
JCSI 37 (2025) 431–435

Received: 19 June 2025

Accepted: 18 October 2025

431

Analysis of performance optimization methods for 3D games in the Unity

environment

Analiza metod optymalizacji wydajności dla gier 3D w środowisku Unity

Maciej Potręć*, Marcin Badurowicz

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The paper analyzes methods for optimizing performance in 3D games created in Unity. Based on the literature, the fol-

lowing techniques are discussed: GPU Instancing, Static Batching, Occlusion Culling, Level of Detail (LOD), Unity Jobs,

Object Pooling, and the tick system. In four test scenarios, metrics (FPS, RAM, batch count) were collected using Unity

Profiler. The results showed that GPU Instancing and Static Batching increase FPS (10,9 % and 20,4 %) and reduce

memory usage, while LOD increases FPS by over 380 % with a minimal increase in RAM. Occlusion Culling is only

effective with large objects. Unity Jobs, Object Pooling, and ticks improve performance by 14-27 %. The choice of meth-

ods should depend on the nature of the scene. Further research on other platforms is recommended.

Keywords: performance optimization; 3D games; Unity; FPS

Streszczenie

Praca analizuje metody optymalizacji wydajności w grach 3D tworzonych w Unity. Na podstawie literatury omówiono
techniki: GPU Instancing, Static Batching, Occlusion Culling, Level of Detail (LOD), Unity Jobs, Object Pooling i sys-

tem ticków. W czterech scenariuszach testowych zbierano metryki (FPS, RAM, batch count) za pomocą Unity Profiler.
Wyniki wykazały, że GPU Instancing i Static Batching podnoszą FPS (10,9 % i 20,4 %) i redukują wykorzystanie pa-
mięci, a LOD zwiększa FPS o ponad 380 % przy minimalnym wzroście RAM. Occlusion Culling działa skutecznie tylko
przy dużych obiektach. Unity Jobs, Object Pooling i ticki poprawiają wydajność o 14-27 %. Dobór metod powinien za-
leżeć od charakteru sceny. Dalsze badania na innych platformach zalecane.

Słowa kluczowe: optymalizacja wydajności; gry 3D; Unity; FPS

*Corresponding author

Email address: s95536@pollub.edu.pl (M. Potręć)

Published under Creative Common License (CC BY 4.0 Int.)

1. Wstęp

W ostatnich latach branża gier komputerowych rozwija
się w zawrotnym tempie. Tylko w 2024 roku wartość glo-
balnego rynku gier osiągnęła imponujące 187,7 miliarda
dolarów, co oznacza wzrost o 2,1% względem roku po-
przedniego [1]. Równocześnie liczba aktywnych graczy
na całym świecie w 2025 roku sięgnęła aż 3,32 miliarda,
z czego ponad 1,5 miliarda jest skłonnych płacić za gry
oraz związane z nimi usługi.
Tak dynamiczny rozwój nie pozostaje bez wpływu na
oczekiwania graczy - ci coraz częściej domagają się nie
tylko realistycznej oprawy graficznej, ale i perfekcyjnej

płynności rozgrywki. Nowoczesne produkcje sięgają po
coraz bardziej zaawansowane technologie, które pozwa-
lają zanurzyć się w świecie gry na niespotykaną wcze-
śniej skalę. Aby jednak sprostać tym rosnącym wymaga-
niom, twórcy muszą sięgać po skuteczne techniki opty-
malizacji zarówno kodu, jak i grafiki.
Jednym z kluczowych elementów wpływających na
komfort gracza jest wydajność gry, najczęściej oceniana
poprzez liczbę klatek na sekundę (FPS). Wraz ze wzro-
stem złożoności nowych tytułów rośnie też znaczenie
problematyki optymalizacji. Szczególnie istotne staje się
zapewnienie, by także użytkownicy korzystający ze

słabszego sprzętu mogli cieszyć się płynną, niezakłóconą
rozgrywką.

2. Przegląd literatury

Twierdzenie, że wydajność gier komputerowych jest jed-
nym z kluczowych czynników wpływających zarówno
na doświadczenia, jak i na wyniki osiągane przez graczy,
znajduje potwierdzenie w licznych publikacjach. W

pracy [2] wykazano, że wyższa liczba klatek na sekundę
przekłada się na lepsze doświadczenia graczy. W pracy
[3] wykazano, że liczba klatek na sekundę znacząco
wpływa na efektywność graczy w strzelankach FPS
(First Person Shooter). W pracy [4] przeanalizowano za-

chowania graczy e-sporcie czyli w kompetytywnym gra-

niu w gry komputerowe [5]. Autorzy wykazali, że gracze
często obniżają jakość grafiki w celu poprawienia płyn-
ności gier. Takie praktyki obrazują kluczową rolę pro-
cesu optymalizacji gier, gdzie płynność rozgrywki może
decydować o wynikach rywalizacji. W artykule [6] prze-

prowadzono analizę i ponowną implementacje mobilnej
gry edukacyjnej. Wyniki wcześniejszych badań wyka-
zały problemy z wydajnością, takie jak duży rozmiar
pliku gry, opóźnienia między scenami oraz niewystarcza-
jąca satysfakcja użytkowników. Autorzy zastosowali
techniki optymalizacyjne, koncentrując się na poprawie
wydajności oraz zadowolenia użytkowników. Poprawki

mailto:s95536@pollub.edu.pl

Journal of Computer Sciences Institute 37 (2025) 431-435

432

obejmowały zmniejszenie rozmiaru plików, optymaliza-
cję czasu ładowania oraz poprawę interfejsu użytkow-
nika. Badanie wykazało wzrost zadowolenia użytkowni-
ków i wyższą wydajność gry, co potwierdza skuteczność
zastosowanych metod. W pracy [7] omówiono problemy
optymalizacji scen w grach 3D na urządzeniach mobil-
nych z używając do tego silnika Unity. W pracy przed-
stawiono techniki i umiejętności związane z optymaliza-
cją wydajności na telefonach komórkowych, podkreśla-
jąc kluczowe wyzwania podczas tego procesu. Badania

wskazują na rosnące znaczenie gier 3D na urządzeniach
mobilnych oraz konieczność stosowania dedykowanych
metod optymalizacyjnych w celu dostosowania wydajno-

ści do ograniczeń sprzętowych. W pracy [8] podkreślono,
że wraz z rozwojem technologii 3D skanowania oraz
wzrostem złożoności symulacji komputerowych, zarzą-
dzanie poziomem szczegółowości staje się kluczowe.
Automatyczne uproszczenie modeli i techniki zarządza-
nia Level of Details (LOD) na czas rzeczywisty poma-

gają złagodzić przeciążenia współczesnych układów gra-
ficznych. W pracy zorganizowano przegląd metod LOD,
omawiając m.in. ramy zarządzania LOD, modele uprosz-
czeń i metryki oceny błędów. Autorzy wskazali, że za-
stosowanie tych technik jest niezbędne dla utrzymania
wysokiej wydajności aplikacji korzystających z ogrom-

nych zestawów danych geometrycznych. Podsumowując
badania w temacie metod optymalizacji wydajności
wskazują na wzrost wydajności aplikacji po ich zastoso-
waniu.

3. Cel i zakres pracy

Celem tej pracy jest przeprowadzenie analizy wybranych

metod optymalizacji wydajności w grach komputero-
wych, tworzonych przy użyciu środowiska Unity. W ni-

niejszej pracy szczególną uwagę położono na zbadanie
wpływu badanych technik na zwiększenie liczby klatek
na sekundę podczas rozgrywki.
Zakres pracy obejmuje następujące elementy:
• Analiza istniejących badań naukowych oraz publika-

cji dotyczących tematu gier komputerowych oraz ich
optymalizacji.

• Opis technologii i narzędzi zastosowanych w bada-
niach.

• Merytoryczny opis metod optymalizacyjny oraz po-

kazanie ich implementacji w projekcie.

• Opis stanowiska badawczego, metodyki badań oraz
scenariuszy testowych.

• Przeprowadzenie testów i zebranie danych do ana-
lizy.

• Badanie wpływu różnych metod optymalizacji na
wydajność gier w kontekście liczby klatek na se-
kundę.

• Analiza wyników oraz sformułowanie wniosków.
W ramach pracy sformułowano hipotezy badawcze:
• H1: Gry z zaimplementowanymi metodami optyma-

lizacji wydajności mają większą liczbę klatek na se-
kundę niż gry bez zaimplementowanych metod.

• H2: Zaimplementowanie metody optymalizacyjnej

nie zwiększa zużycia pamięci RAM.

4. Metodyka badawcza

4.1. Opis scenariuszy testowych

W celu porównania wybranych metod optymalizacyj-
nych w kontekście wydajności stworzono środowisko na
podstawie gotowego rozwiązania oferowanego przez
Unity, gdzie potokiem renderowania została wybrana
wersja Universal Render Pipeline (URP). Ponieważ nie-
których metod nie można bezpośrednio porówny-
wać, opracowano cztery scenariusze testowe.

Scenariusz 1. Polega na poruszaniu kamerą wokół sceny,
w której umieszczono 100 000 identycznych obiektów.
Celem jest sprawdzenie wpływu dużej liczby statycznych
instancji na wydajność renderowania oraz liczbę klatek
na sekundę. Przykładową scenę zaprezentowano na Ry-

sunku 1.

Rysunek 1: Przykładowe zdjęcie prezentujące scenę z scenariusza 1.

Scenariusz 2. Zakłada poruszanie się postaci po rozległej
mapie, na której rozmieszczono liczne drobne elementy,
takie jak drzewa, rośliny oraz kamienie. Test ten ma uwi-
docznić, jak obecność różnorodnych obiektów wpływa
na płynność rozgrywki. Przykładową scenę zaprezento-
wano na Rysunku 2.

Rysunek 2: Przykładowe zdjęcie prezentujące scenę z scenariusza 2.

Scenariusz 3. Symulowana rozgrywka w stylu „obrony
wieży”. Na scenie generowani są liczni przeciwnicy, któ-
rych zadaniem jest zlokalizowanie gracza i poruszanie

się w jego kierunku. Gdy przeciwnik zbliży się do okre-
ślonej odległości od gracza, zostaje usunięty, a następnie
odtworzony w losowej pozycji oddalonej od postaci gra-

cza. Dodatkowo dla postaci gracza zaimplementowano

mechanizm automatycznego strzelania do najbliższych

przeciwników - trafienie skutkuje usunięciem przeciw-

Journal of Computer Sciences Institute 37 (2025) 431-435

433

nika i jego ponownym odtworzeniem z dala od gracza.

Przykładową scenę zaprezentowano na Rysunku 3.

Scenariusz 4. Polega na obserwacji miasta, w którym
znajduje się duża liczba zróżnicowanych modeli 3D.
W porównaniu z poprzednimi scenariuszami zastoso-
wano tutaj obiekty, które swoją wielkością zasłaniają nie-
które mniejsze elementy sceny. Przykładową scenę za-
prezentowano na Rysunku 4.

Rysunek 3: Przykładowe zdjęcie prezentujące scenę z scenariusza 3.

Rysunek 4: Przykładowe zdjęcie prezentujące scenę z scenariusza 4.

4.2. Parametry metod optymalizacyjnych i scen te-

stowych

W celu zapewnienia powtarzalności badań oraz lepszego
zrozumienia kontekstu uzyskanych wyników w niniej-
szym podrozdziale przedstawiono szczegółowe parame-
try zastosowane dla poszczególnych metod optymaliza-
cyjnych oraz scen testowych. Dobór wartości był podyk-
towany zarówno ograniczeniami technologicznymi, jak i
chęcią uzyskania miarodajnych wyników możliwych do
porównania z innymi badaniami.
• W scenariuszu 1 umieszczono 100 000 identycznych

obiektów, co pozwoliło zweryfikować efektywność
technik w przypadku dużej liczby powtarzalnych ele-
mentów. Liczba ta została dobrana tak, aby obciąże-
nie renderowania było znaczące, lecz jednocześnie
możliwe do obsłużenia przez sprzęt badawczy.

• Dla Occlusion Culling zastosowano w scenach obej-

mujących zarówno dużą liczbę drobnych elementów,
jak i obiekty o większych gabarytach. Pozwoliło to
zweryfikować wpływ parametru minimalnej

wielkości obiektu, uwzględnianego podczas procesu
cullingu, na efektywność tej techniki. W związku z
tym parametr ten został ustawiony na wartość 0,25
dla Scenariusza 2 oraz na 2,5 dla Scenariusza 3.

• Dla LOD w obiektach scenariuszu 2 zdefiniowano

trzy poziomy szczegółowości modeli 100 %, 62 %,

32 %. Dodatkowo dla tych poziomów zdefiniowano
progi wielkości obiektu względem ekranu dla których
będą się zmieniać 25 %, 12,5 %, 1 %. Po 1 % obiekt

zostaje wyłączony i jest on niewidoczny dla użytkow-
nika. Wartości te zostały przyjęte na podstawie stan-
dardowych praktyk w grach 3D, umożliwiając reduk-
cję liczby wierzchołków i trójkątów w zależności od
odległości kamery od obiektu.

• Dla Unity Jobs w scenariuszu 3 zastosowano system

wielowątkowego przetwarzania logiki ruchu prze-
ciwników. Liczbę generowanych jednostek ustalono
na poziomie 500, co pozwoliło zaobserwować wpływ
tej techniki na rozkład obciążenia CPU.

• Dla Object Pooling w scenariuszu 3 liczba przeciw-

ników była utrzymywana na stałym poziomie, a za-
miast tworzenia i niszczenia obiektów zastosowano
ich ponowne wykorzystanie. Parametr rozmiaru puli

został dobrany na podstawie maksymalnej liczby ak-
tywnych jednostek w danym scenariuszu.

• Dla System ticków ustalono krok czasowy odpowia-

dający 10 operacji wciągu 1s, co jest standardową
wartością w grach czasu rzeczywistego. Wartość ta
pozwalała na płynne odwzorowanie rozgrywki przy
jednoczesnym ograniczeniu liczby obliczeń wykony-
wanych w krótkim czasie.

Przyjęte parametry zostały dobrane tak, aby z jednej
strony umożliwić rzetelne porównanie metod, a z drugiej
aby ich wartości były reprezentatywne dla typowych pro-
jektów tworzonych w środowisku Unity.

5. Przeprowadzenie badań

Do przeprowadzenia badań wykorzystano środowisko,

którego konfigurację przedstawiono w Tabeli 1. Każdy
scenariusz przeprowadzono w czterech niezależnych
próbach, a w dalszej analizie wykorzystano średnią aryt-
metyczną uzyskanych pomiarów.

Tabela 1: Zestawienie środowiska

Komponenty Szczegóły

CPU AMD Ryzen 7 5800X

GPU NVIDIA GeForce RTX 2070

RAM 32 GB RAM DDR4 3000MHz

Dysk NVMe Lexar NM790

System opera-

cyjny

Windows 11

Unity Unity 6000.0.38f

Aby badania były jak najbardziej powtarzalne, opra-
cowano skrypt nagrywający dane dotyczące ruchu ka-
mery. Dane te umożliwiały późniejsze odtworzenie do-
kładnego toru ruchu kamery w każdym scenariuszu te-
stowym. Do gromadzenia danych opracowano skrypt,

który za pomocą modułu Unity Profiler zbierał metryki
w tempie przekraczającym 50 próbek na sekundę czasu

Journal of Computer Sciences Institute 37 (2025) 431-435

434

trwania każdego scenariusza. W Tabeli 2 przedstawiono

metryki jakie były zbierane.
Tabela 2: Zestaw metryk zbieranych w trakcie testów

Metryka Opis

FPS Liczba klatek renderowania przez sil-

nik gry podczas jednej sekundy.

RAM

(GB)

Pamięć RAM użyta przez grę.

Batch Grupa operacji draw call polegają-
cych na wysyłaniu informacji z CPU
do GPU w celu wyświetlenia obiektu
w grze.

Liczba trój-
kątów

Liczba trójkątów wyrenderowanych
przez silnik unity pokazujący złożo-
ność aktualnie testowanej sceny.

Liczba

wierzchoł-
ków

Liczba wierzchołków pokazująca po-
ziom szczegółowości modeli 3D
znajdujących się na scenie podczas
jej testowania.

6. Wyniki badań

6.1. Wyniki badań dla scenariusza 1

Na Rysunku 5 można zaobserwować, że zastosowanie

metody GPU Instancing spowodowało wzrost liczby FPS
o 10,9 %, redukcję zużycia pamięci o 6,8 % oraz spadek
liczby wywołań grupy renderującej (batch count) aż o
98,5 %.

Z kolei zastosowanie metody Occlusion Culling wią-
zało się ze spadkiem liczby FPS o 6,7 %, redukcją zuży-
cia pamięci o 6,7 %, przy czym liczba wywołań batch
count pozostała niezmieniona.

Natomiast Static Batching przyczynił się do wzrostu
liczby FPS o 20,4 %, równoczesnego wzrostu zużycia pa-
mięci o 10,5 % oraz spadku liczby wywołań batch count
aż o 98,6 %.

Na Rysunku 6 można zaobserwować że liczba trójką-
tów oraz krawędzi wzrosła o ponad 303,6 % dla krawędzi
oraz 327,4 % dla trójkątów względem innych scen. Wy-
nika to z faktu że każda instancja modelu jest liczona
osobno w statystykach jednakże w rzeczywistości nie

oznacza to większej złożoności obliczeniowej.

Rysunek 5: Wartości zmierzonych metryk dla scenariusza 1.

Rysunek 6: Wartości zmierzonych metryk dla scenariusza 1.

6.2. Wyniki badań dla scenariusza 2

Na Rysunku 7 można zaobserwować, że zastosowanie

LOD spowodowało, że liczba FPS wzrosła do 380,2 %
wartości wyjściowej, zużycie pamięci zwiększyło się je-
dynie o 0,3 %, a liczba wywołań batch count zmniejszyła
się o 14,4 %.

W przypadku zastosowania Occlusion Culling odno-

towano spadek liczby FPS o 0,3 %, wzrost zużycia pa-
mięci o 0,2 % oraz zmniejszenie liczby wywołań batch
count o 3,1 %.

Na Rysunku 8 można zaobserwować iż LOD zmniej-
szyło liczbę krawędzi oraz trójkątów o odpowiednio 26,8
% oraz 33,7 %, potwierdza to działanie tej optymalizacji.

Natomiast Occlusion Culling nieznacznie zmniejszył
liczbę krawędzi oraz trójkątów o 4,2 % co nie przełożyło
się na znaczne zwiększenie wydajności.

Rysunek 7: Wartości zmierzonych metryk dla scenariusza 2.

Rysunek 8: Wartości zmierzonych metryk dla scenariusza 2.

6.3. Wyniki badań dla scenariusza 3

Na Rysunku 9 można zaobserwować, że wykorzystanie

systemu Unity Jobs przyczyniło się do wzrostu liczby
FPS o 21,6 %, redukcji zużycia pamięci o 0,1 % oraz
spadku liczby wywołań batch count o 22,8 %.

Object Pooling spowodował wzrost liczby FPS o 14,6

%, zmniejszenie zużycia pamięci o 0,1 % oraz spadek
liczby wywołań batch count o 19,4 %.

Zastosowanie systemu ticków (metody podziału
czasu gry na dyskretne kroki) zwiększyło liczbę FPS
o 27,1 %, zmniejszyło zużycie pamięci o 0,1 % oraz spo-
wodowało spadek liczby wywołań batch count o 8,4 %.

Na Rysunku 10 można zaobserwować że dla Object
Pooling liczba krawędzi oraz trójkątów zmniejsza się od
około 0,2 % a 0,4 %.

Rysunek 9: Wartości zmierzonych metryk dla scenariusza 3.

Journal of Computer Sciences Institute 37 (2025) 431-435

435

Rysunek 10: Wartości zmierzonych metryk dla scenariusza 3.

6.4. Wyniki badań dla scenariusza 4

Na Rysunku 11 można zaobserwować, że zastosowanie

metody Occlusion Culling przyczyniło się do wzrostu
liczby FPS o 74 %, redukcji zużycia pamięci
o 0,3 % oraz spadku liczby wywołań batch count
o 65,6 %. Na rysunku 12 widoczny jest spadek liczby

krawędzi oraz trójkątów o 56,8 %.

Rysunek 11: Wartości zmierzonych metryk dla scenariusza 4.

Rysunek 12: Wartości zmierzonych metryk dla scenariusza 4.

7. Wnioski

Wyniki badań pokazują, że zastosowanie metod optyma-
lizacyjnych w większości przypadków poprawiło wydaj-
ność gry, co znajduje potwierdzenie w wynikach innych
autorów omawianych w przeglądzie literatury [6,7,8].

Natomiast w przypadku Occlusion Culling wyniki są
niejednoznaczne, ponieważ w scenariuszach, gdzie
w scenie znajduje się wiele małych elementów, koszty
zastosowania tej metody przewyższają zyski, doskonale

jest to widoczne na rysunku 8 gdzie liczba krawędzi oraz
trójkątów zmniejszyła się tylko o 4,2 %. W scenach z du-

żymi obiektami technika ta przynosi istotne korzyści,
zwiększając liczbę klatek na sekundę, a jednocześnie
zmniejszając zużycie pamięci RAM dodatkowo zauwa-

żalne jest zmniejszenie liczby krawędzi i trójkątów, co
obrazuje rysunek 12.

Największy względny wzrost liczby FPS odnoto-
wano w przypadku metody LOD, przy czym zużycie pa-
mięci wzrosło niemal nieznacznie (w granicach typo-
wego odchylenia). Pozostałe techniki zwiększały wydaj-
ność w zakresie od około 10 % do około 27 %.

Jeśli chodzi o zużycie pamięci, metody GPU Instan-
cing oraz Occlusion Culling wykazały, że w scenariuszu
z wieloma identycznymi obiektami można zaobserwo-
wać redukcję wykorzystania pamięci o około 6,7 %, pod-
czas gdy w pozostałych scenariuszach różnice te są

nieznaczne i mieszczą się w granicach odchyleń standar-
dowych. Wyniki z przeprowadzonych scenariuszy poka-

zują, że żadna z hipotez nie została w pełni potwierdzona.
W hipotezie H1 wiele metod faktycznie zwiększyło
liczbę FPS, jednak zastosowanie Occlusion Culling w

tym przypadku spowodowało jej spadek, co zaprzecza
sformułowaniu hipotezy. W hipotezie H2 również zaob-
serwowano wzrost zużycia pamięci w wyniku zastoso-

wania Static Batching, co przeczy założeniu tej hipotezy.
W przyszłości warto przetestować te metody także na

innych platformach niż PC/Windows, na przykład na
urządzeniach mobilnych oraz konsolach nowej generacji.
Dodatkowo niektóre z technik można ze sobą łączyć,
dzięki czemu można sprawdzić, które kombinacje przy-

noszą najlepsze rezultaty wydajnościowe. Innym darmo-
wym silnikiem do tworzenia gier jest zdobywający w
ostatnich latach ogromną popularność Godot. Warto po-

równać wyniki uzyskane w Unity z rezultatami osiąga-
nymi w Godocie ponieważ na moment obecny brak jest

jakichkolwiek badań w tym temacie.

Bibliografia

[1] Newzoo, Global Games Market Report 2024,

https://newzoo.com/resources/trend-reports/newzoos-

global-games-market-report-2024-free-version,

[16.06.2025].

[2] K. Claypool, M. Claypool, Perspectives, frame rates and

resolutions: it’s all in the game, In International
Conference on Interactive Entertainment (FDG) (2009)

42–49, https://doi.org/10.1145/1536513.1536530.

[3] K. Claypool, M. Claypool, On frame rate and player

performance in first person shooter games, Multimedia

Systems 13 (2007) 3–17, https://doi.org/10.1007/s00530-

007-0081-1.

[4] A. Madhusudan, B. Watson, Better frame rates or better

visuals? An early report of esports player practice in Dota

2, In Extended Abstracts of the 2021 Annual Symposium

on Computer-Human Interaction in Play (CHI PLAY)

(2021) 174–178,

https://doi.org/10.1145/3450337.3483484.

[5] K. Werder, Esport, Business & Information Systems

Engineering 64(3) (2022) 393–399,

https://doi.org/10.1007/s12599-022-00748-w.

[6] A. Trisnadoli, J. A. Kreshna, Optimization of Educational

Mobile Game Design ’Ayo Wisata ke Riau’ Based on
User’s Perspective, IT Journal Research and Development
6(1) (2021) 52–59,

https://doi.org/10.25299/itjrd.2021.5766.

[7] J. Jie, K. Yang, H. Shi, Research on the 3D game scene

optimization of mobile phone based on the Unity 3D

engine, In International Conference on Computational and

Information Sciences (ICCIS) IEEE (2011) 875–877,

https://doi.org/10.1109/ICCIS.2011.317.

[8] D. Daman, T. K. Heok, A review on level of detail, In

International Conference on Computer Graphics, Imaging

and Visualization (CGIV) IEEE (2004) 14–20,

https://doi.org/10.1109/CGIV.2004.1323963.

https://newzoo.com/resources/trend-reports/newzoos-global-games-market-report-2024-free-version
https://newzoo.com/resources/trend-reports/newzoos-global-games-market-report-2024-free-version
https://doi.org/10.1145/1536513.1536530
https://doi.org/10.1007/s00530-007-0081-1
https://doi.org/10.1007/s00530-007-0081-1
https://doi.org/10.1145/3450337.3483484
https://doi.org/10.1007/s12599-022-00748-w
https://doi.org/10.25299/itjrd.2021.5766
https://doi.org/10.1109/ICCIS.2011.317

