and

relationships are implemented using foreign keys,

ensuring data integrity. In contrast, object-oriented

languages operate with objects that have attributes,

methods, and complex interconnections through classes

and interfaces. This mismatch complicates the

integration of these two data structuring methods.

To simplify this process, Object-Relational Mapping

(ORM) frameworks [1] are used to automate the

transformation of data between code objects and database

records, significantly reducing development time. There

is a wide range of ORM solutions available, each with

varying functionality, levels of abstraction, and

architectural features. Among the most common

solutions for Node.js are Sequelize [2], Prisma [3], and

TypeORM [4].

Sequelize follows the Active Record pattern,

allowing each database row to be directly represented as

a JavaScript object.

Prisma applies the Data Mapper pattern, separating

application logic from the database layer and aiming for

high performance and type safety.

TypeORM supports both Active Record and Data

Mapper approaches and offers advanced features such as

a query builder and support for hierarchical data

structures.

The primary objective of this work is to

experimentally investigate and compare the efficiency of

selected ORM frameworks.

2. Materials and methods

Numerous studies have been conducted on the topic of

ORM performance and usage characteristics. For exam-

ple, Bäcke and Lindström compared common ORM

frameworks in terms of performance, maintainability,

and usability using a containerized environment and a re-

alistic backend structure [5].

While their research provides a broader evaluation

across multiple criteria, this work focuses specifically on

detailed performance benchmarking across a greater va-

riety of usage scenarios. In particular, the study isolates

the impact of each ORM’s internal query generation and
execution behavior under three distinct load conditions.

2.1. Research object

The object of this study is the backend of an online store

information system, developed in the Node.js

environment using the NestJS framework [6] and the

PostgreSQL database management system. The system is

designed to provide realistic data interaction conditions

typical for commercial web services. The structure of the

system's database is shown in Figure 1.

Figure 1: Physical data model.

mailto:serhii.zhadkobazilevych@gmail.com

Journal of Computer Sciences Institute 37 (2025) 426-430

427

To evaluate the performance and capabilities of

different ORM frameworks, a set of nine endpoints was

developed to simulate typical interactions between a

backend system and a relational database. Each endpoint

corresponds to a common scenario found in real-world

applications – from simple Create, Read, Update, Delete

(CRUD) operations to more complex interactions such as

nested data retrieval, transactional operations, and

hierarchical data processing. All endpoints were

implemented using Sequelize, TypeORM, and Prisma to

enable direct comparison under identical conditions. This

approach allows for a comprehensive assessment of each

framework’s behavior, efficiency, and query generation
strategies in a variety of usage contexts.

The implemented endpoints are as follows:

• Read user data by a given ID – a simple data reading

operation.

• Create user – a simple data insertion operation.

• Update user data – a simple data update operation.

• Delete user – a simple data deletion operation.

• Get list of products – a data reading operation

involving filtering, sorting, and pagination.

• Read order data – a read operation involving

multiple tables to fetch nested records.

• Create order – an operation that inserts nested

records across multiple tables.

• Confirm order – a set of operations wrapped in a

transaction:

o Update the order status to "Confirmed".

o Retrieve the list of ordered products.

o Decrease the stock quantity of the ordered

products.

• Get comment tree by the given parent comment ID

– a set of operations to work with a simple

hierarchical structure.

2.2. Test methods

The testing methods focused on measuring the execution

time of database queries using each of the ORM

frameworks.

During the study, three types of testing were applied:

• Single cached query execution: Each subsequent

query is executed only after the previous one has

completed.

• Single uncached execution: After executing a query

and before sending the next one, the PostgreSQL

cache is cleared.

• Parallel query execution: 50 queries are sent to the

database simultaneously; after the completion of

each, a new one is immediately created until the target

number is reached.

For each endpoint and each testing type, 1000 queries

were sent to ensure a sufficient data volume and obtain

statistically reliable results.

With the use of logging tools, the raw SQL queries

generated by the ORM frameworks were obtained.

Comparing the execution time of queries through the

ORM and the directly generated raw SQL queries

allowed evaluating the overhead introduced by the ORM

during query formation.

The obtained raw query was further analyzed using

PostgreSQL EXPLAIN (ANALYZE) command [7]. This

made it possible to assess the quality of queries generated

by each ORM framework both in terms of execution

speed and the efficiency of the execution plan created by

PostgreSQL.

The database was populated with more than 5 million

records for testing purposes (Table 1).

Table 1: Number of generated test records for each table

Table name Number of records

User 300 000

Profile 150 000

Category 20

Product 600 000

Order 600 000

Order_item 1 800 000

To ensure stability and isolation of the testing

environment, the NestJS server and the database were

deployed in two separate Docker containers [8].

Docker containers have next versions:

• Database container: Debian 17.4-1.pgdg120+2 by

using postgres:latest image.

• Server container: Alpine Linux v3.21 by using

node:18-alpine image.

Testing was conducted on a device with the following

technical specifications:

• Processor: Intel Core i5 8265U.

• RAM: 16 GB DDR4 2400MHz SODIMM.

• Storage: 256 GB SSD Seagate BarraCuda 510.

3. Results

The data collected for each endpoint is visualized in four

diagrams. Three of them show the average time spent on

SQL query creation, sending/receiving and database ex-

ecution, across three modes: cached, uncached and with

parallel load. The fourth chart summarizes the total re-

quest time per framework for direct comparison.

3.1. Endpoint "Read user data"

During the testing of the endpoint (Figure 2), under

cached query conditions, TypeORM and Sequelize

demonstrated comparable performance, whereas Prisma

exhibited approximately 30% longer execution times.

In the uncached query mode, Sequelize showed the

best performance. Prisma once again proved to be the

slowest, with execution times nearly three times longer

than results of Sequelize.

However, under parallel load conditions, Prisma

showed the highest processing efficiency, while

Sequelize demonstrated the worst performance among all

frameworks.

Journal of Computer Sciences Institute 37 (2025) 426-430

428

Figure 2: Results of testing the "Read user data" endpoint.

3.2. Endpoint "Create user"

During the testing of the "Create user" endpoint

(Figure 3), the results differed from the previous

findings.

In the cached query mode, Sequelize demonstrated

the highest performance, while TypeORM was

approximately 20% slower.

In the uncached query mode, the results generally

followed the same patterns observed earlier during user

data reading. It is worth noting that at the level of raw

SQL execution, the database exhibited the highest

latency for Sequelize. However, due to more efficient

query generation, and result processing, this ORM

framework turned out to be the fastest overall.

Under parallel load conditions, all ORM frameworks

demonstrated better processing time than in the cached

single-query mode. This may indicate the influence of

connection pool behavior and asynchronous request

handling, which enable more efficient resource

distribution under high concurrency.

Figure 3: Results of testing the "Create user" endpoint.

3.3. Endpoint "Update user data"

During the testing of the user data update endpoint

(Figure 4), the results did not differ significantly from

those obtained during user creation.

In the cached query mode, all ORM frameworks

demonstrated approximately the same execution speed,

with Sequelize performing slightly better.

In the uncached query mode, the situation was similar

to previous tests; however, the queries generated by

TypeORM proved to be less optimized in terms of

database processing efficiency.

Under parallel load conditions, the performance was

comparable to the level demonstrated during single

cached queries.

Figure 4: Results of testing the "Update user data" endpoint.

3.4. Endpoint "Delete user"

During the testing of the user deletion endpoint

(Figure 5), a number of interesting results were obtained.

In the cached query mode, all ORM frameworks

executed the operation at nearly identical speeds, with

Sequelize performing slightly faster due to more efficient

query generation.

In the case of uncached queries, the performance of

the frameworks was also nearly equivalent across all

execution stages.

Under parallel load conditions, the results resembled

the user data retrieval scenario: Prisma demonstrated the

highest efficiency, while Sequelize exhibited the lowest

performance, slightly trailing TypeORM.

The list of endpoints presented above provides

comparative statistics for basic CRUD operations. The

following endpoints will test more complex usage

scenarios of ORM frameworks.

Figure 5: Results of testing the "Delete user" endpoint.

3.5. Endpoint "Get list of products"

This endpoint operates on product records, performing

complex operations such as sorting by name, filtering by

selected category, and pagination, which results in

performance outcomes (Figure 6) that differ significantly

from previous cases.

In the cached query mode, results are similar to those

observed in user data retrieval: TypeORM and Sequelize

demonstrate comparable execution speeds, while Prisma

lags behind by approximately 30%.

In the uncached query scenario, the majority of the

time is spent on query processing by the database itself,

accounting for over 90% of the total time. Since this

portion is roughly the same across all frameworks, the

key factor is the speed of query generation and

submission. In this regard, Prisma again showed the

poorest performance.

Journal of Computer Sciences Institute 37 (2025) 426-430

429

Under parallel load conditions, Prisma proved to be

the most stable and fastest, whereas Sequelize once again

exhibited the lowest performance.

Figure 6: Results of testing the "Get list of products" endpoint.

3.6. Endpoint "Read order data"

Next endpoint operates on two tables simultaneously:

Order and Order_item. The scenario requires retrieving

order information along with the list of ordered items.

The implementation of this scenario varies depending on

the chosen ORM framework [9]:

• Sequelize performs the database query using a single

SQL statement with a LEFT OUTER JOIN.

• Prisma executes two separate sequential queries to

each table.

• TypeORM uses a nested subquery to avoid order

duplication due to mismatches between relational and

object data structures.

According to the test results (Figure 7), such complex

implementation for TypeORM negatively impacted

performance: across all three testing modes, this

framework exhibited the longest SQL query execution

time. It also had the longest query generation and

submission time, except for Prisma, which was

predictably slow in the uncached query mode.

Figure 7: Results of testing the "Read order data" endpoint.

3.7. Endpoint "Create order"

Next endpoint also requires working with two tables sim-

ultaneously, but this time for data insertion operations.

According to the obtained results (Figure 8), Se-

quelize’s performance was significantly lower compared
to the other ORM frameworks.

In the cached single-query mode, Sequelize showed

the worst results.

Nevertheless, in the uncached mode, it remained the

fastest, although only slightly ahead of TypeORM.

Under parallel load conditions, Sequelize’s query ex-
ecution time was approximately three times longer than

that observed for Prisma.

Figure 8: Results of testing the "Create order" endpoint.

3.8. Endpoint "Confirm order"

The results of the transaction tests (Figure 9) largely

depend on the efficiency of executing nested queries and

should therefore be interpreted with caution, as they may

not universally apply to all transaction cases. The

transaction execution time was calculated as the sum of

the durations of each of its constituent queries.

The most notable difference is the significant increase

in Prisma’s query execution time under parallel load
conditions, which contrasts with its typical stability in

other scenarios. Meanwhile, TypeORM exhibited the

poorest performance in this mode, primarily due to the

considerable time spent generating the raw SQL query.

Based on the obtained results, it can be concluded that

the majority of resources consumed by each ORM frame-

work are dedicated to transaction formation and manage-

ment, as evidenced by the proportion of time each ORM

spends processing queries during parallel load, in con-

trast to the other endpoint testing results.

Figure 9: Results of testing the "Confirm order" endpoint.

3.9. Endpoint "Get comment tree"

Since most ORM frameworks do not support hierarchical

data structures, the Adjacency List model was used to

store comments in the database. This approach relies on

recursively querying each descendant in order to

reconstruct the full comment tree. As the method

primarily involves simple read operations, the resulting

performance metrics (Figure 10) were similar to those

observed when retrieving user data.

Although TypeORM does not demonstrate the high-

est performance results, unlike other ORM frameworks,

it supports more advanced hierarchical data structures

Journal of Computer Sciences Institute 37 (2025) 426-430

430

such as Closure Table, Nested Set, and Materialized Path

[10]. These approaches offer significant advantages over

the basic Adjacency List method, particularly in terms of

query efficiency and flexibility when working with

deeply nested or frequently accessed hierarchies.

Figure 10: Results of testing the "Get comment tree" endpoint.

4. Conclusions

Prisma proved to have the best scalability under parallel

load, particularly in scenarios involving high query

concurrency. It demonstrates stable performance when

handling a large number of simultaneous requests – for

example, during mass user or order creation. In parallel

execution modes, Prisma consistently outperforms other

ORM frameworks due to its efficient connection pooling,

fast SQL query generation, and minimal resource

locking. However, in single uncached query scenarios,

Prisma often exhibits increased latency, especially when

reading complex structures. This makes it less suitable

for systems with low throughput and predominantly

sequential access patterns.

Sequelize performs best for simple or single queries,

particularly in read or create operations targeting

individual records. Its compact SQL generation model

allows it to handle nested data structures efficiently, for

example, when retrieving an order with its associated

items. Nevertheless, under parallel load, Sequelize

experiences a notable decline in performance. The

increased overhead in query construction and response

transmission leads to reduced throughput, limiting its

effectiveness in high-concurrency systems.

TypeORM offers the most balanced performance

profile across various operational modes without critical

regressions. Its main strengths lie in handling complex

data structures, nested queries, transactions, and

implementing hierarchical trees using more advanced

methods. TypeORM delivers consistent results in both

read and update operations, ensuring predictable

behavior even in multi-level processing scenarios. While

it may trail behind Prisma under intense parallel

workloads and is not always faster than Sequelize for

basic operations, its versatility and support for advanced

storage patterns make it a strong candidate for complex

application architectures.

References

[1] J. Barnes, Object-Relational Mapping as a Persistence

Mechanism for Object-Oriented Applications, Macalester

College, Saint Paul, 2007,

https://digitalcommons.macalester.edu/mathcs_honors/6/.

[2] Sequelize documentation,

https://sequelize.org/docs/v6/, [26.07.2025].

[3] Prisma documentation,

https://www.prisma.io/docs/orm, [26.07.2025].

[4] TypeORM documentation,

https://typeorm.io/docs/, [26.07.2025].

[5] A. Bäcke, E. Lindström, Evaluation of ORM frameworks
for Node.js applications, Master thesis, Linnaeus

University, Växjö, 2024, https://www.diva-

portal.org/smash/record.jsf?pid=diva2:1881324.

[6] NestJS documentation,

https://docs.nestjs.com/, [26.07.2025].

[7] PostgreSQL documentation: EXPLAIN,

https://www.postgresql.org/docs/17/sql-explain.html,

[26.07.2025].

[8] C. Boettiger, An introduction to Docker for reproducible

research, ACM SIGOPS Operating Systems Review 49(1)

(2015) 71–79, https://doi.org/10.1145/2723872.2723882.

[9] P. Mishra, M. H. Eich, Join processing in relational

databases, ACM Computing Surveys 24(1) (1992) 63–
113, https://doi.org/10.1145/128762.128764.

[10] P. Novotný, J. Wild, Modeling hierarchical structures in
biodiversity databases, Database (2024)

https://doi.org/10.1093/database/baae107.

https://digitalcommons.macalester.edu/mathcs_honors/6/
https://sequelize.org/docs/v6/
https://www.prisma.io/docs/orm
https://typeorm.io/docs/
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1881324
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1881324
https://docs.nestjs.com/
https://www.postgresql.org/docs/17/sql-explain.html
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/128762.128764
https://doi.org/10.1093/database/baae107

